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Abstract: The burden of cardiovascular diseases and the critical role of acute coronary syndrome
(ACS) in their progression underscore the need for effective diagnostic and prognostic tools. Biomark-
ers have emerged as crucial instruments for ACS diagnosis, risk stratification, and prognosis assess-
ment. Among these, high-sensitivity troponin (hs-cTn) has revolutionized ACS diagnosis due to
its superior sensitivity and negative predictive value. However, challenges regarding specificity,
standardization, and interpretation persist. Beyond troponins, various biomarkers reflecting my-
ocardial injury, neurohormonal activation, inflammation, thrombosis, and other pathways are being
explored to refine ACS management. This review article comprehensively explores the landscape
of clinically used biomarkers intricately involved in the pathophysiology, diagnosis, and prognosis
of ACS (i.e., troponins, creatine kinase MB (CK-MB), B-type natriuretic peptides (BNP), copeptin,
C-reactive protein (CRP), interleukin-6 (IL-6), D-dimers, fibrinogen), especially focusing on the prog-
nostic role of natriuretic peptides and of inflammatory indices. Research data on novel biomarkers
(i.e., endocan, galectin, soluble suppression of tumorigenicity (sST2), microRNAs (miRNAs), soluble
oxidized low-density lipoprotein receptor-1 (sLOX-1), F2 isoprostanes, and growth differentiation
factor 15 (GDF-15)) are further analyzed, aiming to shed light on the multiplicity of pathophysio-
logic mechanisms implicated in the evolution of ACS. By elucidating the complex interplay of these
biomarkers in ACS pathophysiology, diagnosis, and outcomes, this review aims to enhance our
understanding of the evolving trajectory and advancements in ACS management. However, further
research is necessary to establish the clinical utility and integration of these biomarkers into routine
practice to improve patient outcomes.

Keywords: biomarker; acute coronary syndrome; coronary artery disease; myocardial injury;
neurohormonal activation; inflammation; thrombosis

1. Introduction

Cardiovascular diseases continue to pose a significant burden on overall mortality
worldwide [1,2] and acute coronary syndrome (ACS) is often the initial presentation. ACS,
encompassing a spectrum of conditions from unstable angina (UA) to ST-segment elevation
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myocardial infarction (STEMI), presents a critical challenge in contemporary cardiology.
ACS results from the disruption of atherosclerotic plaques within the coronary arteries,
leading to myocardial ischemia, necrosis, and subsequent clinical presentations [3]. Early
diagnosis and risk stratification are therefore critical for guiding timely interventions and
improving patient outcomes [4].

Biomarkers have emerged as essential endpoints for the diagnosis, risk stratification,
and prognosis assessment of ACS. Among these biomarkers, troponin, particularly high-
sensitivity troponin (hs-cTn), has revolutionized ACS diagnosis with its superior sensitivity
and negative predictive value [5]. However, challenges such as specificity, standardization,
and interpretation persist. Beyond troponins, a constellation of biomarkers reflecting my-
ocardial injury, neurohormonal activation, inflammation, thrombosis, and other pathways
are being explored to refine ACS management (Figure 1).
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Figure 1. Different roles of biomarkers in the pathophysiology of Myocardial Infarction. The
biomarkers for MI can be categorized based on their mechanism of action. Some are secreted by the
cardiomyocytes, while others are correlated with inflammation, clot formation, and neurohormonal
pathways. It is interesting to note that some biomarkers (galectin-3, miRNAs, BNP, sST2, and GDF-15)
are included in more than one category, proving the multiplicity of their pathophysiology (BNP: B type
natriuretic peptide; CK-MB: Creatine Kinase- MB; CRP: reactive protein; cTn: Cardiac Troponin; GDF-
15: Growth Differentiation Factor-15; hFABP: Heart- Type Fatty Acid Binding Protein; MI: Myocardial
Infarction; miRNAs: micro-RNAs; MPO: Myeloperoxidase; NT-proBNP: N-terminal portion of
the pro-BNP peptide; sLOX-1: Soluble oxidized low-density lipoprotein receptor-1; sST2: Soluble
Suppression of Tumorigenicity) Parts of the figure were drawn by using pictures from Servier Medical
Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License (https://creativecommons.org/licenses/by/3.0/) (accessed on 16 September 2023).

Therefore, in this review article, we focus on elucidating the elaborate landscape of
biomarkers intricately involved in the pathophysiology, diagnostic process, and prognostic
assessment of ACS, aiming to enhance our comprehension of the advancement of ACS as
well as the clinical ramifications stemming from these biomarkers.

https://creativecommons.org/licenses/by/3.0/
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2. Biomarkers of Myocardial Injury
2.1. Troponin and High-Sensitivity Troponin

The troponin contractile apparatus consists of three isoforms (C, I, & T), which interact
with tropomyosin, actomyosin, and Ca2+, regulate muscle contraction, and release from the
necrotic myocardium (Table 1). Troponin C is not utilized in clinical practice as a biomarker
since there is significant homology between the skeletal and cardiac isoforms, reducing
cardiac specificity [6]. Since 2000, Troponin I and T has been a criterion ‘sine qua non’ for
myocardial infarction (MI) diagnosis along with clinical and electrocardiography (ECG)
conditions. Early conventional cTn assays, while specific, had a low sensitivity; analytical
methods however have since evolved, with the hs-cTn assays (5th generation) prevailing
as they offer higher diagnostic accuracy, an earlier detection of MI (within one hour), and
a higher Negative Predictive Value (NPV) in order to rule out a MI (99.5–99.8%) [7,8].
These benefits in sensitivity and NPV come at the cost of specificity and Positive Predictive
Value (PPV) compared to the conventional cTn (ruling in a MI), leading to more extensive
testing [9,10]. Due to the high sensitivity, the ESC 2020 guidelines recommend the rapid
‘rule-out’ and ‘rule-in’ algorithms, especially the 0h/1h (alternatively 0 h/2 h) of serial
drawing samples with a minimal sensitivity of 99% and a minimal PPV of 70%. In fact,
Non-ST-Elevation Myocardial Infarction (NSTEMI) can be ruled out at baseline for a very
low hs-cTn and/or lack of elevation within the first hour [7]. hs-cTn is also a quantitative
biomarker in the diagnosis of MI as 5x Upper Reference Limit (URL) increases have a high
PPV (>90%) for type 1 MI and this limit can differentiate from type 2 MI; at the same time,
the increase in diagnosed MIs has led to a subtle reduction in the incidence of UA [7,11].

Table 1. Biomarkers used and application in ACS.

Biomarker Mechanism of Action-Release Clinical Application & Abilities

hs-Troponin
Regulates cardiac contraction.

Released at myocardium necrosis.
T & I isoforms cardiac specific

Modification above 99th URL diagnostic for MI
hs-cTn has high sensitivity & NPV at cost of specificity.

5x URL increase→high PPV (>90%) for type 1 MI
‘Rule-out’ & ‘rule-in’ MI algorithms

Differentiate NSTEMI & UA
Rises in 3–12 h, peak at 24 h.

Prognosis of all-cause mortality

CK-MB
Released at myocardium necrosis.

CK-MB isoenzyme mostly at cardiac
muscle (low levels in skeletal muscle)

Diagnosis: Rises after 4–6 h & peaks at 24 h
Normal at 48–72 h→detects reinfarction.
NPV 97% & sensitivity 91% at first 6 h

Prognostic for infarct size, wall motion abnormalities, mortality, HF,
possibly LV remodeling, CI-AKI

Cystatin C

Protease inhibitor secreted by
nucleated cells.

Filtered through glomerulus and
catabolized in proximal tubule.

Associated with Egfr

Prognostic/risk stratification for all-cause mortality, HF
hospitalization, CVD after ACS

Peaks at 3rd day after ACS (vs. 6th Creatinine)
Prognostic for NRP, MACE & mortality after PCI

H-FABP Released from cytoplasm after cardiac
injury and necrosis

High sensitivity at decreased cutoffs (4 µg/L)
Early biomarker (<1 h), reinfarction detection

Possible value in early ruling out MI

Endocan Endothelial dysfunction & activation
Inflammation

Risk stratification and Prognosis of MACE, high SYNTAX score
Possibly indicates reperfusion after PCI or CABG

Possibly different levels in STEMI vs. NSTEMI/UA

Galectin

Cardiac remodeling and fibrosis
(fibroblasts→myofibroblasts &

collagen synthesis)
Plaque Destabilization in CVD

Prognosis of MI and HF
Risk stratification (LVEF, MACE, mortality, HF, remodeling)

Interrelated with atherosclerosis & inflammation.
Possible therapeutic target
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Table 1. Cont.

Biomarker Mechanism of Action-Release Clinical Application & Abilities

sST2
Decoy receptor for sST2/IL-33

interaction cardiac fibrosis,
hypertrophy and remodeling

Prognostic factor ADHF (>35 ng/mL)
Therapeutic guidance in Type 1 & 2 MI (>35 ng/mL likely adverse

remodeling & >70 ng/mL aggressive treatment)
Prognostic for ACS (mortality, HF, remodeling)

Prognostic for reperfusion & NRP after PCI

D-dimers
Breakdown of fibrin clot by plasmin

at the site of coronary artery
thrombosis

Possibly diagnostic for MI and differentiate from UA (>500 ng/mL)
Prognostic for recurring MI, all-cause mortality, in hospital

complications, NRP

CRP Acute-phase inflammation

Prognostic factor of future myocardial infarction and stroke,
levels > 3 mg/L upon discharge: increased risk of readmission

within 1 year for recurrent cardiovascular instability or myocardial
infarction

micro-RNA

Control of gene expression, oxidative
stress, inflammation, apoptosis,
fibrosis, and cardiac remodeling

processes

Predictive factor for cardiovascular mortality and the development of
heart failure

GDF-15 Increases in tissue damage and
inflammation Risk predictor

Fibrinogen Clot formation, platelet aggregation,
fibrinolysis, inflammation

Induce coronary artery restenosis, baseline levels: increased risk of
cardiovascular events within 2 years

ACS: Acute Coronary Syndrome; ADHF: Acute Decompensated Heart Failure; CABG: Coronary Artery Bypass
Grafting; CI-AKI: Contrast Induced Acute Kidney Injury; CK-MB: Creatine Kinase-MB; CVD: Cardiac Vascular
Disease; eGFR: estimated Glomerular Filtration Rate; GDF-15: Growth Differentiation Factor-15; HF: Heart failure;
hs-cTn: high sensitivity troponin; LV: Left Ventricle; MACE: Major Adverse Cardiac Events; MI: Myocardial
Infarction; NSTEMI: non-ST-elevation Myocardial Infarction; NPV: Negative Predictive Value NRP: No Reflow
Phenomenon; PCI: Percutaneous Coronary Intervention; PPV: Positive Predictive Value; UA: Unstable Angina;
URL: Upper Reference Limit.

However, in a study there was a significant discordance in the results of 3 different
hs-cTn assays, showcasing a lack of standardization between different manufacturers. This
inconsistency was especially pronounced in troponin levels below the limit of detection
(LOD) and between the LOD and the 99th percentile, while the proportion of samples
above the 99th percentile did not fluctuate significantly between the clusters. As a result,
the patients with rule-out and observe recommendations significantly differed between
groups, while there was no significant difference in the rule-in candidates across different
assays and research teams. This discrepancy can be attributed to differences in sensitivity
and LOD or differences in the reference biobank used by each assay to determine the
99th percentile [8]. Standardization and harmonization issues between hs-cTn I assays are
especially pronounced compared to hs-cTn T as Troponin I is offered by a variety of manu-
facturers; results between companies are therefore not interchangeable [6]. Concerning the
differences between the isoforms T and I, cTn- I has a higher diagnostic accuracy in early
presenters, while cTn-T prevails later [12,13]. Finally, cTn-T is superior in the prognosis of
all-cause mortality, but its clearance is more heavily impacted in renal failure [13,14].

2.2. Creatine Kinase MB (CK-MB)

Creatine Kinase MB (CK-MB) has constituted the gold standard for MI diagnosis in
the past [15] although the current European Society of Cardiology (ESC) guidelines do not
recommend its routine measurement for diagnostic purposes [7]. Creatine Kinase metabo-
lizes Creatine and Adenosine Triphosphate (ATP) to Creatine Phosphate and Adenosine
Diphosphate (ADP) in muscle cells, while the CK-MB isoenzyme constitutes 20% of the
overall myocardium CK pool. CK-MB starts rising 4–6 h after an MI, attains its apex at 24 h,
and declines in 48–72 h, providing the possibility of early detection of a re-infarction [7,16].
During the first 6 h after a MI, CK-MB has a NPV of 97% and a 91% sensitivity. As CK-MB
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is released from skeletal muscle as well, it is important to avoid false positives in diagnosis
by paying attention to the regularity and amount of secretion; a CK-MB:CK ratio > 2.5%
increases the likelihood of cardiac sources [16]. Apart from its diagnostic properties, CK-
MB adds prognostic characteristics as well, since peak CK-MB strongly correlates with
the width of the lesion and wall movement anomalies in smaller non-transmural [17] and
larger infarcts [18] after reperfusion. Additionally, in a study of participants 4 months after
a STEMI, peak CK-MB was considered as a very strong predictor of the end systolic volume
index assisting in prognosis of Left Ventricle (LV) remodeling [19]. Other useful associations
consist of peak CK-MB levels correlating with 3-year mortality in NSTEMI after percuta-
neous coronary intervention (PCI) [20] and with the rare incidence of Heart Failure (HF)
after a STEMI [21]. Finally, among MI patients undergoing coronary angiography, those
with a preprocedural log (CK-MB) > 4.7 have an amplified incidence of contrast-induced
acute kidney injury (CI-AKI) independently of other risk factors [22].

3. Biomarkers of Neurohormonal Activation
3.1. B Type Natriuretic Peptide (BNP)

BNP, a hormone generated due to myocardial dysfunction, is produced predomi-
nantly by the ventricles. Its functions encompass the hindrance of the renin-angiotensin-
aldosterone system (RAAS), promotion of renal sodium excretion, and reduction in vascular
resistance [23].

The concentration of BNP increases significantly within the initial 24 h following an MI
in patients with STEMI and subsequently reaches a relatively stable level. There might be a
second peak in BNP levels around 5 days later, possibly indicating the ongoing remodeling
process [24].

Extensive research has been conducted on BNP, revealing its significance as a prognos-
tic indicator following an MI [24–26]. BNP has a relatively short half-life, but it is secreted
alongside the N-terminal section of the pro-BNP peptide (NT-proBNP), a fragment with a
longer half-life in plasma and therefore more conveniently measured [27].

In a case-control study involving patients with non-ST-elevation ACS, it was discov-
ered that NT-proBNP concentration was elevated in subjects who experienced mortality
compared to those who survived [28]. NT-proBNP elevation occurs in the initial stages of
ACS, particularly when angina lasts for less than 4 h [29]. It also exhibits a close association
with the extent of myocardial ischemia and predicts both short- and long-term mortality
among ACS cases [30]. In another study, NT-proBNP served as a marker strongly linked to
all-cause mortality [31].

The TACTICS-TIMI 18 study [32] involved the randomization of 1676 patients with
non-ST-elevation ACS into conservative and early invasive therapy groups. The study
measured patients’ BNP levels within 24 h and compared the results. The findings revealed
that patients with BNP levels below the cut-off of 80 pg/mL had a six-month mortality
rate of 1.4%, whereas those with BNP levels above the cut-off had a mortality rate of 8.4%.
Additionally, the risk of mortality or congestive heart failure was 3.6% for patients below
the cut-off, compared to 16.3% for those above the cut-off. However, similar to another
study [33], the TACTICS-TIMI 18 study did not determine which patients would have
better outcomes from early invasive revascularization based on BNP levels.

3.2. Copeptin

Copeptin is a portion of the vasopressin precursor hormone (CT-proAVP) secreted
alongside vasopressin after the precursor is cleaved. Measuring copeptin appears to be
a clinically valuable approach for assessing plasma concentrations of vasopressin, which
cannot be directly measured due to demanding pre-analytical techniques [34,35]. Studies
have indicated that it could serve as a prognostic factor for STEMI [36]. In recent findings,
copeptin has emerged as both an independent surrogate of total mortality and a marker of
overall vulnerability, affected by the infliction of HF, type 2 diabetes, female sex, and prior
MI [37]. In a prospective trial of patients with acute myocardial infarction (AMI), it was
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demonstrated that incorporating copeptin alongside cTn I enabled a secure exclusion of
AMI with a NPV exceeding 99% in patients presenting early with suspected ACS. Moreover,
the study indicated that the presence of both aberrant copeptin and cTn I levels was an
independent indicator of mortality within 6 months [38]. In summary, recent evidence
indicates that copeptin may offer supplementary benefits to cTn in promptly ruling out
patients with suspected ACS [39].

4. Inflammatory Biomarkers
4.1. C Reactive Protein (CRP)

Atherothrombosis, a major contributor to ACS [40], mainly results from inflamma-
tory processes [41]. CRP has been extensively researched as an indicator of acute-phase
inflammation and could possibly assess increased cardiovascular risk in individuals with
pre-existing atherosclerosis. According to the literature, plasma levels of CRP can estimate
the likelihood of future MI and stroke [42]. Importantly, statins have the potential to
decrease CRP levels beyond their cholesterol-lowering effects [43], making CRP a valu-
able test to reassess individuals categorized as having an intermediate risk for future
cardiovascular events.

Moreover, patients diagnosed with UA and CRP levels greater than 3 mg/L upon dis-
charge face an increased risk of readmission within one year for reoccurring cardiovascular
instability or MI [44]. Likewise, in a prospective study of individuals who went through
early invasive therapy for NSTEMI, elevated CRP levels exceeding 10 mg/L during admis-
sion still presented with a higher likelihood of death over an average follow-up period of
20 months [45].

Although certain studies have yielded encouraging findings, CRP has not consistently
demonstrated itself as a standalone predictor of events. Given the existing treatment
approaches for ACS, which include dual antiplatelet, high-intensity statin treatment, and
reperfusion, the significance of CRP in regular prognostic estimation for ACS remains
uncertain [39].

4.2. Interleukin-6 (IL-6)

IL-6, like CRP, has a central role in the inflammatory cascade and has been used
as an inflammatory biomarker that may play a significant role in diagnosis, risk strati-
fication, and outcome prediction in patients with AMI. Elevated expression of IL-6 has
been observed in induced MI by transcoronary ablation of septal hypertrophy, suggesting
potential diagnostic significance [46]. Furthermore, IL-6 shows substantial upregulation
in ACS [47] and its levels are linked to adverse cardiac events, highlighting its potential
as a therapeutic target in unstable ischemic heart disease [48]. IL-6 receptor antagonists
have been found to improve the inflammatory response and the release of cTn after PCI in
patients with NSTEMI. This improvement is independent of the inhibition of endothelial
cell activation [49].

4.3. Myeloperoxidase (MPO)

Myeloperoxidase (MPO) is an enzyme involved in the immune system response
and is excreted from neutrophils and macrophages into the extracellular fluid during
inflammation [50]. MPO is implicated in the pathophysiology of numerous diseases
including atherosclerosis. Is associated with oxidation of LDL cholesterol particles and
formation of foam cells; moreover, it has been also studied as a possible therapeutic target
against cardiovascular diseases [50,51]. Interestingly, expression of MPO by macrophages
is increased at the later stages of atherosclerosis contrary to the initial atherosclerotic
lesions (i.e., fatty streaks) in a process controlled by proinflammatory mediators such as
granulocyte macrophage colony-stimulating factor (GM-CSF) [52].

Regarding diagnosis of ACS, measurement of MPO at 6 h has displayed a significant
diagnostic capability discriminating patients presenting with ACS from patients with other
diagnoses of cardiovascular disease [53]. Furthermore, there is an association between
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MPO levels and the presence of unstable coronary artery plaques as well as the likelihood of
future cardiovascular events [54]. Specifically, elevated serum levels of MPO in individuals
experiencing ACS have been linked to future cardiovascular events and could identify
those at risk for adverse events [55]. Accordingly high levels of MPO on admission could
indicate the patients with ACS at risk for complications during their index hospitalization
such as HF, arrhythmias and renal failure [56]. Actually, MPO levels have demonstrated an
inverse association with left ventricular systolic function in patients hospitalized due to
ACS [56]. Moreover, evidence from a meta-analysis of 13 studies has displayed that MPO
could predict mortality of patients with ACS and especially for smokers whereas female
gender depicted an inverse association with mortality and recurrence of MI; nevertheless,
MPO had great prognostic capability irrespectively of other classic cardiovascular risk
factors such as age, hypertension and diabetes [57]. Prognostic capability of MPO for future
cardiovascular events has been also confirmed by a meta-analysis of 27 studies of patients
with ACS [58]. What is more, higher expression of MPO could identify also patients
with NSTEMI at risk of major adverse cardiovascular events (MACE) at the first year and
particularly for patients > 65 years of age and NT-proBNP levels beyond 1000 pg/mL [59].
Better understanding of the diagnostic and prognostic capability of MPO for patients with
ACS could facilitate the development of future clinical studies and possible therapeutic
inhibition of the pathways of MPO-related inflammation and oxidative stress [51].

5. Biomarkers Associated with Thrombosis-Fibrinolysis
5.1. D-Dimers

Whereas the d-dimers have been traditionally established as the diagnostic marker for
venous thromboembolism, recently the potential for the diagnosis and prognosis of ACS
has been brought to attention due to the coronary artery thrombosis characterizing MI [60].
A recent study considered this biomarker as a potential diagnostic tool for patients with MI
and UA; indeed, the determined cut-off to differentiate MI from UA was 548 ng/mL, with
91.2% sensitivity and 63.4% specificity [60]. This cut-off value is compatible with the one
from the Bayes-Genis et al. study, where d-dimers > 500 µg/L were diagnostic for MI [61].
In contrast, a recent study found the diagnostic ability of dimers to differentiate between
MI and chest pain of non-coronary aetiology to be moderate unless the values exceed the
95th percentile [62]. However, the same study proved the d-dimer’s prognostic ability for
MI recurrence (p = 0.0333) and all-cause death (p < 0.0001) [62]. Finally, a meta-analysis
of 5 studies with a mean follow-up of 13.2 months found high d-dimer levels associated
with a higher hospital stay, more long-term adverse outcomes, and with the No Reflow
Phenomenon (NRP) in STEMI patients after revascularization [63].

5.2. Fibrinogen

Fibrinogen (FIB), an early-identified clotting factor, is produced in the liver, and af-
fects processes such as clot formation, platelet aggregation, and the fibrinolysis system. It
contributes to the inflammatory response via interactions with cytokines, impacting cardio-
vascular disease progression. Furthermore, FIB degradation products can induce coronary
artery restenosis by promoting smooth muscle cell proliferation [64]. It was discovered
that individuals with ACS following PCI who have high baseline fibrinogen levels are at
increased risk of MACE within two years [65]. The pathways through which fibrinogen
contributes to increased cardiovascular risk can be elucidated as follows: Firstly, fibrinogen
stimulates the aggregation of platelets. Moreover, elevated fibrinogen concentrations force
the creation of fibrin and elevate plasma viscosity. Lastly, fibrinogen actively engages in
inflammatory responses, with its levels rising under inflammatory conditions [66].

6. Additional Biomarkers

Beyond the most well-studied biomarkers with clinical applications in the ACS, several
other serum biomarkers are continuously evaluated for their diagnostic or prognostic ability
in the setting of myocardial infarction (Table 2).
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Table 2. Studies on potential biomarkers regarding ACS.

Biomarker Study Type Population Results Concentrations

Cystatin C
(CysC)

Brankovic
et al., 2020 [67]

BIOMArCS
prospective

multicenter study

Case cohort of 844
patients after ACS

for 1 year
follow-up

CysC independent of
GRACE score and

associated with
mortality, non-fatal MI &
revascularization due to

angina

CysC at any time
associated with

endpoint (HR [95% CI]:
per 1SD increase of

2logCysC: 1.79
[1.21–2.63], p = 0.006)

Correa et al.,
2018 [68]

Double- blind
clinical trial

4965 random,
hospitalized for

ACS patients from
SOLID-TIMI

52 trial

Strong correlation with
Creatinine & eGFR
Elevated CysC- 89%

higher risk of CVD, HF
hospitalization, 44% of

MACE, 28% of MI
Q4: x5 risk of CVD or

HF, >x2 MACE

Quartiles of CysC:
Q1 < 0.78,

Q2 = 0.78–0.88,
Q3 = 0.88–1.03,

Q4 > 1.03 mg/mL

Sun et al.,
2021 [69] Meta-analysis 10 studies

Significant correlation of
high level CysC with
all-cause mortality &

MACE but not
significant with

recurrent MI

High Q4 and low Q1
quartiles from each

study

Chen et al.,
2022 [70] Meta-analysis

8 studies with 7394
patients after PCI

or CABG

↑cystatin significant
relation with MACE &

mortality after PCI
Non-significant after

CABG

-

hFABP

Young et al.,
2016 [71] Feasibility study 1079 patients, 248

with MI

hFABP + hs-cTn can
identify up to 40%

patients as low risk at
presentation

hFABP < 4.3 ng/mL +
hs-cTn I < 10.0 ng/L +

(-) ECG (>99%
sensitivity)

Van Hise et al.,
2018 [72] Cohort study 1230 patients, 112

with MI

h-FABP, hs-cTn and ECG
has high accuracy and

can rule out more
patients

hFABP + hs-cTn T (100%
sensitivity + 32.4%

specificity)
hFABP and hs-cTn I
(99.1% sensitivity +
43.4% specificity)

hs-cTn I alone higher
specificity 68.1%

Collinson et al.,
2013 [73]

Randomized
controlled trial

850 patients with
chest pain + (-)

ECG sampled on
admission +

90 min

Hs-cTn best single
marker, further info on

hFABP required

H-FABP + cTn T/ cTn I
(sensitivity 0.78–0.92) at
2.5 µg/L cut-off (single
troponin at 2 samples

0.78–0.95)

Dupuy et al.,
2015 [74]

Prospective cohort
study

181 patients, 47
with MI (31

NSTEMI) within
12 h

HFABP + hs-cTn T
increased sensitivity

(+13%) and NPV (+3%)
for NSTEMI

hFABP lower diagnostic
accuracy than hs-cTn T

5.8 ng/mL cutoff
(sensitivity of 97% +

NPV of 99%)

Endocan Ziaee et al.,
2019 [75]

Cross- sectional
and prospective

320 patients with
ACS: 160 with
STEMI and 160

with UA/NSTEMI

Significant positive
correlation between

endocan levels and TIMI
risk score and MACE.

Optimal cutoff values to
predict clinical end

points: 3.45 ng/mL in
STEMI (80% sensitivity

and 72% specificity) and
2.85 ng/mL in

NSTEMI/UA (74%
sensitivity and 67%

specificity)
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Table 2. Cont.

Biomarker Study Type Population Results Concentrations

Endocan

Kundi et al.,
2017 [76] Cross- sectional

133 patients:
88 patients with

STEMI and
45 patients with
normal coronary

arteries

Elevated in STEMI and
positively correlated

with hs-CRP and
SYNTAX score

Cutoff value to predict
STEMI: 1.7 ng/mL

(76.1% sensitivity 73.6%
specificity)

Dogdus et al.,
2021 [77] Cross- sectional

137 STEMI patients
undergoing PCI:

45 NRP (+) &
92 NRP (-)

Endocan, initial
troponin I, Triglyceride

and high-grade
thrombus burden were
independent predictors

of NRP

Cutoff value to predict
NRP:

>2.7 ng/mL (89.6%
sensitivity and 74.2%

specificity)

Cimen et al.,
2019 [78] Cross-sectional 35 ACS patients

undergoing CABG

Significant decrease
in serum hs-CRP and
endocan levels (372.8

ng/mL vs. 320.2) after
CABG (p < 0.05)

-

Qiu et al.,
2016 [79] Cross-sectional

216 patients with
ACS and

60 controls

Endocan significantly
increased in ACS group.
STEMI vs NSTEMI: (38.2
[14.4, 78.5] vs 10.5 [2.7,

32.6] ng/mL)

-

Galectin

Tian et al.,
2019 [80] Meta-analysis 2809 patients

(10 studies)

Significant negative
correlation between

galectin & LVEF
Non-significant

correlation between
gal-3 & infarct size

Galectin associated with
high mortality

-

Asleh et al.,
2019 [81]

Population based
cohort study

1342 patients at
time of MI

Tertile 2 & 3: 1.3 & 2.4
increased risk of death

1.4 & 2.3 risk of HF

Gal-3 cut-offs in
3 tertiles:

1: <15.1 ng/mL
2: 15.1–22.4 ng/mL

3: >22.4 ng/ml

Gagno et al.,
2019 [82]

Prospective cohort
study

469 patients with
MI (60% STEMI)
with 12 month

follow up

Galectin associated with
all-cause mortality.

Gal-3bp correlated with
risk of angina/MI

Median Gal-3bp:
9.1 µg/mL

Median Galectin:
9.8 ng/mL

Święcki et al.,
2020 [83]

Controlled pilot
study

110 MI patients (66
STEMI & 44
NSTEMI) vs

control

Galectin↓ at follow up if
endpoint occurrence.

Galectin > 9.2 ng/mL at
discharge→x9 increase

of risk of endpoint
occurrence

Galectin cut-off
≥9.2 ng/mL (91%
specificity & 50%

sensitivity) for MACE at
follow-up

Mitić et al.,
2022 [84] Cohort study 89 patients

undergoing PCI

Early galectin correlates
with atherosclerosis.

Day 30 galectin
correlates with diastolic

dysfunction and LV
remodeling.

-
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Table 2. Cont.

Biomarker Study Type Population Results Concentrations

sST2

Jenkins et al.,
2017 [85]

Prospective
longitudinal cohort

1401 subjects with
MI

Mortality increases at 5
yrs: 11.8%, 25.5% & 52%
HF at 5 yrs: 11.4%, 23.6%

& 44.8% in respective
tertiles

3 tertiles:
T1: <37, T2: 37–72.3,

T3: <72.3 ng/mL ST2

Hartopo et al.,
2018 [86] Cohort study 95 STEMI patients

& 10 controls

Supramedian sST2
levels in STEMI patients

38.3% versus 12.5%
higher incidence of

MACE

STEMI vs controls:
152.1 ng/mL vs.

28.5 ng/mL, p < 0.01

Zhang et al.,
2020 [87] Meta-analysis 16 studies

3 groups:1. ischemic
heart disease, 2. MI & 3

HF→
No statistical

significance between
control and groups 1 &
2, significant only in 3.

-

D-dimers
Reihani et al.,

2018 [60]
Cross- sectional

study

75 patients (34
with MI, 41 with

UA)

Differentiation of MI
(>548) from UA

Cut-off: 548 ng/mL
(91.2% sensitivity &

63.4% specificity,
p < 0.001)

Koch et al.,
2022 [62]

Retrospective
study

435 patients with
UA, 420 with
NSTEMI, 22

NSTEMI, 2680 non
coronary cause

PPV for final ACS
diagnosis ↑ with

d-dimer ↑
Unable to discriminate

STEMI from
non-coronary cause &

UA.
↑d-dimer→↑risk of

recurrent MI (esp. Q4) &
all-cause mortality

D-dimer concentrations
(mg/L): 0.19–0.50 (Q1),

0.51–1.00 (Q2), 1.01–5.00
(Q3), and 5.01–35.00

(Q4).

GDf-15 Bonaca et al.,
2010 [88]

Randomized
control trial

4162 patients with
ACS, follow up for

2 years

significantly higher risk
of death and MI

>1362 ng/L, higher rate
of death or MI

Fibrinogen Cetin et al.,
2020 [65]

Observational
study

261 patients
treated with PCI

for ACS
FAR predictive of MACE -

miR-483-5p Zhao et al.,
2023 [89]

Observational
study

118 patients with
ACS and 75

healthy controls

Serum miR-483-5p levels
were higher in ACS

patients, high diagnostic
value

Cut-off value of 1.292,
demonstrated a feasible

diagnostic value

ACS: Acute Coronary Syndrome; CABG: Coronary Artery Bypass Grafting; CVD: Cardiac Vascular Disease;
eGFR: estimated Glomerular Filtration Rate FAR: fibrinogen-to-albumin ratio; Gal-3bp: Galectin binding pro-
tein, GDF-15: Growth Differentiation Factor-15; HF: Heart Failure; LVEF: Left Ventricular Ejection Fraction;
MACE: Major adverse cardiac events; MI: Myocardial Infarction; NRP: No-Reflow Phenomenon; MI: Myocardial
Infarction; NPV: Negative Predictive Value; PCI: percutaneous coronary intervention; PPV: Positive Predictive
Value; TIMI: Thrombolysis in Myocardial Infarction risk score.

6.1. Cystatin C (CysC)

Cystatin C (CysC) is a small 13 kDa molecular peptide and a cysteine protease inhibitor
secreted by cells with a nucleus into the bloodstream. It is then streamed freely through the
kidney glomerulus and almost thoroughly catabolized into amino acids in the proximal
tubule without being secreted. A decline in estimated Glomerular Filtration Rate (eGFR)
correlates with a decreased CysC, appointing CysC as a possible biomarker along with
creatinine for kidney disease [90]. In fact, CysC interrelation with a worsening renal
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function as a predictor for mortality has actually been studied in the case of ACS: CysC
peaked on the 3rd day after the ACS, whereas creatinine peaked on the 6th day. CysC
also was significantly higher than creatinine during the 11.5-month follow-up, therefore
predicting mortality or ACS repetition independently of the GRACE score [67]. Correa
et al. emphasized a significant association between CysC and long-term risk (2.5 years) of
Coronary Vascular Disease (CVD), HF hospitalization or MI for ACS patients [68]. Further, a
recent meta-analysis established a significant link between CysC and all-cause death in ACS
and MACE but claimed no significant prognostic value for recurrent MI (HR = 1.71 [95%CI:
0.99–2.97]) [69]. This was corroborated in another study, where CysC was prognostic for
all-cause death in a 4-year observation interval, but no differences were noted regarding
the incidence of non-fatal MI, stroke, UA, and unplanned revascularization [91]. Finally,
regarding the prognosis after coronary revascularization in ACS patients, a meta-analysis
claimed that higher CysC levels after a PCI were significantly related to mortality and
MACE [70], while a different article acknowledged CysC as a possible predictor for the
NRP after PCI [92]. Interestingly, high CysC levels before and after Coronary Artery By-
Pass Graft Operation (CABG) could significantly relate to renal and cardiovascular effects
postoperatively [93], an observation rebutted in the beforementioned meta-analysis with
no statistically significant correlation between CysC levels after a CABG with MACE and
mortality [70].

6.2. Heart-Type Fatty Acid Binding Protein (hFABP)

hFABP, a small soluble molecule normally found in the cardiomyocyte cytoplasm
without being cardiac-specific, is responsible for transporting fatty acids [94]. hFABP is
released in large concentrations into the plasma after injury, (usual cut-off 5–7 ng/mL),
starts rising within 1 h of injury and peaks at 6–8 h (whereas cTn rises after 4–6 h), impli-
cating a possible value for early MI and reinfarction detection. Multiple studies claim that
hFABP has a higher sensitivity than single cTn (esp. at 3–6 h after MI), although there is a
large heterogeneity between results, probably due to small patient pools, variable cut-off
values, different assays, and time of testing [94,95]. In particular, a study has emphasized
the ability of hFABP to rule out MI early and characterize up to 40% of patients as low-risk
when combined with hs-cTn T [71]. This finding was supported by Van Hise et al.; however,
the necessity of an additional biomarker was questioned, as hs-cTn I alone had similar
sensitivity and higher specificity than the hFABP and troponin combination [72]. Similarly,
in another study, whereas hFABP combined with cTnT at admission improved sensitivity,
the same results were reproduced with the serial sampling of troponin at 0 and 90 min,
securing the superiority of hs-cTn as a single biomarker for MI [73]. Therefore, the most
promising diagnostic ability of hFABP agreed upon in various studies is the possibility of
an early MI rule out, which under the results of hs-cTn I is questioned [71,72,74]. Finally,
there is discordance between studies regarding the prognosis of mortality by the biomarker,
possibly due to different sampling times and populations requiring further research [94,96].

6.3. Endocan

Endocan, otherwise endothelial cell-specific molecule 1, is a soluble dermatan sulfate
proteoglycan excreted by the activated endothelial cells of vessels. Endocan is upregulated
by a variety of proinflammatory cytokines (Tumor Necrosis Factor-a (TNF-α), Interleukin-
1β (IL-1β), Vascular Endothelial Growth Factor-a (VEGF-a)), whereas it is implicated in
the binding of white blood cells to the endothelium and in inflammatory processes by
inducing the levels of Vascular Cell Adhesion Molecule (VCAM), Intercellular Adhesion
Molecule (ICAM), and E-selectin [97]. As a result of these mechanisms, endocan has been
considered a potential marker for many pathologies, namely sepsis, lung and kidney
diseases, preeclampsia, and chronic heart failure [98]. Regarding cardiovascular disease,
endocan can potentially act as a surrogate marker for hypertension [99], coronary artery
disease (CAD), coronary slow flow [100], angina, and subclinical atherosclerosis [101,102].
Ziaee et al. [75] assessed endocan after a STEMI and UA/NSTEMI and concluded that
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endocan is independently correlated with MACE, increased thrombolysis in MI (TIMI)
risk score and is found in higher levels in STEMI compared to the NSTEMI/UA group.
The prognostic role of endocan was also examined in another study, where endocan levels
were elevated in the presence of STEMI compared to controls and were associated with
increased cardiovascular risk and a high SYNTAX score [76]. Interestingly, due to its pro-
inflammatory properties, endocan could possibly assist in predicting the NRP following
PCI in STEMI patients, as its levels were significantly increased in the NRP (+) group
compared to the control [77]. In contrast, patients undergoing CABG after an ACS had
diminished endocan serum levels upon successful reperfusion [78].

6.4. Galectin

Galectin-3, a β-galactoside-binding lectin, is predominantly secreted by macrophages
and is expressed in a variety of tissues, such as cardiac, renal, hepatic, pulmonary, and
vascular tissues. Galectin induces healing and fibrosis by differentiating fibroblasts into
myofibroblasts, synthesizing collagen I and III, and contributing to scar formation [103,104].
Galectin-3 is additionally implicated in atherosclerosis as it is upregulated in unstable
plaques and attracts monocytes, therefore propagating inflammation [105]. Galectin-3 has
been linked to CAD [106] and has been proposed as a prognostic biomarker for HF [104].
A recent meta-analysis examined the interrelation of galectin-3 with MACE following a MI,
concluding on: a. a significant negative association between galectin and Left Ventricular
Ejection Fraction (LVEF) during and after the MI; b. a non-significant inverted interrelation
between galectin and the infarct size; and c. a significant prediction of MACE and all
cause-mortality with higher galectin-3 levels [80]. A multitude of studies have emphasized
the possible use of galectin as a risk stratification biomarker for MI outcomes. In a study,
increased levels sampled 2 days after a MI translated to increased mortality in 5-year
follow-up as well as a higher incidence of HF; all associations were found independent of
troponin T levels [81]. Similarly, elevated galectin 3 binding protein during a MI correlated
with markers of inflammation (IL-1β, fibrinogen, and high-sensitivity CRP), and in a
12-month follow-up, galectin 3 binding protein was associated with increased risk of angina
or reinfarction and galectin-3 with all-cause mortality [82]. Another study observed no
differences in galectin levels between STEMI and NSTEMI at baseline; however, a positive
correlation with hyperlipidemia and carotid atherosclerosis was observed, and during
follow-up only patients who did not have a subsequent MI, PCI, CABG, or stroke had a
decline in galectin-3 [83]. Finally, galectin couldn’t differentiate between stable angina,
NSTEMI, and STEMI in a group of patients; however, in an early stage (1–5 days), it was
correlated with atherosclerotic factors (hypertension history and triglycerides), and on the
30-day follow-up, galectin-3 was predictive of diastolic dysfunction and LV remodeling [84].

6.5. Soluble Suppression of Tumorigenicity (sST2)

Soluble Suppression of Tumorigenicity 2 factor (sST2), an isoform of ST2, is a por-
tion of the IL-1 receptor family, with its levels increasing in inflammatory diseases as
well as in several heart diseases. sST2 is produced by stretching cardiomyocytes and
fibroblasts and binds its ligand interleukin-33 (IL-33), not allowing for the desired anti-
inflammatory and antifibrotic interaction of IL-33 and the STL2 ligand (STL2L) isoform
(transmembrane receptor) [107,108]. ST2 therefore acts as a decoy receptor, and the
sST2/IL33 complex may be associated with cardiomyocyte hypertrophy, fibrosis, and
remodeling [87,107]. Numerous studies have already proven the strength of sST2 as a
prognostic marker for HF, with a proposed cutoff for life-threatening cardiovascular events
of 35 ng/mL [107,109]. Aleksova et al., propose specific algorithms both for HF and MI: a.
Diagnosis of acute decompensated HF (ADHF) is fairly common (40%) for sST2 > 35ng/mL
with values > 70 ng/mL requiring hospitalization; b. Prognosis of Type 1 MI: sST2 can
assist with treatment decisions as for <35 ng/mL standard care is proposed, 35–70 ng/mL
adverse remodeling is likely and for >70 ng/mL fibrosis is commonly activated and ag-
gressive therapies are needed; and c. Prognosis of Type 2 MI: similar cutoffs and clinical
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decisions to Type 1 MI [110]. Regarding the ACS, Jenkins et al. suggested that sST2 is
associated with age, female sex, and co-morbidities and categorized the sST2 values into
3 tertiles, with patients in the 3rd tertile presenting with a sixfold hazard of mortality
and heart failure at 5 years. sST2 in their study did not have a significant relationship
with troponin and ECG; therefore, it can be assumed that ST2 as a biomarker expresses
different pathophysiologic processes from myocardial injury and ischemia/infarcted bur-
den [85]. Similarly, in a cohort study with 95 STEMI patients enrolled, the mean sST2 was
significantly higher in MI patients than in controls whereas for values above the medium,
significantly more cardiac adverse effects, and especially acute heart failure, occurred [86].
These findings are, however, challenged in a recent meta-analysis of 16 studies: out of
3 assigned groups (1. ischemic heart disease; 2. MI; and 3. HF), only the HF group had
a significant increase in sST2 levels compared to healthy subjects [87]. Finally, high sST2
values have a significant predictive role in the NRP or impaired myocardial reperfusion
after a PCI in STEMI patients [111,112].

6.6. Micro-RNA

MicroRNAs (miRNAs) are a group of non-coding Ribonucleic Acids (RNAs) that play
a significant role in controlling gene expression. Dysregulated miRNA expression is linked
to numerous diseases. Interestingly, miRNAs can be released into extracellular fluids, where
they can act as potential biomarkers for various conditions and also function as signaling
molecules, facilitating cell-to-cell communication [113]. Many research investigations have
demonstrated the role of miRNAs in cardiovascular diseases, controlling a wide range
of processes such as cardiomyocyte death, cell growth, inflammation, and blood vessel
formation [114]. The initial molecules demonstrated to hold prognostic relevance concern-
ing mortality were miRNA-133a and miRNA-208b. These microRNAs were associated
with a significant rise in all-cause mortality at 6 months following AMI [115]. Research
has demonstrated that miRNA-145 can serve as a prognostic biomarker for cardiovascular
mortality and the progression of heart failure [116]. MiRNAs deriving from the cardiac cells,
namely miR-1, miR-195, miR-133, miR-126, miR-16, miR-590, miR-199, miR-143, miR-208a,
miR-499, miR-27-b, miR-497, miR-126, miR-30-d, miR-208b, miR-15a/b, and miR-16-1/2,
play crucial roles in supervising the growth of the cardiac system. Of particular interest
are miR-1 and miR-133, which are transcribed together in high amounts specifically in the
heart but have contrasting functions in the tissue by promoting cell proliferation while
inhibiting cardiac differentiation. Conversely, miR-499 and miR-208, expressed at lower
levels in the heart, demonstrate greater specificity for cardiac injury compared to skeletal
muscle. miRNAs can enhance genome expression by attaching to promoter sequences
and targeted regions; as a result, numerous miRNA transcription compositions are im-
plicated in key pathways related to ACS. These miRNAs are involved in oxidative stress,
inflammation, apoptosis, fibrosis, and cardiac remodeling processes that contribute to the
pathophysiology of ACS [117]. Serum miR-483-5p, has been recently studied as a potential
diagnostic marker for ACS and for its ability to predict major adverse cardiac events after
PCI. It was shown that higher levels of miR-483-5p were present in ACS subjects and were
linked to the severity of the condition. The miR-483-5p test effectively distinguished ACS
patients from healthy controls and differentiated AMI patients from ACS patients. Patients
with elevated miR-483-5p had a higher likelihood of experiencing MACE, and miR-483-5p
was a strong indicator of MACE incidence after PCI [89].

Measuring plasma miR-22 shortly after admission may serve as a diagnostic tool for
MI and a predictor of left ventricular remodeling. However, the reliability of this approach
may be influenced by factors like diabetic status and blood parameters, paving the way for
further research to enhance patient care and interventions [118].

Due to their ability to control numerous genes through various signaling pathways,
miRNAs hold significant promise as innovative therapeutic tools, with miRNA-based
approaches extensively applied in areas such as angiogenesis, atherosclerosis, ischemic
injury, vascular remodeling, hypertrophy, and fibrosis [119]. MiR-195-3p may play a
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pivotal role in the development of cardiac fibrosis and dysfunction following a heart attack.
Inhibiting miR-195-3p might be a valuable approach for preventing cardiac fibrosis and
maintaining heart function after a heart attack [120]. A recent study examined potential
gene signatures associated with cardioprotection. The analysis identified 91 differentially
expressed genes that may have relevance to AMI. Furthermore, the analysis highlighted
the involvement of miR-660 and STAT1, known to impact AMI severity. These genes and
miRNA could be pivotal in rescuing cardiomyocytes from severe damage, offering potential
insights for the development of therapeutic strategies in AMI management [121].

While miRNAs show promise as potential key players in the early diagnosis of MI,
further research is imperative to establish their potency as cardiac biomarkers and their
potential implementation in everyday practice [39]. Lastly, long non-coding RNAs (lncR-
NAs) and circular RNAs (circRNAs) can also shed light on the diagnosis and treatment of
cardiovascular diseases [122].

6.7. F2 Isoprostanes

F2 isoprostanes are byproducts of arachidonic acid metabolism and are expressed
in various cells, including monocytes, during atherosclerotic procedures due to oxidative
stress. Research has revealed elevated levels of these compounds in the urine of patients
with UA. As potential biomarkers, F2 isoprostanes hold promise in predicting complications
in nonfatal MI as well as the progression of HF and mortality [123].

6.8. Soluble Oxidized Low-Density Lipoprotein Receptor-1 (sLOX-1)

Soluble oxidized low-density lipoprotein receptor-1 (sLOX-1) was initially identified
in 1997 as a scavenger receptor for modified low-density lipoprotein (LDL) found on the
endothelium of blood vessels [124].

The research focused on the relationship between sLOX-1 and ACS in individuals with
atherosclerotic CVD. ACS patients presented with augmented sLOX-1 levels compared
to chronic coronary syndrome patients and healthy controls. Elevated sLOX-1 levels
were independently interrelated with a heightened mortality hazard at both 30 days and
1 year. The link between sLOX-1 and cardiovascular mortality was particularly strong.
In ACS patients receiving intracoronary imaging and statin therapy, those with coronary
plaque regression at 1 year showed a significant reduction in sLOX-1 levels, and sLOX-1
demonstrated good predictive ability for plaque progression. In conclusion, increased
plasma sLOX-1 levels during an ACS are associated with mortality in individuals with
CVD, and continually high sLOX-1 is associated with coronary plaque progression in those
with a history of atherosclerotic CVD [125].

6.9. Growth Differentiation Factor 15

Growth Differentiation Factor-15 (GDF-15), formerly recognized as a Non- Steroidal
Anti-Inflammatory Drug (NSAID)—activated gene 1 (NAG-1) and macrophage inhibitory
cytokine 1 (MIC-1), belongs to the Transforming Growth Factor β (TGF-β) family but
stands apart. It is linked to cardiovascular disease and a range of other conditions such
as inflammation, oxidative stress, and cellular stress [126]. Elevated GDF-15 levels have
been associated with an increased occurrence of cardiovascular events observed in both
cases of ST-segment- elevation MI and non-ST-elevation ACS [127]. Moreover, its levels
increase with tissue damage and inflammatory conditions. Another study investigated the
correlation between GDF-15 concentrations and the likelihood of repeated cardiovascular
events in patients who had achieved stabilization after experiencing ACS. It was found that
elevated GDF-15 levels were autonomously associated with a heightened probability of
recurrent events, suggesting its viability as an indicator for evaluating forthcoming risk [88].

7. Conclusions

In conclusion, biomarkers play a pivotal role in diagnosing, stratifying risk, and as-
sessing the prognosis of ACS. In this review article, we systematically discuss the role
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of several biomarkers, categorizing them based on their mechanisms of action and in-
volved pathways, such as myocardial injury, neurohormonal activation, inflammation,
and thrombosis. While this approach provides valuable pathophysiological insights, it’s
important to note that the diagnostic and prognostic significance, as well as the clinical
utility of most of the investigated biomarkers, is not well established. Accordingly, hs-cTn
stands out, revolutionizing ACS diagnosis due to its exceptional sensitivity and negative
predictive value underscoring the importance of ongoing research for the establishment
and development of biomarkers with added prognostic or diagnostic value in ACS settings.
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