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Abstract: Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with
potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among
human flaviviruses, some viral proteins show high conservation and are good candidates as targets
for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million
cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika
viruses have high morbidity and mortality—about an estimated 20,000 deaths per year. As they
depend on human vectors, they have expanded their geographical range in recent years due to altered
climatic and social conditions. Despite these epidemiological and clinical premises, there are limited
antiviral treatments for these infections. In this review, we describe the major compounds that are
currently under evaluation for the treatment of flavivirus infections and the challenges faced during
clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies.
According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo
experiments aimed at identifying compounds that can interfere with one or more viral cycle steps.
Still, the currently unavailability of approved antivirals poses a significant public health issue.

Keywords: antiviral; drug; flavivirus; public health; zoonotic; DENV; TBEV; WNV; YFV; ZIKV

1. Introduction

Flaviviruses are positive single-stranded RNA viruses belonging to the Flaviviridae fam-
ily [1]. This viral family is classified into four genera, wherein the Flavivirus and Hepacivirus
genera are related to the onset of clinically relevant human diseases. The Flavivirus genus
includes several viruses, including, for example, dengue virus (DENV), Zika (ZIKV), and
West Nile (WNV), which are well-known causative agents of human diseases.

These viruses are generally transmitted through the bite of infected arthropod vectors,
and over the past seven decades, they have spread widely over the world.

Dengue viruses cause over 3.7 million cases and approximately 2000 dengue-related
deaths in 70 countries globally [2].

It is noteworthy that West Nile (WNV) and Zika (ZIKV) viruses were detected in
European patients, inducing important clinical impact [3,4] with 1340 locally acquired
human cases of West Nile virus, including 104 deaths in Europe [5]. And in 2023, up to
8758 ZIKV cases were reported in the Region of the Americas [6]. ZIKV infection have
been linked to severe diseases in adults, including multi-organ failure, meningitis, and
encephalitis, and it has been related to death in children with sickle-cell disease and cases of
Guillain—Barré syndrome, a progressive polyneuropathy linked to ZIKV infection that
occurs in 1/6500 to 1/17,000 people in endemic areas [7]. Other flaviviruses, such as the
Usutu virus (USUV), the tick-borne encephalitis virus (TBEV), and the Japanese encephalitis
virus (JEV), continue to pose as health risks and are starting to spread around the world [8].
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Many factors contribute to flavivirus epidemic potential, including the unique characteris-
tics of their insect vectors, the consequences of excessive and poorly planned urbanization
that create ideal breeding habitats for arthropods, and cause vector geographical expansion,
climate change, and extensive global travel, facilitating the geographical spread of viruses
and vectors [9,10]. These new global conditions determine the expansion of arthropod
ranges and their spread into new areas. The flaviviruses can be organized according to
transmission route, such as mosquito-borne viruses, tick-borne viruses, and viruses that are
unclassified or with unknown vectors. Aedes and Culex mosquitoes represent the classical
vector of mosquito-borne flaviviruses, whereas many different tick species are involved in
the transmission of tick-borne viruses [11]. These flaviviruses account for up to 400 million
cases per year globally. The major viruses responsible for human infections are DENV, fol-
lowed by WNV, ZIKV, and YFV, while JEV, TBEV, and Usutu viruses represent an emerging
public health risk in specific geographical regions [8].

The epidemiological and clinical characteristics of flavivirus infections affect vaccines
and therapeutic drug development. Although many antiviral drugs has been discovered
for hepaciviruses, antivirals for the treatment of flaviviruses are not yet available. This
discrepancy is related to the large impact of Hepatitis C virus (HCV) infections worldwide;
the availability of vaccines for some of the most significant flavivirus, such as YFV and
JEV; the large variability of the clinical impact of flaviviral infection from asymptomatic
infections to severe disease (as for ZIKV, JEV, TBEV, WNV, and YFV, as mentioned before);
and the specific geographic localization of certain flaviviruses restricted to developing
countries in Africa and Southeast Asia that lack domestic financial resources and a supply
chain [12]. Hence, this review summarizes the current studies on putative drugs and their
viral or non-viral targets while also addressing ongoing clinical trials to describe the state
of the art characteristics of these items.

2. Biology of Flaviviruses

The knowledge of flaviviridae structure and biology is pivotal to understand the
possible targets of anti-Flaviviridae compounds. In fact, in the next paragraphs, we will
display the different drugs with anti-Flavivirus activity through the classification of targets
and activity mechanisms.

The Flavivirus genus shows morphological uniformity characterized by an enveloped
virus with an icosahedral capsid. The genome is represented by a single-stranded positive-
sense RNA molecule of approximately 11 kb that is translated into a polyprotein in the cell
cytoplasm. This polyprotein is cleaved by proteases, releasing three structural proteins:
the capsid (C); membrane (M), which is expressed as the precursor (prM); envelope (E)
proteins; as well as seven non-structural proteins, namely NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5 [13] (Figure 1).
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Figure 1. Flaviviral genome. Flaviviral genome contains genes for structural and non-structural
proteins, which are flanked by two non-coding regions (NCR) at 5′ and 3′. Encoded Polyproteins are
cleaved by cellular and viral proteases, releasing three structural proteins and seven non-structural
ones. Protein M is initially released as a precursor (prM) and subsequently cleaved and released as a
mature protein M. Modified by King and colleagues [14].
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In terms of homology, some genome regions are more conserved between flavivirus
genomes, such as the NS3 and NS1 genes [15–18], while others, such as C protein, show the
lowest homology, making these proteins less promising as targets for broad-active antiviral
drugs, although structural, biochemical, and functional properties with other flaviviruses
are fully conserved [18].

Cell infection is mediated by interactions between viral E proteins and cell receptors
specific to one or more Flaviviridae [19,20]. For a comprehensive list of viral host receptor,
refer to Table 1.

Table 1. Cell membrane receptors that interact with viral E glycoprotein are involved with E protein
binding and consequent viral entry or specifically recognize each cell receptor.

Host Receptor Virus Ref.

αvβ3integrin
JEV [21,22]

WNV [23]

αvβ5integrin ZIKV [24]

C-type leptin receptors

DENV [25]

JEV [26]

WNV [27–29]

TIM-1 and TAM receptors

DENV [30]

WNV [31]

YFV [31]

ZIKV [32,33]

DC-SIGN-mediated

JEV [34]

ZIKV [32]

DENV [35]

Chondroitin sulphate E DENV [36]

Neolactotetraosylceramide (nLc4Cer) DENV [37]

Heparan sulphates (HSs) DENV [36]

Heparan sulphates proteoglycans (HSPGs) DENV [36,38]

Sphingomyelin JEV [39]

Mannose receptor DENV [40]

CLEC5A
DENV [40]

WNV [41]

Claudin-1
DENV [42]

WNV [43]

Heat Shock Cognate Protein 70 (HSCP70)
DENV [44–46]

JEV [47,48]

Heat Shock Cognate Protein 90 (HSCP90) DENV-2 [45,49]

Heat Shock Cognate Protein 90-β (HSCP90β) JEV [50]

Glucose-regulated protein (GRP78)
DENV-2 [51]

JEV [52,53]

Vimentin JEV [54,55]

CD14 JEV [56]

37/67 kDa high-affinity laminin receptor
JEV [56]

DENV-1 [57]
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Table 1. Cont.

Host Receptor Virus Ref.

Nucleolin JEV [56]

Dopamine D2 receptor
DENV [58]

JEV [59]

Dopamine D4 receptor DENV [60]

Heat Shock Protein 70 (HSP70)

DENV-2 [46,61]

JEV [47]

ZIKV [62]

NKp44 WNV [63]

CD300a
DENV-4 [64]

YFV [64]

α2,3-linked sialic ZIKV [65]

Prohibitin 1/2 DENV-3 [66]

PLVAP JEV [67]

GKN3 JEV [67]

GAGs

DENV [68]

JEV [68]

TBEV [68]

WNV [68]

YFV [68]

NCAM1 ZIKV [69]

PtdSer receptor DENV [64]

These viruses are released into the cell cytoplasm by endocytosis, and their genome
is translated by ribosomes into a viral polyprotein, which is cleaved via host and viral
proteases into structural and non-structural viral proteins. After the release of these cleaved
proteins, viral genome replication occurs at the endoplasmic reticulum. The viral replication
complex is composed of several viral proteins, each one with its own function, such as viral
RNA-dependent RNA polymerase (RdRp) NS5, which governs viral replication. Virion
assessment and maturation take place in the endoplasmic reticulum, followed by processing
in the Golgi apparatus, and then the exocytosis of mature virions from infected cells. Each
of these stages of infection is discussed in more detail in the following paragraphs.

3. Transmission and Pathology

Flavivirus transmission generally occurs through vector insect bites, usually mosquitoes
or ticks. The incubation period ranges from 3 days to 2–4 weeks, as in the case of Murray
Valley encephalitis virus (MVEV). Interestingly, several cases of flavivirus infections are
often clinically asymptomatic, but it is possible to note fever, headache, skin rash, and
nausea, which generally occur without clinical consequences in symptomatic cases, except
when they represent the first stage of severe hemorrhagic fever or neurological damage,
which can lead to death, depending on the flavivirus [70–73].

The possibility of a serious symptomatic evolution depends on virus type, specific
immunological situation, the presence of co-morbidities, previous heterologous infections,
and the age of the patient. Although transmission mainly depends on insects, some
flaviviruses can also be transmitted from human to human. While it is not possible for most
flaviviruses to demonstrate placental infection and fetal involvement, ZIKV, for example,
has been proven to cross the placental barrier and elicit teratogenic effects in developing
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fetal tissues, especially in neurological tissues. In addition, ZIKV is detectable and persists
in human semen and cervical mucus, reinforcing the possibility of vertical transmission
and indicating the possibility of sexual transmission. A consistent viral load for not only
ZIKV, but also DENV, YFV, and WNV is also detectable in breast milk as well as in saliva
(ZIKV), whereas the blood and urine viral load is detectable at variable concentrations
depending on the flavivirus, thus suggesting alternative transmission routes.

4. Viral Targets and Drugs with Antiviral Activity

Treatments for viral infections must inhibit the viral cycle in order to prevent the
formation of new viral progeny and halt the increase in viral load. In addition, the target
must be stable and not prone to mutations that could reduce or suppress antiviral activ-
ity. These two features are essential to tackle the increase in viral load and the onset of
resistance that are related to the failure of treatment. The importance of a stable genome is
exemplified by HCV since viral RNA-dependent RNA polymerase (RdRp) does not carry
out proofreading in hepaciviruses or flaviviruses, thus producing quasi-species during
infection, allowing for efficient immune evasion and the production of new defective,
non-functional virions [74,75]. Viral targets are related to molecules that inhibit or interfere
with viral proteins with enzymatic activity or that can alter proteins through a structural
non-enzymatic action in order to render them ineffective, for example, the maturation and
formation of new virions or virus/cell-binding. This procedure was used during drug
development for the Human immunodeficiency virus (HIV) and HCV; reverse transcrip-
tase and protease inhibitors were approved for the treatment of HIV, thereby blocking
the enzyme’s activity [76]. HCV antivirals, such as NS3-NS4A protease inhibitors, NS5A
inhibitors, and NS5B polymerase inhibitors, were successfully developed [77]. Since HCV
is related to flavivirus (both belonging to the same family Flaviviridae), these target and
antiviral mechanisms could be exploited for the study of antivirals against flaviviruses. In
this review, we analyze viral targets in different stages of the replication cycle (Figure 2).
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mediated endocytosis. The viral envelope merges with the host membrane in endosomes, and the
viral capsid disassembles, allowing the viral genome to enter the cytoplasm. The positive-sense RNA
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is translated in the ER into a single polyprotein, which is co- and post-translationally digested by viral
and host proteases. In specialized ER-derived membrane compartments, the viral-RNA-dependent
RNA polymerase replicates the viral genome. The assembled viral nucleocapsids sprout into the ER
lumen and exit the cell via the secretory route. Non-infectious, immature viral and subviral particles
are produced and transmitted by the trans-Golgi network. The host protease furin cleaves the
immature virion particles, resulting in mature, infectious particles, which are subsequently released
by exocytosis [78,79].

4.1. Entry Inhibitors

The first step of the viral replication cycle is the entry of the virus into the cell through
the cell–virus interactions at the cell membrane level. For flaviviruses, their entry strategy is
based on maximizing virion concentration on the cell surface. To achieve this, flaviviruses
recognize cell membrane targets, including glycosaminoglycans. This interaction, mediated
by domain III of E proteins, is non-specific and characterized by low affinity, but it guaran-
tees the attachment of a high concentration of virions to the surface [80]. Van der Schaar
and collaborators [81] demonstrated that DENV virion particles can spread across the cell
membrane and simultaneously bind to specific receptors localized in regions with a high
presence of clathrin, called clathrin-rich regions. Notably, the interaction between the viral
E glycoprotein and the cell receptors not only induces the first phase of the viral cycle, but
also activates of signal transduction pathways, influencing viability and cell proliferation,
as well as cytoskeleton structure regulation (Figure 3). Cellular receptors are virus-specific
(Table 2) and recognize viral envelope E glycoproteins through domain III [80] or (rarely)
through domain II [82].
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Figure 3. Signaling mechanisms of viral entry receptors. Flavivirus entry receptors affect a variety of
pathways, including cytoskeleton alterations via integrins, endocytosis, proliferation, and cell survival
via PI3K-AKT (TIM and TAM receptors), and immune response downregulation by JAK-STAT.

Flavivirus E protein is a surface membrane protein involved in host cell receptor-
binding functions. It mediates the fusion of the viral envelope with endosomal membranes
and is necessary for the proper virion assembly, maturation, and secretion [20].

Receptor-specific binding and clathrin-coated pockets determine the invagination of
the plasma membrane and consequent endocytotic vesicle formation. In the endosome,
the virus undergoes conformational changes, including trimerization of E protein, a basic
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step for membrane fusion [83]. Nucleocapsid is released in the cytoplasm, where capsid
rearrangements take place with the dissociation of capsid proteins from viral RNA [84–86].

Studies assessing molecules involved in receptor inhibition or co-receptor-binding, as
well as entry and fusion to inhibit the first phase of the viral cycle do, not have a primary ap-
plication in virology. Some compounds, such as T-20/enfuvirtide and maraviroc, are used
in HIV treatment, but these molecules do not have the antiviral impact of drugs that inhibit
retro-transcriptase, or protease or integrase activity. More specifically, T-20/enfuvirtide is a
gp41 membrane-proximal external region (MPER)-derived peptide that inhibits the fusion
between virus and cell membrane. This feature has suggested [87] that an appropriate
modification of flavivirus-derived stem peptides might result in a good inhibitor of the
flavivirus fusion process [87].

Different classes of viral E glycoprotein-targeting drugs were identified to interfere
with the first step of infection using in vivo cell culture and animal models (mice and
non-human primates) (Table 2).

Table 2. Flavivirus entry inhibitors.

Target Drug Viral Specificity Study Stage Ref.

E

Z2
DENV, YFV In vitro [88,89]

ZIKV In vivo [88]

DN59
DENV-2 In vitro

[90,91]
WNV In vitro

P5 JEV, ZIKV In vivo [92]

DET2 and DET4 DENV-2 In vitro [93,94]

Dipeptide EF DENV In vitro [95]

JBJ-01-162-04 DENV, JEV, WNV, ZIKV In vitro [96]

mAb513 DENV In vivo [97]

2D22 DENV In vivo [97–99]

ZIKV-Ig ZIKV Phase 1 clinical trial [100]

TY014 YFV Phase 1 clinical trial [101]

Tyzivumab ZIKV Phase 1 clinical trial [101]

MGAWN1 WNV Clinical trial withdrawn for
low enrollment [101]

Viral entry

Geraniin DENV-2 In vivo [102,103]

Palmatine WNV, DENV-2, JEV, YFV,
ZIKV In vitro [104]

Prochloroperazine
(PCZ) DENV, JEV In vitro [105]

Daptomycin
JEV

In vitro [106–108]Puerto Rico ZIKV

Nanchangmycin CHIKV, DENV, WNV

Erlotinib, Sunitinib
DENV In vivo [109]

WNV, ZIKV In vitro [109]

25-hydroxylcholesterol
DENV, YFV, WNV In vitro

[110]
ZIKV In vivo

Chloroquine
ZIKV In vivo [111,112]

DENV Phase 2 clinical trial failed
(no viremia reduction) [107,113]
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Table 2. Cont.

Target Drug Viral Specificity Study Stage Ref.

Viral entry Niclosamide
DENV, WNV, YFV, JEV In vitro

[114]
ZIKV In vivo

4.1.1. Synthetic Peptides

One approach used to develop flavivirus treatment is synthetic peptides designed
to bind to viral E glycoprotein or inhibit processes, such as receptor binding or fusion.
The development of peptide drugs has become more successful because of their improved
safety compared to other classes of antiviral molecules and antibody-based antiviral drugs.
Many synthetic peptides have been tested, and we describe some of the most significant
inhibitors in the following paragraphs.

Z2 peptide is a synthetic peptide derived from the conserved stem region of ZIKV
E glycoprotein. This peptide binds to viral E protein, causing virion damage, disrupting
the integrity of the ZIKV membrane and interrupting fusion, thus releasing the RNA
genome [88,89]. Z2 peptide exhibited strong inhibitory activity in vitro against ZIKV, YFV,
and DENV. Interestingly, the Z2 treatment of ZIKV-infected A129 and AG6 mice protected
approximately 70% of mice from death, significantly reduced the viral load, and eliminated
neurological symptoms. Importantly, this compound was also tested in ZIKV-infected
pregnant C57BL/6 mice, resulting in a reduced viral load in placentas and fetal CNS, thus
demonstrating the ability of Z2 to overcome the placental barrier and protect pregnant
mice from neurological damage from vertical viral transmission [88]. The mechanism of
flavivirus inhibition by Z2 peptide is related to damage induction in the viral structure
with loss of the RNA genome and virion alteration through the disruption of membrane
bilayer structures [115]. No side effects were noted with Z2 peptide administration.

Similarly, DN59 peptide is a 33-amino-acid (aa) mimetic peptide corresponding to the
membrane-interacting stem region of DENV-2 (aa 412–444) E glycoprotein; its involvement
in structural rearrangements during fusion was tested. DN59 is responsible for >95% of
viral plaque reduction during DENV and WNV challenge [90,91].

P5 peptide is derived from helix 2 of the JEV E protein stem region. It blocks virus
infection through non-specific and hydrophobic membrane binding, followed by interaction
with E proteins during fusion [92]. P5 demonstrated antiviral activity against JEV and
ZIKV in vitro. In JEV-infected mice, P5 treatment resulted in 67% survival and a reduction
in viremia and inflammation in mouse brain. P5 can also reduce histopathological damage
in the brain and testes in ZIKV-infected AG6 mice [92].

Other synthetic 10-mer peptides, DET2 and DET4, target domain III of DENV-2 E
proteins, and their antiviral performances were successfully tested against DENV infection.
Transmission electron microscopy (TEM) images revealed that their antiviral effect is due
to their ability to induce structural abnormalities and conformational alterations of viral
E glycoproteins [93,94]. DENV-2 infection was inhibited in LLC-MK2 cells, especially by
DET4 peptide.

Dipeptide EF is a peptide that targets the hydrophobic pocket of E proteins, thereby
interfering with the membrane fusion process. Dipeptide EF strongly reduces DENV viral
genome replication with all DENV serotypes, although the effects on DENV-2 are more
important [95].

4.1.2. Monoclonal Antibodies

Antibodies against viral E glycoprotein are important for inhibiting viral infection.
Several viruses were tested with neutralizing antibodies that interfere with virus/cell
binding. This approach was employed against other viruses, including SARS-CoV-2, where
the monoclonal antibodies (mAbs) are a useful treatment for infected patients [116].
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Two mAbs have been developed as potential antivirals. The first mAb, Ab513, specifi-
cally binds to the A strand of the E glycoprotein domain III of DENV-4, but it can bind with
high affinity to neutralize several DENV genotypes [97]. Prophylactic administration in
mouse models subsequently infected with DENV-2 significantly decreased the viral load
and increased survival, confirming its protective activity against DENV in the presence of
heterologous enhancing antibodies.

The second monoclonal antibody, 2D22, binds to E protein in dimer conformation
and abolishes E conformational changes, which are essential for fusion [98]. In the mouse
model AG129, 2D22 mAb is highly effective against DENV, preventing lethal effects of
virus and preventing the development of antibody-enhanced vascular leakage [97–99].

Human anti-ZIKV immunoglobulin (ZIKV-Ig) has been proposed as a ZIKV treat-
ment; it is currently undergoing a phase 1 double-blind, randomized, placebo-controlled
study [100]. Other therapeutic antibodies were developed [117] for the neutralization
of YFV, ZIKV, and WNV infection, such as TY014, Tyzivumab, and MGAWN1, respec-
tively. These three antibodies were in trial analysis, but Tyzivumab has discontinued in
one of two clinical trials in phase 2 because of difficulties in the cohort assessment due
to a lack of ZIKV infected patients, whereas TY014 has successfully completed the phase
1 of clinical trial. Similar to Tyzivumab, even MGAWN1 had been withdrawn from the
study due to low enrollment even though phase 1 has demonstrated that this recombinant
humanized monoclonal antibody is safe and well tolerated in healthy subjects [101]. There
are several drawbacks to monoclonal antibody therapy, including restricted availability
and accessibility, high cost, the requirement for early intervention, and the danger of side
effects [118]; in particular, with mAbs, the possibility of antibody-dependent enhancement
(ADE) exacerbation must be considered, as mAbs against RSV, MERS, and SARS-CoV-2
has been shown to induce ADE at lower concentrations [119].

4.1.3. Synthetic and Natural Compounds

Several groups challenged some classes of synthetic peptides with a putative antiviral
activity. Notably, Li and coworkers [96] described a series of cyanohydrazones with
inhibitory activity against DENV and subsequently against other flavivirus, including
ZIKV, WNV, and JEV. In particular, JBJ-01-162-04 cyanohydrazone showed the best antiviral
activity in an in vitro cell model targeting a conserved pocket of n-octyl β-D-glucoside of E
glycoprotein, which inhibited fusion and viral entry into the cell [96].

Among natural compounds, palmatine and geraniin, demonstrated their anti-flaviviral
activity against DENV-2 (for geraniin), ZIKV, and JEV (for palmatine). Palmatine is a plant
metabolite, a protoberberine alkaloid derived from Coptis chinensis, and was selected by
a molecular docking analysis [120], while geraniin, which is extracted from Nephelium
lappaceum, belongs to a group of hydrolysable tannins and can reduce viral infectivity in
Vero cells, and in BALB/c mice, it reduces the liver damage even though a viral load decline
is not significant in serum [102,103].

Treatment with palmatine of infected Vero cells exhibits the inhibition of protease
activity, non-detectable cytotoxicity, and viral suppression. Actually, palmatine efficacy is
demonstrated for WNV, DENV-2, and YFV [104].

4.1.4. Host Function Target

Interestingly, some groups have indicated the antiviral activity of molecules, not
through direct effects on viral targets, but rather through host functions.

Prochloroperazine (PCZ) is a well-known dopamine D2 receptor inhibitor that in-
terferes with viral entry. In vitro studies have shown that PCZ is a strong inhibitor of
DENV and JEV infection. Additionally, DENV is not inhibited in D2-receptor-knockdown
shD2R-N18 cells, suggesting a biological role of the D2 receptor in viral infection. In-
triguingly, PCZ can also alter clathrin organization in the cells, thus disrupting clathrin-
mediated endocytosis. This mechanism is also used by daptomycin, a lipopeptide that
disrupts phosphatidylglycerol-rich membranes, and the polyether nanchangmycin,
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which is produced by Streptomyces nanchangensis. Nanchangmycin inhibits DENV,
chikungunya (CHIKV) and WNV, while daptomycin acts on JEV and the Puerto Rico ZIKV
strain [106–108].

Two anticancer drugs, erlotinib and sunitinib, have demonstrated antiviral activity
against WNV, DENV, and ZIKV [109]. Sunitinib is a receptor tyrosine kinase inhibitor used
for treating gastrointestinal stromal, renal, pancreatic, neuroendocrine, and meningioma
tumors. Their mechanism of action is multitargeted: sunitinib inhibits the phosphorylation
of many receptors, including PDGFRs, VEGFR receptors, and c-kit. Erlotinib is an epidermal
growth factor tyrosine kinase inhibitor used to treat lung and pancreatic tumors. Treatment
with these two molecules inhibited DENV infection in murine models but did not prevent
neurological damage because of the low permeability of the blood–brain barrier (BBB) to
erlotinib and sunitinib. Their antiviral mechanisms are likely related to the inhibition of
viral entry and the formation of virions via large kinase derangement. One of the major
challenges in developing flavivirus antivirals is the availability of drugs that can cross the
BBB to treat neurological diseases. Due to the BBB’s limited permeability, several antiviral
compounds with promising in vitro characteristics were subsequently found ineffective
in vivo [121].

Among the drugs that inhibit viral fusion, 25-hydroxylcholesterol (25HC) can inhibit
DENV, YFV, WNV, and ZIKV by affecting viral internalization. This mechanism is related
to the ability of 25HC to modulate lipid metabolism, thus inducing a block between the
virus and the cell membrane. This drug was tested in BALB/C and A129 mice infected
with ZIKV; the treatment reduced mortality and viral load. ZIKV inhibition was also clearly
noted in organoids, but interestingly, 25HC has a consistent ability to inhibit neurological
alterations and prevent ZIKV infection in the fetal brain when used in pregnant mice [110].
Endosome acidification is an early step of viral replication that is essential for genome
release into the cytoplasm. Chloroquine is a well-known antimalarial molecule that has
in vitro antiviral activity against several viruses [111,112], but its antiviral effect in vivo has
not been confirmed. Chloroquine was assayed successfully in mice and primate models
of ZIKV and DENV. However, two phase 2 chloroquine trials failed to detect a reduction
in viremia in patients with DENV, possibly because chloroquine may not reach inhibitory
concentrations inside the reticuloendothelial cells where DENV replication is thought to
occur. When compared to a placebo, chloroquine was associated with a higher rate of
adverse events; however, these were generally moderate. Chloroquine had no effect on the
amplitude of cytokine or T cell responses to DENV infection [107,113].

Niclosamide is an anthelmintic drug that was approved for taeniasis treatment. It
inhibits mitochondrial ADP phosphorylation and is effective against DENV, WNV, YFV,
ZIKV, and JEV [114]. Niclosamide was tested in animal models and in humanized chick
embryo system, in which ZIKV replication was reduced, and the central nervous system
was somewhat protected by multitarget action, that is, endosomal deacidification and the
derangement of NS2B-NS3 complex formation. This multitarget action, both on host target
and on viral target, may turn out to be important in case of viral target mutation, as it
maintains efficacy on the endosomal deacidification.

5. Viral Replication, Polyprotein Synthesis and Processing

After viral genome release, flaviviral RNA undergoes translation by ribosomes as-
sociated with the rough endoplasmic reticulum (RER). Viral RNA produces a unique
polyprotein, which is released and attached to the internal RER membrane. Subsequently,
the proteolytic cleavage, which is performed by viral NS3 and host proteases, disengages
structural and non-structural viral proteins, which can form complexes and drive repli-
cation organelle formation. NS4A, NS4B, and NS1 play an essential role in replication
organelle formation through ER membrane remodeling [122–124] (Table 3)
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Table 3. Flavivirus viral replication, polyprotein synthesis, and processing inhibitors.

Target Drug Viral
Specificity Study Stage Ref.

NS1

Peptide 3, 4, 10, 11 DENV In vitro [125,126]

Deoxycalyxin-A ZIKV In silico [127]

mAb AA12 ZIKV In vivo [128]

mAb 2B7 DENV, WNV, ZIKV In vitro [129]

Castanospermine and
Deoxynojirimycin DENV, ZIKV In vitro [130]

N-nonyl-Deoxynojirimycin DENV-2, JEV In vitro [131]

Celgosivir DENV Phase 1 clinical trial [132,133]

NS2A shRNA and siRNA JEV In vitro [134,135]

NS2B-NS3

Novobiocin DENV, ZIKV In vivo [136,137]

Temoporfin
DENV, YFV, WNV, JEV In vitro [114]

ZIKV In vivo [114]

JMX0207
DENV-2 In vitro [138]

ZIKV In vivo [138]

Nelfinavir DENV-2 In vitro [139]

Compound 4 ZIKV In vitro [140]

Compound 14, Compound 15 DENV In vitro [141]

NSC135618 DENV, ZIKV, WNV, YFV In vitro [142]

ZP10 ZIKV In vitro [143]

Aprotinin
DENV In vitro

[144,145]
WNV In silico

Hydroxychloroquine ZIKV In vivo [146,147]

Methylene blue
ZIKV In vivo [148]

DENV In vitro [138,149,150]

Erythrosin B ZIKV, DENV In vitro [138,149,150]

Ivermectin

YFV, WNV In vitro [151]

ZIKV In vivo [152]

DENV Phase 2/3 clinical trial [153]

Bortezomib ZIKV, DENV In vitro [154]

Asunaprevir, Simeprevir ZIKV In vitro [155]

NS3
ST-610 DENV In vivo [156]

Suramin DENV, ZIKV In vitro [157]

NS2B NSC157058
WNV In silico

[158]
ZIKV In vivo

NS4A Compound B and SBI-0090799 DENV, ZIKV In vitro [159,160]

NS3-NS4B

JNJ-A07 DENV In vivo [161]

JNJ-64281802 DENV Phase 2 clinical trial [161]

JNJ-1802
DENV Phase 1 clinical trial [162]

JEV, WNV, ZIKV In vitro [162]
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Table 3. Cont.

Target Drug Viral
Specificity Study Stage Ref.

NS4B

NITD-688 DENV In vivo [163]

Manidipine
JEV In vivo

[164]
DENV, ZIKV, WNV In vitro

AZD0530, Dasatinib DENV-2 In vitro [165,166]

NS5

Galidesivir WNV, TBEV, ZIKV In vivo [167,168]

YFV Phase I clinical trial [169]

Favipiravir
WNV, YFV In vitro [170]

ZIKV In vivo [171]

Balapiravir DENV Phase 1/2 clinical trial [172]

NITD-008 ZIKV, TBEV, DENV In vivo [173,174]

AT-752
DENV, YFV Phase II clinical trial [175,176]

WNV, ZIKV, JEV In vitro [175,176]

7DMA TBEV, ZIKV, WNV, DENV In vivo [166,177,178]

Sofosbuvir
YFV In vivo [179]

ZIKV In vivo [180,181]

NITD-434, NITD-640 Pan-flavivirus In vitro [182]

NITD-29 DENV In vitro [183]

Efavirenz, Tipranavir, Dasabuvir WNV, ZIKV, TBEV In vitro [184]

AR-12 DENV In vivo [185]

P12-23, P12-34 DENV, ZIKV, JEV In vitro [185]

Ribavirin ZIKV In vivo [186]

Ivermectin
ZIKV In vitro [187]

DENV Phase 2/3 clinical trial [188]

Emetine ZIKV In vivo [189]

Lycorine ZIKV In vivo [190]

Dolutegravir ZIKV In vitro [191]

Compound TPB ZIKV In vivo [192]

Sinefungin WNV, DENV In vivo [193–195]

5.1. NS1 Targeting

NS1 is a multitasking non-structural viral protein with a molecular weight of 46-55 kDa
that plays different roles in the viral replication cycle, virion assembly, viral pathogenesis,
and immune evasion [132,196–198]. It exists in many oligomeric forms and is found in
various cellular locations. Intracellular NS1 is required for virus replication and has been
shown to co-localize with dsRNA and other replication complex components; additionally,
it can cause complement-mediated immunological suppression and has the ability to alter
membrane lipids [199].

In addition, NS1 protein retains high levels of identity and similarity between fla-
viviruses [16,200], which make it an excellent candidate as an antiviral drug target. In
particular, glycan addition to NS1 occurs through the host oligosaccharyl transferase com-
plex into the ER lumen and is essential for NS1 functionality [201]. Moreover, NS1 is
detectable in its secreted hexamer soluble form, and in a DENV viral model, it displayed
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several pathogenetic mechanisms contributing to viral enhancement, vascular barrier
disruption, proinflammatory cytokines increase, and immune evasion.

Several drugs with anti-NS1 activity were identified using biopanning assays, an
affinity selection technique, with a phage-displayed peptide library [125,126,202]. In partic-
ular, Songprakhon as well as Sun and colleagues [125,126] described four 12-mer peptides
(peptides 3, 4, 10, and 11) that bind to NS1. These peptides reduced DENV serotypes to
different extents within an in vitro Huh-7 cell model at millimolar concentration.

In silico molecular docking screening for deoxycalyxin-A, a flavonoid, was carried
out to test its ability to target ZIKV NS1 and to predict its high affinity for ZIKV NS1
binding [127]; however, further in vitro and in vivo studies are needed to confirm this in
silico finding.

mAbs have also been designed to target NS1. mAb AA12 shows significant efficacy
against African and Asian lineage strains of ZIKV in Stat2−/− mice [128]. More recently,
Biering and colleagues [129] analyzed a promising monoclonal antibody called mAb 2B7,
which recognizes NS1 viral protein of ZIKV, WNV, and DENV. This binding, mediated by
the wing domain of NS1, is able to block endothelial disfunction caused by NS1 action and
protect from downstream disorders.

Research is also underway to investigate the unusual sugar presence on the N-terminal
side of NS1. Courageot et al. [130] demonstrated reduced viral production after cell
treatment with castanospermine and deoxynojirimycin, both of which are α-glycosidase
inhibitors, and similar results were obtained by Wu and coworkers [131], who revealed
reduced NS1 with consequent low virion production through N-nonyl-deoxynojirimycin
treatment. Additional studies on the efficacy of a pro-castanospermine drug (celgosivir)
did not show specific effects on viral reduction but revealed a potential “symptomatic”
efficacy in the reduction in the severity of dengue clinical manifestations [132,133].

5.2. NS2A Targeting

Flavivirus NS2A is a membrane-associated, small, hydrophobic protein involved in
RNA replication. NS2A binds to the 3′ untranslated region (UTR) of viral RNA as well as
other replication complex components with excellent specificity. NS2A also has a role in in-
fluencing the host-antiviral interferon response and virus particle assembly/secretion [203].

To our knowledge, no drugs have been yet tested that target flaviviral protein NS2A.
Due to its lipid interactions and involvement in immune regulation and calmodulin binding
ability, investigating treatment with competitive molecules for calmodulin-binding and
lipid interaction should be tested.

Only a few studies based on the use of RNA interference have identified some short
hairpin RNA (shRNA) and small interfering RNA (siRNA) molecules, which are specific
for NS2A and are able to have in vitro antiviral effect against JEV, albeit to a much lesser
extent than the shRNA and siRNA molecules directed against genes encoding structural
proteins and against NS1 [134,135].

5.3. NS2B-NS3 Targeting

NS3 has a molecular weight of 69 kDa and is a highly conserved protein with two
domains: a protease with a trypsin-like serine domain located on the NS3 N-terminus for
polyprotein cleavage and a helicase with an NTPase domain in the C-terminus, which is
involved in viral genome RNA replication.

Notably, the protease function of NS3 requires viral NS2B as a cofactor. The complex
formed by NS3 and NS2B is essential for polyprotein processing. This important activity in
viral replication makes NS2B-NS3 a potential putative antiviral molecule.

Several drugs have been proven as effective molecules through in vitro studies. In
particular, peptidomimetic inhibitors, niclosamide (as indicated above), novobiocin, and
temoporfin are considered NS2B-NS3 inhibitors.

Novobiocin is an antibiotic that inhibits bacterial DNA gyrase, and it can interact with
the binding pocket of ZIKV NS2B-NS3. In cell cultures, novobiocin strongly inhibits ZIKV
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and DENV replication, while in mice models, novobiocin significantly decreased the viral
load and overall survival in the treated cohort [136,137].

Temoporfin was selected as an NS2B-NS3 inhibitor using high-throughput screening,
a method that has dramatically improved pharmacological research due to its rapid and
effective selection of new compounds. Temoporfin can bind to the NS3 domain recognized
by NS2B, thereby halting polyprotein processing. In vitro, DENV, YFV, WNV, and JEV were
inhibited by temoporfin, while the ZIKV viral load was strongly inhibited in BALB/c model
experiments. In addition, this drug can significantly prevent neurological manifestations in
A129 mice infected with ZIKV [114].

A niclosamide derivative, JMX0207, effectively inhibits NS2B-NS3 interactions and
significantly inhibits DENV-2 and ZIKV viral replication. This molecule also shows ZIKV
infection reduction in 3D mini brain organoids and in a ZIKV animal model [138].

An FDA-approved drug used against HIV and HCV infection, nelfinavir, has been
proposed as an NS2B-NS3 protease inhibitor through a MM/GBSA-based binding free
energy analysis. It is a peptidomimetic compound that showed low antiviral activity
against DENV-2 and CHKV [139].

Novel carbazole derivatives designed with at least one amidine, as well as compound 4
(a carbazole derivative) demonstrated biochemical and cell-based inhibitory activity in vitro
against ZIKV, inhibiting NS2B-NS3 protease activity [140]. Compounds 14 (C30H25NO5)
and 15 (C34H23NO7S2), two non-peptide molecules with significant inhibitory effects on the
DENV NS2B-NS3 protease, showed moderate in vitro antiviral activity against DENV [141].
A virtual screening pipeline showed that NSC135618 significantly inhibited the DENV-
2 protease function and inhibited the viral replication of DENV, ZIKV, WNV, and YFV
in vitro [142].

Through the high-throughput screening of a chemical compound library applied on a
whole-virus proteome, ST-610 was identified to be a potent small molecule acting on the
DENV NS3 helicase domain. Experiments performed in vitro and in vivo confirm the ability
of ST-610 to avoid NS3 binding with viral RNA, although NS3 still retains its nucleoside
triphosphate activity. ST-610, thanks to its non-toxicity and great efficacy in reducing
viremia, is an excellent candidate as a treatment for DENV infections [156].

Aprotinin, a well-known drug used during cardiopulmonary bypass to reduce bleed-
ing, is an inhibitor ligand of the NS3pro and NS2B complex of WNV and DENV. It acts
through conformational changes and specifically binds to the NS3pro pocket using its
antiparallel β-sheet and has in vitro antiviral activity against DENV [144,145]. Other in-
hibitor ligands of the NS3pro/NS2B complex of WNV are substrate analogs, which take
advantage of cation-p interactions between P1-Arg residue and the inhibitor benzoyl cap
on the NS3pro structure, thus changing its conformational state and ligating the complex,
thereby stabilizing NS2B with high efficiency [204,205].

ZP10 (theaflavin-3,3′-digallate), a natural compound derived from black tea, was
predicted to bind to critical residues at the proteolytic cavity of NS2B-NS3 proteases, thus
inhibiting polyprotein processing. This compound inhibits in vitro ZIKV replication in a
dose-dependent manner [143].

An allosteric small-molecule inhibitor, NSC157058, interfered with NS2B folding in
modeling experiments on WNV and ZIKV. Its antiviral effect was investigated on SIL mice,
in which ZIKV viremia was reduced [158].

Hydroxychloroquine (HCQ), a derivative of chloroquine and a U.S. Food and Drug
Administration (FDA)-approved drug used to treat patients with autoimmune diseases
and malaria, also with pregnant people, was tested in ZIKV-infected placental trophoblast
cells and pregnant mice, resulting in a reduced viral load and placental damage. Its
antiviral activity is multitargeted: HCQ binds to the NS2B-NS3 binding site impeding
autophagosome–lysosome fusion and inhibiting autophagy [146,147].

Methylene blue and erythrosin B were found to be orthosteric inhibitors that signifi-
cantly inhibit ZIKV and DENV-2 NS2B-NS3 protease activity, the replication of multiple
ZIKV strains, and DENV-2 in vitro antiviral assays [138,149,150]. Methylene blue inhibited
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viral replication in primary neural and placental cells and in 3D mini-brain organoids that
are relevant to ZIKV pathogenesis. Animal model studies confirmed that methylene blue
treatment significantly improved the survival rate of ZIKV-infected mice [148].

Ivermectin, an anthelmintic drug, exerts in vitro antiviral activity against YFV, WNV,
and DENV in the early stages of infection by inhibiting the NS3 helicase domain [151].
Additional antiviral effects are caused by interfering with ivermectin to affect importin
(IMP)-α/β1-mediated import. However, Ketkar and coworkers [152] did not find the same
effects in ZIKV mice models, suggesting the need for further research. A phase 2/3 trial is
in progress, but to our knowledge, no results are currently available.

Suramin, a well-known anti-parasitic drug, which has been shown to have antiviral
activity, through a molecular beacon helicase assay and subsequent counter screen experi-
ments, was identified as having a good effect in reducing DENV NS3 helicase activity [157],
with the data subsequently confirmed by Albulescu and colleagues, which revealed a reduc-
tion in viral cytopathic effect in cell culture. They detect a reduction in intracellular ZIKV
RNA in a dose-dependent manner, along with a decrease in the progeny viral titer [206].

The quantitative high-throughput screening of NS2B-NS3 ZIKV protease inhibitors
showed that bortezomib has strong in vitro anti-ZIKV activity [106]. In a self-cleavage
screening assay, bortezomib indirectly inhibited in vitro ZIKV and DENV replication by
increasing NS3 ubiquitination and degradation [154]. In the initial docking analysis of
approximately 250,000 compounds that interact with the NS2B-NS3 protease complex
binding-site of flaviviruses, Pathak and colleagues [155] applied the pharmacophore anchor
model to obtain the best chemical groups for anchor interaction. From this analysis, two
HCV antivirals, asunaprevir and simeprevir, showed potent in vitro anti-ZIKV activity.

5.4. NS4A and NS4B Targeting

NS4A is a 16 kDa transmembrane ER resident protein, and it is involved in cellular
membrane modeling, antagonizing host interferon response, and inducing autophagy, and
allows for viral replication [207]. Drugs targeting NS4A are currently being evaluated,
including compound-B and SBI-0090799, which are active in vitro against DENV and ZIKV
by preventing NS4A involvement in replication complex formation [159,160].

Unlike NS4A, NS4B is often used as a molecular target due to its role in flavivirus repli-
cation and in dampening the host’s immune system [208]. NS4B is a multi-transmembrane
protein located in the endoplasmic reticulum membrane, where it plays an important role
in the formation of the DENV replication complex by binding with NS3 [209].

Studies have suggested NS4B as a pivotal target for putative antivirals [210]. In partic-
ular, JNJ-A07, its analog (JNJ-64281802), and JNJ-1802 antivirals were indicated as useful
molecules for DENV treatment through the inhibition of NS3-NS4B heterodimerization in
the replication complex.

JNJ-A07 prevents NS4B-NS3 interaction [161], thus inducing a conformational change
in the cytosolic loop of NS4B. It can also exert its antiviral effects on a large panel of
DENV isolates at nanomolar to picomolar concentrations, thus indicating JNJ-A07 as a
pan-serotype DENV antiviral. In addition, JNJ-A07 significantly decreased the viral load
in AG129 mice. An analog of JNJ-A07, namely JNJ-64281802, was registered for a phase
2 randomized, double-blind, placebo-controlled clinical trial to investigate its efficacy in
DENV prophylaxis in healthy individuals and for DENV therapy in infected patients, but
no results have been published. JNJ-1802 is a compound similar to JNJ-A07 that shares
the same target. This molecule exhibited antiviral activity at nanomolar concentrations
and inhibits the replication of all DENV serotypes, JEV, WNV, and ZIKV in vitro. In mouse
and non-human primate models, this drug can inhibit DENV [211]. A phase 1 clinical trial
of JNJ-1802 was successfully completed in humans, and it was safe and well tolerated in
healthy individuals [212] (NCT05201794) as well as for patients with confirmed DENV
(NCT04906980) [162].

NITD-688 was reportedly an NS4B-targeting drug, but the exact mechanism is being
investigated. Nuclear magnetic resonance research has demonstrated that it binds to
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NS4B, and that two specific mutations in this viral protein (T215A and A222V) abolish this
binding. The mechanism is potentially different from that of JNJ-A07 due to differences
in the resistance mutation profile, which suggests peculiar inhibitory activity. This drug
reduced DENV viremia in AG129 mice and was well tolerated in pharmacokinetics studies
in rats and dogs [163]. NITD-688 showed antiviral activity against all four DENV serotypes,
and it is considered a possible candidate for preclinical studies of DENV treatment.

Manidipine, a calcium channel inhibitor used in hypertension treatment, demonstrated
significant antiviral activity against JEV, DENV, ZIKV, and WNV in vitro, and protected
JEV-infected mice from brain damage although, viremia was not affected. Its mechanism of
antiviral activity is not clear, even though mutant analysis revealed that a single mutation
in the transmembrane domain of NS4B caused the failure of manidipine’s antiviral-related
effects, thus suggesting the involvement of NS4B [164].

Two drug-validated compounds, which are known to have inhibitory activity on
Abl and Src kinases, namely AZD0530 and dasatinib, were tested for their abilities to
inhibit DENV-2 replication in cell culture. These compounds show high efficacy in block-
ing DENV-2 replication, and dasatinib showed the inhibition of DENV-2 secretion. The
exact mechanisms of these compounds have to be identified, but it is mediated by NS4B
inhibition [165,166].

5.5. NS5 Targeting

NS5 is the largest flavivirus protein harboring RdRp as well as methyltransferase
(MTase). It is therefore the most studied potential antiviral against flaviviruses [213]. The
targeting of NS5 proteins in HCV has greatly affected in the treatment and management
of HCV infection, resulting in a large array of studies aiming to identify specific NS5
inhibitors.

Antiviral compounds targeting NS5 can be classified into different categories, such as
nucleoside inhibitors, non-nucleoside inhibitors, and MTase inhibitors.

Several nucleoside analogs have already been approved as antiviral drugs against
herpesvirus [214], HCV [215,216], and HIV infection [217–219]. Through the screening and
repurposing of drugs, various nucleosides analogs that target viral polymerases have been
identified that have in vitro and in vivo activity against flaviviruses [220].

5.5.1. Nucleoside Analogs

Several nucleoside analogs inhibitors have been investigated, and some are currently
undergoing trials. Their antiviral action is related to the premature termination of RNA
genome synthesis during replication.

BCX4430 (galidesivir), an adenosine analog, exhibited in vitro and in vivo antiviral
efficacy against WNV, TBEV, and ZIKV via the inhibition of viral RNA polymerase through
non-obligate RNA chain termination [167,168]. This drug is undergoing phase 1 trials, but
no results are yet available.

Favipiravir, a nucleoside analog, is already licensed for use against the influenza virus
and is undergoing clinical trials against the Ebola virus [221] and SARS-CoV-2 [222]. It
can protect mice against WNV and YFV [170]. Favipiravir was also effective against ZIKV
in vitro, leading to an increase in the number of mutations and promoting the production
of defective viral particles [223]. In Cynomologus macaques, favipiravir treatment led to a
statistically significant reduction in the plasma ZIKV viral load [171].

Balapiravir is a prodrug of a cytidine analog (R1479) that has in vitro and in vivo
antiviral activity against HCV. A phase 1 trial against DENV infection [224] did not confirm
these results, likely due to late treatment, a limited number of patients, suboptimal dosage,
and a lack of in vivo phosphorylation of the drug. [172]. In a completed phase 1 trial,
balapiravir was well tolerated, but the viral load was barely affected by treatment.

Another nucleoside analog, NITD-008, was tested both in vitro and in vivo for the
treatment of ZIKV, TBEV, and DENV, yielding a significant viremia reduction [173,174];
however, it did not advance to clinical trials due to preclinical toxicity, such as weight
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loss, decreased motor activity, retching, feces with mucoid or blood, irreversible corneal
opacities, blood abnormalities, and movement disorder [225].

A nucleoside analog that completed its phase 1 clinical trial (NCT04722627) and is
now in phase 2 is AT-752, a prodrug of a guanosine nucleotide analog, which shows
strong anti-viral in vitro activity against DENV-2, DENV-3, WNV, YFV, ZIKV, and JEV
in vivo [175,176] as well as in an AG129 mouse model of DENV-2 and YFV, in which the
viral load was significantly decreased, and the survival of AT-752-treated mice was clearly
improved [175,176]. No results have been released regarding the phase 2 trial. Notably,
AT9010, the active triphosphate metabolite of AT-752, was detectable in the peripheral
blood mononuclear cells (PBMCs) of different animal models (rats, mice, and non-human
primates) at a consistent level, supporting the use of AT-752. The viral activity of this
molecule is currently under evaluation in a phase 1 trial.

The adenosine analog 7DMA (7-deaza-2′-C-methyladenosine), also called MK-608,
was originally developed for HCV therapy. The use of 7DMA in HCV treatment failed
due to negative but undisclosed results in a phase 2 clinical trial; it may have been due to
mitochondrial toxicity [226]. It was subsequently tested for flavivirus treatment, and studies
have observed antiviral effects on TBEV, ZIKV, WNV, and DENV in vivo [166,177,178].
Notably, ZIKV expression was strongly inhibited in Vero cells. In an AG129 mouse model,
7DMA treatment reduced the ZIKV viral load and halted disease progression. On the other
hand, a study on BALB/c mice infected with WNV confirmed the efficacy of 7DMA in
downregulating viremia; however, to maintain its antiviral efficacy, treatment must be
administered in the early days of infection.

The strong structural homology among different RdRp enzymes belonging to dif-
ferent Flaviviridae is a pivotal characteristic that might be used for the possible develop-
ment of a pan-Flaviviridae drug [227]. NS5 amino acid residues were predicted to interact
with sofosbuvir and to show approximately 80% conservation among WNV, DENV, and
ZIKV [228,229], suggesting the possible use of sofosbuvir in flavivirus therapy. Sofosbu-
vir represents a classic molecule successfully used for HCV treatment and is a uridine
nucleotide analog pro-drug that is transformed in hepatocytes in its active form 2′-deoxy-
2′-α-fluoro-β-C-methyluridine-5′-triphosphate. In vitro and in vivo experiments demon-
strated antiviral action against ZIKV in different cell models [180,181]. De Freitas and
colleagues [179] demonstrated that sofosbuvir inhibits in vitro YFV replication and protects
YFV-infected mice, both neonatal and adult, from mortality and weight loss. Other drugs
demonstrated a good activity in vitro, but in vivo or trial procedures treatment were not
effective. Ribavirin is a synthetic nucleoside analog with a range of antiviral applications;
it is particularly used for HCV and HBV treatment. Ribavirin does not suppress ZIKV
replication in mice, produced no viral load decrease, and did not increase survival in mice
infected with DENV or ZIKV [186].

5.5.2. Non-Nucleoside Inhibitors

Several drugs form a complex with NS5, thereby inhibiting its enzymatic function.
Among these, NITD-434 and NITD-640 target the RNA tunnel of RNA polymerase and
display in vitro pan-flavivirus activity [182]. NITD-29, through binding with the NS5
N-pocket, was effective against all DENV serotypes [183].

Stefanik and coworkers [184] assayed a library of FDA-approved antiviral drugs
for the ability to block flavivirus replication in vitro. Efavirenz (an inhibitor of the HIV-
1 reverse transcriptase enzyme), tipranavir (a nonpeptidic HIV protease inhibitor that
targets the HIV protease), and dasabuvir (an NS5B polymerase inhibitor that terminates the
RNA polymerization of HCV) can inhibit WNV, ZIKV, and TBEV replication, suggesting a
possible new application for these drugs in flavivirus treatment.

In vitro and in vivo treatment with lycorine, a benzyl phenethylamine alkaloid, resulted
in reduced viral ZIKV replication in infected cells, and in the CNS, liver, and serum, as
well as a downregulation in the inflammatory response in infected mice [190]. The cellular
thermal assay demonstrated direct binding between lycorine and NS5, and further in vitro
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evaluation indicated that this binding inhibits RdRp activity. Lycorine can bind to HSP70
and NS3 and these interactions might play a role in ZIKV inhibition.

Ivermectin, a drug used extensively for parasite treatment, has shown antiviral activity
against DENV and ZIKV in cell models through inhibiting IMP-α/β1, thus altering viral
protein trafficking and NS5 trafficking [187]. A phase 2/3 clinical trial demonstrated
an accelerated NS1 clearance in DENV patients but no clinical efficacy at the chosen
dosage [188].

In contrast, emetine, a drug approved for amoebiasis treatment, demonstrated consis-
tent antiviral activity [189] in cell cultures and mouse models infected with ZIKV, wherein
viral replication was inhibited. Three interesting features were observed: i) emetine directly
binds to NS5, as shown in an cellular thermal assay and molecular docking experiments;
ii) emetine treatment induces a significant decrease in NS1 protein levels; and iii) eme-
tine accumulates in cellular lysosome with a derangement of lysosomal function and
impaired autophagy, thus interfering with cellular trafficking and the regulation of viral
infection [191].

Dolutegravir is a broad-spectrum matrix metalloproteinases inhibitor [230] that was
tested for its potential use against flavivirus. It is mainly known for its high efficacy
in suppressing HIV replication in deintensification and monotherapy [231,232], for HIV
patients with a small reservoir [233] with minor side effects. Due to its high tolerability,
it is a promising molecule for flaviviral therapy. Experiments with 12 FDA-approved
drugs revealed that dolutegravir does not reduce flaviviral replication but that it effectively
inhibited ZIKV-mediate cytopathic effects with >90% viability of infected Vero cells [184].

Molecular docking analysis suggested that compound TPB binds to the catalytic active
site of RdRp and likely blocks viral RNA synthesis with an allosteric effect. In vitro and
in vivo studies of this compound resulted in significantly reduced ZIKV viremia [192].
AR-12 a celecoxib-derivative cellular kinase inhibitor with a broad spectrum of antiviral
activities, downregulates the PI 3-kinase/Akt (PKB) pathway, glucose-regulated protein
78 (GRP78), and dihydroorotate dehydrogenase (DHODH) in DENV-infected cells. AR-12
treatment in mice determines the derangement of non-structural protein expression and the
subsequent production of new viral progeny. Two derivatives of AR-12, P12-23 and P12-34,
can exert antiviral effects on DENV, ZIKV, and JEV. These compounds block pyrimidine
biosynthesis de novo, inducing the failure of viral replication process [185].

5.5.3. MTase Inhibitors

Several MTase inhibitors have been investigated. Among these, sinefungin, an S-
adenosyl-L-methionine (SAM) analog, is a broad-spectrum inhibitor of DENV and WNV.
Sinefungin competes with SAM to bind with the SAM site on NS5 viral proteins. Due to its
substitution of methylated sulfur with amine and carbon, it can bind to the SAM site but
without completing all the interactions with NS5. Despite this, sinefungin binds viral NS5
with six-times greater affinity [193–195].

Non-structural proteins are excellent candidates for therapeutic targets since they are
essential for viral replication and frequently have conserved structures. Moreover, the idea
of a pan-dengue and perhaps a pan-flavivirus antiviral is conceivable due to the structural
similarity between essential NS proteins. With the remarkable similarity of flaviviruses
and its significance in viral replication, NS4B in particular appears to be an attractive
target. Additionally, it has been demonstrated that pharmacologically inhibiting the NS3
protease and the RdRp NS5 is effective in halting viral replication. The NS proteins are
well-conserved; therefore, drugs that bind to them typically have less activity altered by
resistance mutations. This is a significant benefit of targeting the NS proteins.

6. Assembly and Egress Inhibitors

Flavivirus virion assembly takes place in membranous structures associated with the
ER, where E, C, and prM heterodimers associate. Viral particles are eventually transported
through secretory pathways to the Golgi apparatus, where the maturation and N-linked
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glycosylation of prM and E proteins takes place. Here, a decrease in pH causes a conforma-
tional shift in prM-E spikes, and in this acidified compartment, cellular host protease furin
cleaves prM, maturing the virion that is subsequently released from the cell by vesicular
fusion with the plasma membrane [234]. As many cellular host compartments and proteins
are involved in virion assembly and release, targeting these may be an effective antiviral
strategy (Table 4).

The glycosylation of viral proteins is an important mechanism that takes place in the
secretory pathway, and Flaviviruses strongly rely on the prM, E, and NS1 glycosylation
for infectivity. The derangement of viral glycoproteins glycosylation during virion assem-
bly alters the last steps of the viral cycle. Several studies have focused on the potential
antiviral activity of ER α-glucosidase I and II enzyme inhibitors. Iminosugars are a class of
molecules that can inhibit these enzymes and induce a derangement of viral glycosylation
associated with viral structural glycoprotein misfolding. Two ER α-glucosidase I and II
inhibitors were assayed: celgosivir and UV-4B. Celgosivir is an oral iminosugar prodrug
of castanospermine that impedes the processing of the N-linked oligosaccharides of viral
envelope glycoproteins and NS1 by preventing the removal of the terminal glucose residue
from N-linked glycans [235]. The defective processing of N-linked oligosaccharides of
viral envelope glycoproteins elicits a derangement of virion structure, particularly of prM
and E viral glycoproteins, along with the inhibition of mature virion formation [236]. Sev-
eral investigations have shown its antiviral effect against DENV infection through in vitro
models and AG129 mice. Celgosivir treatment induces significant viremia reduction only
when administered at the beginning of the infection. Two clinical trials were conducted to
evaluate celgosivir in terms of pharmacokinetics, activity, safety, and tolerability in patients
with DENV, but viral load was not reduced, and the trial was dismissed [237–239].

UV-4B reduces the infectious virus titer and RNA of all four DENV serotypes in cell
culture. In a lethal ADE DENV-2 mouse model, UV-4B protected against lethal DENV
infection even when treatment started 48 h post-infection. A phase 1 trial was completed,
in which this molecule did not elicit serious adverse events [240].

Other iminosugars and their derivatives have exhibited antiviral effects on DENV
infection, such as UV-12, CM-9-78, and CM-10-18, suggesting that this class of compounds
might represent a promising field in antiviral studies [241–243].

PF-05175157, TOFA (5-tetradecyloxy-2-furoic acid), and MEDICA 16 (3,3,14,14-tetra-
methylhexadecanedioic acid) are acetyl-Coenzyme A carboxylase (ACC) 1 and 2 inhibitors
that are involved in host metabolism regulation. Studies on their use in flavivirus treatment
demonstrated that viral progeny exhibited an incomplete morphogenesis. Antiviral effects
were detected against different flaviviruses, including WNV, DENV, and ZIKV in vitro.
Analysis of their antiviral effects in mouse models infected with WNV demonstrated
a reduction in viral load, but subsequent experiments involving ACC-2-negative mice
indicated that the inhibition of both ACC1 and ACC2 is required for a full viral-inhibiting
effect [244,245].

SFV785 has selective effects on MAPKAPK5 kinase activity and has been inhibiting
DENV and YFV viral yield by altering the recruitment and assembly of nucleocapsid during
DENV assembly, thus reducing the production of infectious virions [246,247].

Lovastatine, an HMG-CoA reductase inhibitor, is a statin drug, which was proposed
as an anti DENV compound for its reducing action on the synthesis of cholesterol and
isoprenoid, and the alteration of glycosylation. The hypothesis was based on the essential
presence of glycosylated proteins on the cell membrane surface for viral entry and for the
lipid bilayer needed for the assembly and release of infectious viral particles. Unfortunately,
it did not show any antiviral activity in vivo and in clinical trials [248–250].

A recent paper demonstrated a significant reduction in infected cells through a com-
bination of two anti-cholesterol drugs: atorvastatin and ezetimibe. These drugs acted
synergistically in the reduction of DENV-2 infection, while their effect was only additive
for when concerning DENV-4 and ZIKV, and antagonistic in YFV-infected cells [251].



Microorganisms 2023, 11, 2427 20 of 38

Both capsid and glycoprotein assembly are meticulously planned processes that were
related to activation by both known and unknown effectors. Reduced virus propagation
can be obtained, interfering the kinetics of viral assembly and the release by infected cells
and viral maturation.

Table 4. Flavivirus assembly and egress inhibitors.

Target Drug Viral Specificity Study Stage Ref.

Assembly

Celgosivir DENV phase 1/2 [237–239]

UV-4B DENV phase 1/2 [240]

UV-12

DENV in vivo [241–243]CM-9-78

CM-10-18

PF-05175157

WNV, DENV, ZIKA

in vivo [244]

TOFA in vitro [244,245]

MEDICA 16 in vitro [244,245]

SFV785
DENV

in vitro [246,247]
YFV

Lovastatine DENV in vivo [248–250]

Atorvastatine,
Ezetimibe DENV-2,-4; ZIKA in vitro [251]

C

VGTI-A3

DENV-2

in vitro [245]

VGTI-A3-03 in vitro [252]

ST-148 in vivo [253,254]

C Protein Targeting

C protein, which has a molecular weight of 11 kDa, may pack viral RNA and is the
fundamental component of nucleocapsids. The C protein dimer has four helix structures
in each of its monomer molecules. Its interaction with viral RNA depends on C protein
dimerization. The capsid protein, although it is the least conserved among the flaviviruses,
is very interesting due to its multiple functions and its great structural flexibility. It is
precisely for this reason that it is the focus of numerous new studies as a new therapeutic
target for infections caused by flaviviruses.

Currently, there are three molecules known for their antiviral activity, which have the
binding with the viral capsid protein as a mechanism of action: VGTI-A3, VGTI-A3-03,
and ST-148.

Smith and collaborators [245] found that VGTI-A3 (PubChem ID: 4259739) is a small
chemical with strong virus specificity and significant antiviral activity that is able to prevent
DENV serotype 2 viral multiplication. Going deeper in their analysis of selected compounds
and by a structural-activity relationship (SAR) analysis, Smith collaborators found that
a VGTI-A3 analog, called VGTI-A3-03, showed higher antiviral activity and greater sol-
ubility, maintaining DENV-2 specificity. In particular, VGTI-A3-03 acts by binding and
incorporating C protein into the DENV virions and reducing the in vitro infectivity of the
released DENV-2 virion particles. The mechanism of action seems to be the compound
mediated stabilization of capsid dimer–dimer interactions, thus impeding disassembly
after entry [252].

Another molecule, ST-148, similarly causes C protein to undergo tetrameriza-
tion, which is incorporated into progeny virions that are unable to be properly
uncoated [253,254].

The C protein has many more uses than the structural role in virion structure. It can
interact with several host proteins to promote virus multiplication in addition to being
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responsible for encapsidation to protect the viral RNA. Consequently, the C protein is
crucial for the viral life cycle and infected host cells [255].

7. Unknown Target

Some tested drugs with antiviral effects against Flaviviridae did not show a clear
action mechanism of action (Table 5). For example, nitazoxanide, amodiaquine, lanatoside
C, bromocriptine, hippeastrine hydrobromide (HH), and azithromycin exert antiviral
effects against one or more flaviviruses in vitro and in vivo [256–259]. In some cases, as
for lanatoside C, the narrow therapeutical index dose not elicit the use of these drugs. In
addition, bromocriptine, an agonist of dopamine receptors D2 and D3, showed an effect
in vitro but not in mouse models.

Table 5. Flavivirus antivirals with unknown mechanisms.

Drug Target Viral Specificity Study Stage Ref.

Nitazoxanide

Unknown ZIKV In vivo [256–259]

Amodiaquine
Lanatoside C

Bromocriptine
Hippeastrine

hydrobromide
Azithromycin

In contrast, HH showed antiviral activity against avian influenza (H5N1) and HCV,
but subsequent studies have demonstrated its ability to suppress RNA replication and the
formation of infectious particles in ZIKV-infected human neural progenitor cells (hNPCs).
In human fetal-like forebrain organoid cultures, HH was effective at infection control, and
in a mouse model, ZIKV infection was effectively inhibited with a significant decrease in
ZIKV RNA in the brain and ZIKV-induced cellular apoptosis.

Moreover, amodiaquine, an antimalarial drug, suppressed ZIKV infection in hNPCs
and an SCID-beige mouse model [260] whereas azithromycin, a macrolide, reduced the
viral load in ICR mice, although no data about its mechanism are available.

8. Artificial microRNAs

Another strategy under investigation is artificial microRNAs (amiRNAs) specifically
directed against viral genomes and the antiviral effect of human miRNAs, that is, the
reduction of neurovirulence and viral infection of TBEV, DENV, and JEV [261–263].

Vaccine preparations against flaviviruses are based on live attenuated or inactivated
viruses, but their efficacy is moderate; they cause severe side effects and lead to the
appearance of reverted variants. In recent years, a new type of compound, based on
genetically modified viruses, is helping to improve efficacy and side effects. The under-
lying principle is the insertion of microRNA recognition elements (MREs) in a specific
position on the flavivirus genomes, 3′UTR, which is highly conserved throughout fla-
viviruses, and it plays an essential role in viral replication and translation stages, as well as
virulence [264–267].

This new type of vaccines can induce neutralizing antibody production in mice [268]
and could be a promising strategy to avoid the antibody-dependent enhancement (ADE)
phenomenon, which causes increased viral replication due to the production of specific
antibodies against viruses that facilitates viral entry, upregulates autophagy, and inhibits
interferon signaling. For some viruses, the ADE phenomenon is not abolished with MRE-
based vaccines, but this question could be overcome by proposing miRNAs not as a
viral genome modification, but as an active compound of a drug used as prevention or
therapeutic treatment, as shown in a recent review [269].
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9. Trials

Considering that a higher viral burden could promote severe disease, the identification
of flavivirus antivirals has been an important focus of research for therapeutics, and
multiple clinical trials have been conducted on antivirals cited in this review. Clinical trials
with repurposed drugs, such as balapiravir, chloroquine, lovastatin, and celgosivir, having
antiviral activity in preclinical investigations have not yet demonstrated any effectiveness
in lowering viremia or positive clinical outcomes.

Several trials investigating new drugs for flavivirus treatment are underway or com-
pleted (Table 6). According to https://clinicaltrials.gov (accessed on 16 August 2023),
17 compounds are under investigation (Table 6), both direct-acting and host-factor-targeting
antivirals acting on different viral life cycle steps. Six studies are being performed on drugs
that act on virion entry and the fusion of virions, two on drugs targeting NS4B, and three
on molecules that inhibit NS5 polymerase activity. Furthermore, six additional trials are
assessing host-directed antivirals. These molecules are being evaluated for their antiviral
activity against DENV, ZIKV, YFV, and JEV.

Some studies have been discontinued for various reasons, including a lack of antiviral
activity, patients (for ZIKV), or funding, as described in Table 6 (see the “Note” column).
All these studies were at phase 1 or 2, and only ivermectin is in phase 3, but no results are
yet available despite the negative results published by Caly and coworkers [153].

Another possible explanation of the premature termination of clinical trials is related
to the inefficacy of some of these molecules. In addition, the SARS-CoV-2 pandemic has
catalyzed media attention and funds allocated to other research topics. Given that at this
moment the epidemic is regressed and under control, we can hope that the pharmaceutical
industries can reprogram their lines of research and orient their priorities by returning to
research on antivirals directed against flaviviruses.

https://clinicaltrials.gov
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Table 6. Drugs against flaviviruses undergoing clinical trials. List of drugs which are under investigation, with information regarding target, viral specificity,
mechanism of action, clinical trial ID, stage of clinical trial and relative status, available results, and references.

Antiviral Target Virus Mechanisms Clinical Trial
Identifier

Clinical
Trial Status Note Ref.

DIRECT-ACTING ANTIVIRALS

Dengushield E protein DENV Neutralizing and
fusion-inhibitory activity NCT03883620 Phase 1 Completed No results available [270]

TY014 E protein YFV Neutralizing and
fusion-inhibitory activity NCT03776786 Phase 1 Completed Safe and reduces symptoms

of YFV vaccines [271]

ZIKV-Ig E protein ZIKV Neutralizing and
fusion-inhibitory activity NCT03624946 Phase 1 Completed ZIKV-Ig was safe and well

tolerated [100]

Tyzivumab E protein ZIKV Neutralizing and
fusion-inhibitory activity

NCT03443830,
NCT03776695

Phase
1/2

NCT03443830:
completed;

NCT03776695:
withdrawn

NCT03443830: no results
available, NCT03776695

withdrawn due to lack of
Zika infected patients

[272,273]

MGAWN1 E protein WNV Neutralizing and
fusion-inhibitory activity

NCT00515385,
NCT00927953

Phase
1/2

Withdrawn due to low
enrollment

Safe and well tolerated in
healthy subjects [101]

IVIG E protein JEV Neutralizing and
fusion-inhibitory activity NCT01856205 Phase 2 Completed

Development of neutralizing
antibodies in JEV positive

patients.
[274]

JNJ-1802 NS4B DENV Induction of
conformational changes - Phase 1 Completed Good safety and

pharmacokinetics [211,212]

JNJ-64281802 NS4B DENV Induction of
conformational changes

NCT05201794,
NCT04906980 Phase 2 Ongoing

Dengue prophylaxis in
healthy individuals

(NCT05201794) and dengue
therapy in patients with
confirmed dengue fever

(NCT04906980)

[161]

Balapiravir NS5 DENV Inhibit RdRp NCT01096576 Phase 1 Completed
Discontinued: well tolerated
but did not reduce viremia

nor fever clearance time
[224]

Galidesivir NS5 YFV Inhibit RdRp NCT03891420 Phase 1 Ongoing - [169]
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Table 6. Cont.

Antiviral Target Virus Mechanisms Clinical Trial
Identifier

Clinical
Trial Status Note Ref.

AT-752 NS5 DENV, YFV Inhibit RdRp
NCT04722627,
NCT05466240,
NCT05366439

Phase 2 Ongoing - [175,176]

HOST-DIRECTED ANTIVIRALS

UV-4B
ER α-

glucosidase I
and II

DENV

Function inhibition
leading to defective

processing of N-linked
oligosaccharides of viral
envelope glycoproteins

NCT02061358 Phase 1 Completed No serious adverse events
reported [240]

Chloroquine Endosomal
acidification DENV, ZIKV

Alkalinization of
intracellular organelles

acidification
NCT00849602 Phase

1/2 Completed
CQ does not reduce the
durations of viraemia in

dengue patients
[107,113]

Celgosovir
ER α-

glucosidase I
and II

DENV

Defective processing of
N-linked oligosaccharides

of viral envelope
glycoproteins

NCT01619969,
NCT02569827

Phase
1/2 Completed

NCT01619969: several
non-significant trends of
pharmacological effect of
Celgosivir. NCT02569827:
withdrawn due to lack of

funding

[237,239]

Metformin AMPK YFV

Reduction in lipid
synthesis by activating
AMP-activated protein

kinase (AMPK)

NCT04267809 Phase 2 Ongoing - [275]

IC-14 CD14 DENV CD14 antagonist antibody NCT03875560 Phase 2 Withdrawn Seeking funding
Patent:

WO2018165720A1
[276]

Ivermectin IMPα/β
(Host) DENV Inhibition of the IMP α/β

-mediated nuclear import
NCT02045069,
NCT03432442

Phase
2/3 Completed No results available [277,278]
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10. Conclusions

The absence of approved antivirals against flavivirus led to numerous in vitro and
in vivo studies. These are focused on specific molecules that can interfere with one or more
steps of the viral cycle. Molecules with antiviral activity can exert a direct action on various
viral molecules, in particular E glycoprotein, and the non-structural proteins NS3 and NS5
or on non-viral targets, which play an important role in the correct development of the viral
replication cycle, even though they can have consistent side effects. The homology of some
regions of the viral proteins among the various flaviviruses can be used to find drugs with
effective antiviral activity against different flaviviruses. Numerous molecules have been
proposed, including synthetic peptides and putative antiviral molecules revealed through
in silico studies [125,279,280]. However, several compounds currently used against other
targets (such as bacteria and helminths) have been successfully tested in vitro for use on
flaviviruses; however, some have not yet been tested in vivo.

Many antiviral compounds have not yet progressed beyond testing in cell lines and
mouse models, while others have begun testing in trials. Most of these trials are ongoing
and almost all of them are in phase 1 or 2. Despite this, many studies have not confirmed
in vitro results or have been discontinued. Perhaps one of the reasons for the current lack
of viable anti-flavivirus drug is a limited interest by sponsors, given that most cases of
not HCV flaviviral infections (with the notable exception of WNV) are in low-income
countries [8]. The targets of antiviral treatments against flaviviruses are related to different
steps of the viral cycle, such as halting viral entry into the target cell, inhibiting viral
replication, and preventing the severe damage that is sometimes detected after the peak of
viraemia. The possibility of counteracting different stages of the viral cycle indicates that
an antiviral strategy based on a cocktail of antivirals [281–283], acting on different steps of
the replicative cycle, may be useful for overcoming or reducing the importance of genetic
mutations; such a drug combination must be carefully evaluated, and a useful synergy
must be found for increased treatment efficacy.

Multidrug therapy is a well-known procedure employed in HIV, HBV, and HCV
treatments. In particular, these combinations are very effective at tackling viral replication
in different stages, decreasing the impact of antiviral resistance. Multidrug combination is
a promising strategy that could be also used for flaviviruses treatment. In fact, the use of
different drugs acting on different viral targets reduces the risk of drug resistance.

Despite the large variety of viral targets studied for different flaviviruses, the complete
potential of many molecules has yet to be unrevealed. It is vital to continue developing and
implementing countermeasures that restrict flavivirus transmission and disease. Surveil-
lance programs are essential to investigate and control pathogen spread and geographical
localization by public health authorities. This review aims to outline the importance of
developing new drugs for the treatment of these viruses that are increasing in the world.
Until now, most flavivirus-endemic countries are located in tropical and sub-tropical areas
and are not equipped with hospitals and trained personnel. However, climate change is
going to shift this reality [284], and the lack of viral drugs will be an issue even for the
richest countries.
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Abbreviations

Abbreviation Definition
25HC 25-hydroxylcholesterol
7DMA 7-deaza-2′-C-methyladenosine
ACC Acetyl-Coenzyme A carboxylase
ADE Antibody-dependent enhancement
amiRNAs Artificial microRNAs
AROAV Aroa virus
CHIKV Chikungunya virus
CLEC5A C-type lectin domain family 5 member A
CNS Central nervous system
DC-SIGN Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin
DENV Dengue virus
DHODH Dihydroorotate dehydrogenase
ER Endoplasmic reticulum
FDA Food and Drug Administration
GAGs Glycosaminoglycans
GBV GB virus
GKN3 Gastrokine 3 protein
GRP Glucose-regulated protein
GRP78 Glucose-regulated protein 78
HCV Hepatitis C virus
HHpgV Human hepegivirus
HIV Human immunodeficiency virus
hNPCs Human neural progenitor cells
HSCP Heat shock cognate protein
HSP Heat shock protein
HSPGs Heparan sulphates proteoglycans
HSs Heparan sulphates
ILHV Ilheus virus
IMP-α/β1 Importin α/β1
JEV Japanese-encephalitis virus
kb Kilo base
KFDV Kyasanur forest virus disease
LGTV Langat virus
LIV Louping ill virus
LLC-MK2 Rhesus monkey kidney epithelial cells
mAb Monoclonal antibody
MEDICA 16 3,3,14,14-Tetramethylhexadecanedioic acid
MPER Membrane-proximal external region
MREs MicroRNA recognition elements
MTAs inhibitors Methyltransferase inhibitors
MVEV Murray Valley encephalitis virus
NCAM Neural cell adhesion molecule
NCBI National Center for Biotechnology Information
NCR Non-coding regions
nLc4Cer Neolactotetraosylceramide
OHF Omsk hemorrhagic fever virus
PBMCs Peripheral blood mononuclear cells
PCZ Prochloroperazine
PDGFR Platelet-derived growth factor receptor
PKB PI 3-kinase/Akt
PLVAP Plasmalemma vesicle-associated protein
POWV Powassan virus
PtdSer receptor Phosphatidylserine receptors
RdRp RNA-dependent RNA polymerase
RER Rough endoplasmic reticulum
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RNA Ribonucleic acid
ROCV Rocio virus
SAM S-adenosyl-L-methionine
SAR Structural-activity relationship
SLEV Saint Louis encephalitis virus
TAM receptor (Tyro3, Axl, Mertk) receptor
TBEV Tick-borne encephalitis virus
TEM Transmission electron microscopy
TIM-1 receptor T cell immunoglobulin mucin domain-1 receptor
TOFA 5-tetradecyloxy-2-furoic acid
USUV Usutu virus
UTR Untranslated region
VEGFR Vascular endothelial growth factor receptor
WESSV Wesselsbron virus
WNV West Nile virus
YFV Yellow Fever virus
ZIKV Zika virus
ZIKV-Ig Human anti-ZIKV immunoglobulin
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