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Abstract: This work aimed to investigate temperature polarization (TP) and concentration polarization
(CP), which affect solar-powered air-gap membrane distillation (SP-AGMD) system performance under
various operating conditions. A mathematical model for the SP-AGMD system using the experimental
results was performed to calculate the temperature polarization coefficient (τ), interface temperature
(Tfm), and interface concentration (Cfm) at various salt concentrations (Cf), feed temperatures (Tf), and
flow rates (Mf). The system of SP-AGMD was simulated using the TRNSYS program. An evacuated
tube collector (ETC) with a 2.5 m2 surface area was utilized for solar water heating. Electrical powering
of cooler and circulation water pumps in the SP-AGMD system was provided using a photovoltaic
system. Data were subjected to one-way analysis of variance (ANOVA) and Spearman’s correlation
analysis to test the significant impact of operating conditions and polarization phenomena at p < 0.05.
Statistical analysis showed that Mf induced a highly significant difference in the productivity (Pr)
and heat-transfer (hf) coefficients (p < 0.001) and a significant difference in τ (p < 0.05). Great F-ratios
showed that Mf is the most influential parameter. Pr was enhanced by 99% and 146%, with increasing
Tf (60 ◦C) and Mf (12 L/h), respectively, at a stable salt concentration (Cf) of 0.5% and a cooling
temperature (Tc) of 20 ◦C. Also, the temperature increased to 85 ◦C when solar radiation reached
1002 W/m2 during summer. The inlet heat temperature of AGMD increased to 73 ◦C, and the Pr

reached 1.62 kg/(m2·h).

Keywords: AGMD; polarization phenomena; Spearman’s correlation analysis; mathematical model-
ing; evacuated tube collector

1. Introduction

Membrane distillation (MD) is a thermal separation process studied immensely in
desalination and water treatment, wherein heat and mass are transported concurrently
through the hydrophobic membrane matrix and pores [1]. The integration of ETCs and PV
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panels creates a synergistic effect. This means that the combined efficiency of the system
can be greater than the sum of the individual components. For instance, surplus electricity
generated by PV panels can enhance the system’s performance. Integrating ETCs and PV
panels allows the SP-AGMD system to gather thermal energy (via ETCs) and electrical
energy (via PV panels) from solar radiation. ETCs provide heat energy for the distillation
process, crucial for separating water from impurities. PV panels generate electricity to
power components like coolers and circulation water pumps, enhancing the self-sufficiency
of the system. By utilizing solar energy, the SP-AGMD system reduces dependency on
conventional energy sources, potentially leading to significant cost savings over time. The
initial investment in ETCs and PV panels may be offset by long-term savings in energy
costs, especially in regions with abundant sunlight. The reliance on solar energy minimizes
the carbon footprint of the SP-AGMD system, making it more environmentally sustainable
compared to systems powered by fossil fuels. Solar energy availability can fluctuate based
on weather conditions and time of day. To ensure reliable operation, the system may
incorporate energy-storage solutions like batteries or other backup power sources. The
integrated system can be adapted to different climates and scaled up or down to meet
varying energy demands or system sizes. In air-gap membrane distillation (AGMD), the
difference in temperature between the hot and the cold feed solution creates vapor pressure
differences across the membrane. Pure water can be extracted from saline water using an
MD module at a hot inlet feed temperature that is lower than 100 ◦C [2]. Air-gap membrane
distillation (AGMD) is one of the most efficient MD technologies due to the existence of
the air-gap zone, which helps to increase conduction heat-transfer resistance across the
membrane and decrease membrane fouling and wetting [3,4]. It has been stated that MD
competition with other separation technologies depends on the generated permeation
driving force, which is affected by feed temperature, salt concentration, flow rate, air-gap
width, temperature polarization (TP), and concentration polarization (CP) [5,6].

1.1. Polarization Phenomenon

Temperature polarization occurs when the temperature at the membrane surface (Tfm)
is lower than the temperature of the feed solution (Tf). This occurs due to conduction
heat losses across membranes and convection through the air-filled membrane pores [7].
Concentration polarization occurs when the concentration of solutes at the membrane
surface (Cfm) is higher than the bulk concentration of the feed solution (Cf). This arises
from the accumulation of concentrated solutes near the membrane surface as water vapor
is extracted.

1.2. Temperature Polarization (TP)

More than three decades ago, a theoretical investigation was first presented by
Schofield et al. [8] on TP. Camacho et al. [9] and Alsaadi et al. [10] attributed low MD
module productivity to TP and CP. More interestingly, Schofield et al. [11] conducted
an experimental study on a direct contact membrane distillation (DCMD) module and
proclaimed that TP reduces the vapor pressure at the hot membrane side and then module
productivity. In this context, Curcio and Drioli [12] introduced a so-called temperature
polarization coefficient (denoted by τ) to measure TP influence (i.e., thermal boundary layer
thickness) on MD driving force and productivity. It was reported that the theoretical τ value
approached the number 1.00 but practically changed between 0.20 and 0.90, according to
the MD module used [13]. In experimental work, Phattaranawik and Jiraratananon [14]
mentioned that the τ value of the DCMD system changed between 0.40 and 0.70. A value
of 0.60 was reported for τ, which referred to a marginal TP effect, thus resulting in 40%
productivity enhancement at an optimum feed inlet temperature of 60 ◦C. As described by
Phattaranawik et al. [15], a comparison study was carried out between a spacer-filled chan-
nel and no spacer. The experimental results showed that the introduction of a spacer-filled
channel significantly altered the thermal boundary thickness. It increased the τ value to
1.00 and subsequently enhanced the productivity of the DCMD module from 31% to 41%.
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1.3. Concentration Polarization (CP)

Hwang et al. [16] investigated the influence of feed inlet temperature and velocity
on DCMD module productivity (Pr). It was reported that a significant improvement in
productivity (Pr) was found at higher feed velocities. Also, the mass transfer coefficient
(kf) was changed from 0.0027 to 0.0042 L/(m2·h·Pa). The productivity of the module (Pr)
declined as the NaCl concentration increased due to the increase in the concentration
boundary layer thickness and reduction of the vapor pressure difference. Another DCMD
system was established by Duong et al. [17] for the regeneration of LiCl solution.

Other researchers [18,19] have conducted experimental studies to assess how feed salt
concentration (Cf) and concentration polarization (CP) affect MD productivity (Pr). Results
have shown that productivity (Pr) dropped from 13% to 28% as Cf increased from 30 to
120 g/L, respectively. According to Martínez [20], the reduced MD productivity (Pr) was
attributed to a decrease in water activity and an increase in Cf.

Janajreh et al. [21] stated that reducing the air-gap width in AGMD modules led to
a 38% decrease in the τ value, indicating an increased thickness of the thermal boundary
layer and resulted in an adverse effect on TP. In related research, Kurokawa et al. [22]
tested the influence of acidic solution concentration and concentration polarization (CP)
on the AGMD module productivity (Pr). The authors reported that there was a signifi-
cant decrease in module productivity (Pr) attributed to the increase in the thickness of
concentration boundary layers. The researchers showed that when compared to using pure
water as a feed, the use of a NaCl solution decreased MD module productivity (Pr) by
approximately 40%. Furthermore, Calabro and Drioli [23] stated that a 4% productivity
(Pr) reduction was obtained when the NaCl solution was utilized as feed. Martínez and
González [24] concluded that the impact of CP on water vapor pressure was comparatively
less severe than that of TP, resulting in only a 0.2% decrease. Termpiyakul et al. [25] stated
that when the MD module operated at low feed velocity, water characteristics such as
high salt concentration and feed inlet temperature should be taken into account due to the
prominence of TP. Also, Muhammad Suleman et. al. [26] reported that TP showed a greater
influence on MD productivity (Pr) in comparison to CP. Criscuoli [27] studied the effect of
feed velocity on productivity (Pr). It was stated that raising the velocity of feed created a
turbulence flow regime near the membrane surface, which led to a remarkable change in
the thickness of thermal boundary layers and a rise in the τ value. The impact of TP on the
productivity (Pr) of the vacuum membrane distillation (VMD) module was investigated
experimentally by Alsaadi et al. [10]. The authors concluded that the sensitivity factor of
module productivity to membrane mass transfer resistance and τ is inversely proportional
to the operating parameters of feed bulk temperature and vacuum pressure. A compre-
hensive study was presented by Anvari et al. [28]. Innovative methods were reviewed to
mitigate the detrimental effects of TP, such as advanced membranes (e.g., nano-structured
surfaces, heated membranes under photothermal radiation, and metallic membranes),
flow promoters (e.g., feed spacers, corrugated feed channels/membranes, and flashed
feed channels), and self-heated MD systems (e.g., solar photothermal, joule, and induction
heating). After reviewing several theoretical and practical studies in this area of research,
it has become apparent that previous researchers primarily concentrated their efforts on
assessing the influence of temperature polarization (TP) and concentration polarization
(CP) on the performance of membrane distillation (MD) modules, as well as evaluating
the performance of solar-powered membrane distillation (SP-MD) systems under vari-
ous environmental conditions. To our knowledge, no prior studies have examined the
combined impact of the MD process and solar energy on performance, particularly in
relation to TP and CP. This represents a significant gap in the literature. Consequently, the
current research endeavors to address this gap by investigating the synergistic effect of the
air-gap membrane distillation (AGMD) process and solar energy on the performance of
the SP-AGMD system, with a specific focus on TP and CP arising from water evaporation
at the liquid–vapor interface at the hot-feed membrane. To achieve this, a meticulously
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designed SP-AGMD system was systematically analyzed under varying feed temperatures
(Tf), flow rates (Mf), and salt concentrations (Cf).

Solar-powered membrane distillation (SP-AGMD) was designed and investigated sys-
tematically under different feed temperatures (Tf), flow rates (Mf), and salt concentrations
(Cf). The experimental evaluation was implemented based on the computed values of
productivity (Pr), temperature polarization coefficient (τ), and heat-transfer coefficient (hf).
It is difficult to measure the feed temperature (Tfm) and concentration (Cfm) experimentally
at the membrane surface [9,29]. Thus, a mathematical model was introduced beneath for
the AGMD module alongside the experimental data to determine each of Tfm, Cfm, hf,
and τ.

Additionally, the AGMD module was simulated via the TRNSYS program using solar
energy for validation. Therefore, an evacuated tube collector (ETC) was used for solar water
heating. A photovoltaic (PV) system was used to supply the required electrical power for
the cooler and circulation water pumps in the SP-AGMD system. The SP-AGMD system
was studied under different climate conditions. The authors presented a quantitative
characterization of the mass transfer process, and investigated the influence of TP and CP
on the MD system performance by developing a descriptive mass and heat-transfer model.
Simulation outcomes revealed that the TP and CP diminished the permeation driving force.

2. Mathematical Modeling of the SP-AGMD System

The mathematical model of SP-AGMD for a water desalination system is presented in
two parts. The first part is the modeling of AGMD, and the second part is the simulation
of thermal energy and electrical power sources for the desalination system driven by
solar energy.

2.1. AGMD Mathematical Modeling

A schematic diagram illustrating temperature polarization (TP) and concentration
polarization (CP) taking place in the AGMD module is shown in Figure 1. At the liquid–
vapor interface on the hot-feed membrane side where water evaporates, a simultaneous
temperature decrease and concentration increase occur [30].
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2.1.1. Heat Transfer across the Thermal Boundary Layer Resistance

The thermal boundary layers on the hot-feed side impose further resistance to heat
transport and render the feed bulk temperature (Tf) larger than the interface temperature
(Tfm). This resulted in a reduction of 50% to 80% in driving force through the membrane.
This phenomenon is defined as temperature polarization (TP) and could be recognized as
the difference in temperature between feed bulk (Tf) and membrane surface (Tfm) [25,31].
The temperature polarization coefficient (τ) is defined as the ratio of the temperature drop
across the membrane (from the hot-feed side to the cold permeate side) to the overall
temperature difference between the hot-feed solution and the cold permeate solution. The
TP influence can be determined by calculating the temperature polarization coefficient
(τ) [8,32] using Equation (1).

τ =
Tfm
Tf

(1)

In the case of Tfm < Tf, a small τ value, high devastating TP impact, and unsatisfactory
MD performance are the outcomes. On the contrary, when Tfm approaches Tf, the τ is close
to unity, implying a weak TP effect and better MD performance.

The effective convection heat transported (Qf) across the boundary layers can be
determined using Equation (2).

Qf = hf × (Tf − Tfm) (2)

where hf is the heat-transfer coefficient through the tube-side thermal boundary layer
(W/(m2·◦C)). hf could be estimated mathematically using Nusselt number (Nu) correlation,
as given by Equation (3).

Nu = a × (Re)
b × (Pr)

c (3)

where Re, Pr, a, b, and c are the Reynolds number, Prandtl number, membrane modular de-
sign characteristic constants, and feed flow regime. Re and Pr are given by Equation (4) [33].

Re =
v × di × ρ

µ
Pr =

cp × µ

k
(4)

In the case of the current experimental operating conditions where a laminar flow
regime (Re < 2300; 0.6 < Pr < 5) through the lumen side has been exercised, Sieder and
Tate’s equation could be applied according to previous studies [24,34] using Equations (5)
and (6).

Nu = 1.86 ∗
(

Re ∗ Pr ∗ di

L

)0.33
(5)

hf =
Nu ∗ k

di
(6)

where di is the internal diameter of the tube/hollow-fiber membrane (m), k is the liquid
thermal conductivity (W/(m·◦C)), Cp is the liquid heat capacity (J/(kg·◦C)), µ is the bulk
liquid dynamic viscosity (kg/(m·s)), ρ is the bulk liquid density (kg/m), and v is the linear
velocity (m/s) that is calculated by Equation (7).

Linear velocity (ν) =
Feed flow rate (Mf)

Open area for flow through the tube side (A)
(7)

2.1.2. Heat Transfer across the Hollow-Fiber Membrane Pore

The distribution of heat transfer between latent heat and conduction heat loss depends
on various factors, including the properties of the fluid, temperature gradients, material of
the membrane, and overall setup. It is worth mentioning that these percentages can vary
based on the specific conditions of the system, and the exact values might be influenced
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by the materials used, the geometry of the hollow fiber, the flow rate of the fluid, and the
temperature difference across the membrane, among other factors. It was reported that
50% to 80% of latent heat (Qv) is lost across the dry pore, and 20% to 50% of the sensible
heat (Qc) is lost [5,35]. The hot-feed solution evaporates at the membrane side. Then, vapor
molecules diffuse through the pores as latent heat at a rate of Qv = Pr*∆Hv, where Pr is the
distilled water productivity, and ∆Hv is the evaporation latent heat (≈2326 kJ/kg).

The mean temperature of feed bulk (Tf) was calculated using Tf = 0.5[Tfi + Tfo]. The
Tfm is hardly measured experimentally, but it could be determined theoretically via a simple
enthalpy balance [8,36,37]:

hf ∗ (Tf − Tfm) = ∑n
i=1 Pr ∗ ∆ HV (8)

where n is the number of permeating species.

2.1.3. Mass Transfer across the Concentration Boundary Layer Resistance

Increasing the salt concentration leads to an increase in the concentration boundary
layer thickness (i.e., CP alongside the thermal boundary layers (i.e., TP)) and a decrease
in driving force and, therefore, productivity [10,11,38]. The effect of CP is measured by
calculating the concentration polarization coefficient (γ) using Equation (9) [38,39].

γ =
Cfm
Cf

(9)

where Cf and Cfm are the salt concentrations at the feed bulk and membrane surface,
respectively. Cfm is estimated mathematically utilizing Equation (10) [6].

Cfm = Cf ∗ exp
(

Pr

ρ ∗ Kf

)
(10)

where kf is the solute diffusive mass transfer coefficient through the boundary layers
(W/(m2·◦C)). kf can be computed using the Graetz–Lévêque Equation [40].

kf =
Sh ∗ DAB

di
(11)

where DAB and Sh are the diffusivity coefficient of water vapor (A) relative to air (B) in
(m2/s) and Sherwood number, respectively. Sh could be determined through a laminar
flow regime, as follows [41]:

Sh = 1.86 ∗
(

Re ∗ Sc ∗ di

L

)0.33
(12)

where Sc is the Schmidt number and can be computed by utilizing Equation (13) [6].

Sc =
µ

ρ ∗ DAB
(13)

DAB could be calculated mathematically at the feed bulk temperature varying from
273 K to 373 K using the Wilke–Chang empirical formula [42,43].

DAB =
1.895 ∗ 10−5∗ T2.072

P
(14)

2.2. Simulation Model of the SP-AGMD System

The SP-AGMD model using a solar collector and photovoltaic (PV) panels was simu-
lated by the TRNSYS program. As shown in Figure 2, the AGMD module was determined
by a new equation in the TRNSYS simulation. All components of the solar AGMD model
were presented as follows: a Type 91 heat exchanger, a TYPE109-TM2 reader and processer
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of meteorological data, a Type 2 differential temperature controller, a Type 1 flat plate
collector, Type 94 photovoltaic panels, a Type 3 single speed pump, a Type 48 inverter, a
Type 47 storage battery, Type 57 unit conversion, a Type 65 online plotter, and a Type 92
auxiliary cooling unit.
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2.2.1. Solar Thermal System

The thermostatic heating bath has an electrical power that reaches 1.5 KW. Therefore,
the solar thermal system was simulated using solar energy for the AGMD system to save
costs. The evacuated tube collector (ETC) was used for heating water in the AGMD system
with an area of 2.5 m2 at coordinates 31◦15′45′′ N and 32◦18′22′′ E. In the solar thermal
system, a heat exchanger has an effectiveness of 0.5. The parameters of ETC are listed in
Table 1.

Table 1. The parameters of the Evacuated Tube Collector (ETC).

Parameter Value

Evacuated Tube Collector (ETC)

Grid measurement (length, height) (mm) 500 × 500
Aperture area (m2) 2.5

Efficient solar absorption area (m2) 2.44
Fluid capacity in copper pipe (L) 1.82

Working pressure maximum (bar) 6

The basic method used to determine collector performance is given by Equation (15) [44].

.
Qu = m0Cpf(T0 − Ti) (15)

where m0 and Cpf are the fluid mass flow rate (kg/h) and the specific heat capacity of fluid
(KJ/h), respectively. T0 and Ti are the exit and entrance temperatures of the collector (K).

The effectiveness of heat exchangers is given by Equation (16) [45].

ε =
1− exp

(
− UA

Cmin

(
1− Cmin

Cmax

))
1−

(
Cmin
Cmax

)
exp

(
− UA

Cmin

(
1− Cmin

Cmax

)) (16)
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where UA is the overall loss coefficient among its surroundings during operation and the
heater (kg/h). Cmax and Cmin are the maximum and the minimum rate of heat capacity
(KJ·hr−1·K), respectively.

2.2.2. Photovoltaic (PV) System

The electrical power of the cooler circulation water pumps of ETC and AGMD is
required for the AGMD process. Therefore, photovoltaic (PV) panels were used for the SP-
AGMD system to save costs, as they constitute renewable energy. Therefore, the electrical
power was calculated and replaced by two PV panels, each with an area of 1.6 m2 and
a power of 300 W, using three batteries (12 V, 200 Ah) via the TRNSYS program. The
power of the PV system covered the electrical power of the cooler circulation water pumps,
according to the specifications listed in Table 2 [44].

Table 2. The specifications of the PV panel.

Specifications Value

PV panel

Power (kW) 0.3
Module area (m2) 1.6

Voltage (V) 38.9
Current (A) 9.31

Inverter

High fractional condition of charge limit 1.0
Regulator efficiency 0.78

Battery

Tolerance for iterative calculations 16.7
Charging efficiency (A) 0.8

The peak power of the PV installation is given by Equation (17) [44].

Pc = Ppv =
D

N∗F (17)

where D is the daily need in kWh/day, N is the number of hours, and F is the form factor,
as given in Equations (18) and (19).

N =
GT(t)
GT,STC

(18)

where GT(t) is the solar radiation incident in the current time step on the solar PV array
kW/m2. Under standard test conditions, GT,STC is the incident radiation kW/m2.

3. Materials and Methods
3.1. Experimental Setup Description of the SP-AGMD System

A schematic diagram of the SP-AGMD system utilized in this investigation is illus-
trated in Figure 3. The membrane distillation (MD) system consists of a feed tank, AGMD
module, rotameter, water pump, electronic balance, measuring cylinder, valve, PV panels,
evacuated tube solar collector, solar controller, and heat exchanger. The detailed speci-
fications of the circulation pump, evacuated tube, and heat exchanger employed in this
investigation are listed in Table 3. Electrical power to the water pumps was provided using
solar panels. In the membrane distillation (MD) module, a feed solution was preheated
using the heat exchanger and fed into the cold feed side. The outlet solution was heated
using a solar heat exchanger to a specific temperature. A centrifugal pump was used to
pump the outlet stream into the hot-feed side in AGMD. The evacuated tube collector
(ETC) was used to provide the required heat to raise the temperature of the hot-feed side in
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the solar heat exchanger. Figure 3 schematically displays the itinerary of the salt solution
inception from the feeding tank until it is collected as pure water in the measuring cylinder.
The hot salt solution was pumped from the feeding tank into the PVDF membrane module
by a circulation pump. After that, it crossed through the membrane module (indicated in
red), where vapor diffused through the pores of the membrane.
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Table 3. The specifications of the circulation pump, evacuated tube, and heat exchanger employed in
the proposed system.

Specification Value

Circulation pump

Power (kW) 0.09
Voltage (V) 220

Frequency (Hz) 50
Speed (rpm) 2800

Max. flow (L/min) 25
Highest lift (m) 10

Current (A) 0.95
Max. head (m) 8

Evacuated tube

Power (kW) 1.5
Voltage (V) 220

Frequency (Hz) 50
Highest temperature (◦C) 95

Heat exchanger

Power (kW) 0.23
Voltage (V) 220

Frequency (Hz) 50
Max. flow (L/min) 15

Highest lift (m) 10
Refrigerating capacity (kW) 0.550–0.275

Max. head (m) 3
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On the opposite side, the hot solution exited the membrane module and fed into the
cooler to reduce its temperature. Subsequently, it flowed through the PP heat-exchange
tubes (indicated in blue) and was then cycled back to the feeding tank.

To maintain consistent water levels and feed concentration during the experiment,
distilled water was introduced into the tank. To establish a stable operating state, the
AGMD system was operated for an hour to eliminate all dissolved gases from the feed
solution before commencing the experiment.

The changes, either increasing or decreasing, take place in the permeation driving
force and AGMD productivity (Pr), which is related to temperature polarization (TP) and
concentration polarization (CP) under varying operating conditions. They are measured
by estimating the temperature polarization coefficient (τ) and concentration polarization
coefficient (γ), respectively. A temperature controller XMTD-3001 (Easey Commercial
Building Hennessy Road Wanchai Hongkong, China) and thermostatic heating bath were
installed to regulate the feed inlet temperatures (Tf) at 50, 60, 70, and 80 ◦C. A cooler
was used to maintain the temperature on the permeate side at a stable cooling water
temperature (Tc) of 20 ◦C. Four different temperature sensors were placed at the inlets
and outlets of the membrane module to measure the variations that occurred in the feed
temperature during operation. A rotameter was utilized to adjust the inlet flow rate (Mf) at
3, 6, 9, and 12 L/h (equivalent to crossflow velocities of 0.014, 0.028, 0.041, and 0.055 m/s,
and Reynolds numbers (Re) of 11.18, 22.36, 32.73, and 43.91, respectively). The productivity
(Pr) in kg/(m2·h) was calculated according to Aryapratama et al. [45] using Equation (19):

Pw =
Wr

A × t
(19)

where Wr is the pure water volume (L), t is the experiment duration (h), and A is the
effective membrane area based on the inner hollow-fiber membrane diameter (m2). The
experiment was repeated three times for 1 h each under the same conditions, and the
average of multiple values was calculated for accuracy. A conductivity meter (Model:
DDS-11A, Shanghai Leici Xinjing Instrument Company) was used to measure the electrical
conductivity of distilled and salt water (0.5%, 0.9%, 1.8%, and 4%) to check for any mem-
brane pore wetting. The salt rejection rate (Rs) was determined according to Li et al. [46],
as given by Equation (20).

Rs =
Cf − Cw

Cf
× 100 (20)

where Cf and Cw are the concentrations of salt and distilled water (%).

3.2. Air-Gap Membrane Distillation (AGMD) Module

The fabricated AGMD module contains a membrane made up of 120 porous polyvinyli-
dene difluoride (PVDF) hollow fibers, and 240 non-porous polypropylene (PP) heat-
exchange tubes with 0.36 m2 total interior membrane surface area. The interior/exterior
diameter (m × 10−3) of the hollow-fiber membrane and heat-exchange tubes are 0.80/1.10
and 0.40/0.50, respectively. The length of the membrane and tube is 0.59 m. Polyvinylidene
difluoride membrane thickness is 150 µm, the pore size is 0.20 µm, the contact angle is
80.5◦, the bubble point pressure is 0.11 MPa, and the porosity is 85%. The average thick-
ness of the air gap is 5 mm. The membrane module was insulated to avoid heat loss to
the surroundings.

4. Statistical Analysis

Experimental results were statistically determined in terms of means and standard
error for means (SE). One-way analysis of variance (ANOVA) was used to determine the
effect of various operating conditions at p < 0.05. Additionally, the correlation coefficient
(r) between the independent (i.e., feed temperature, flow rate, and salt concentration)
and dependent variables (i.e., productivity (Pr), temperature polarization coefficient (τ),
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and heat-transfer coefficient (hf)) was studied using Spearman’s correlation analysis. All
statistical analyses were performed using IBM-SPSS version 23.0 for Mac OS [47,48].

5. Results and Discussion

It is worth mentioning that the low value of temperature polarization coefficient (τ)
(i.e., increase in the thermal boundary layer thickness at the membrane surface) denotes
the negative influence of temperature polarization (TP) on the productivity (Pr) of the
SP-AGMD system.

5.1. Effect of Temperature Polarization and Concentration Polarization on the Productivity at
Different Feed Temperatures (Tf)

The variation of Pr, τ, and hf for the SP-AGMD system are elaborated in
Figure 4a–c. Feed temperature (Tf) changed between 50 ◦C and 80 ◦C at 10 ◦C inter-
vals, and salt concentration (Cf), coolant temperature (Tc), and flow rate (Mf) were kept at
0.5%, 20 ◦C, and 12 L/h, respectively. Exponential productivity (Pr) increments with feed
temperature taking place in the AGMD module were ascribed mostly to the corresponding
exponential vapor pressure augmentation. In Figure 4a, the productivity (Pr) of the AGMD
module was enhanced from 0.89 to 1.77 kg/(m2·h) by 99% when the feed temperature
(Tf) was raised from 50 ◦C to 80 ◦C in increments of 10 ◦C. The improved productivity
(Pr) is attributed to the increase in vapor pressure and permeation driving force across
the membrane, as predicted by the Antoine equation [35,49]. The higher temperature
causes the liquid on one side of the membrane (the feed side) to evaporate more readily,
generating a higher concentration of vapor molecules. This concentration difference across
the membrane drives the transfer of vapor through the membrane to the other side, where
it condenses and forms the purified product. The substantial increase in productivity
(Pr) (99%) shows the significance of temperature in AGMD processes. However, it is im-
portant to consider that changes in temperature might also influence other factors like
energy consumption, membrane properties, and system stability. Therefore, while higher
temperatures can enhance productivity, there might be practical limitations.

Related to the temperature polarization coefficient (τ), Figure 4b shows that τ declined
by 2.0%, 1.80%, and 2.2% as the temperature (Tf) increased. From these observations, it
was found that the changes in temperature had a relatively minor effect on the temperature
polarization coefficient (τ). A decrease in τ could potentially indicate a change in the
temperature difference between the feed and permeate sides of the membrane, which
could influence the driving force for vapor permeation. The decreasing recorded values
in τ indicate a considerable lowering in the feed temperature at the Tfm compared to the
temperature at the Tf on the hot-feed side. According to the obtained τ outcomes, TP
has a dramatic effect on AGMD productivity (Pr) compared to CP. Also, the negative TP
impact was more obvious at high feed temperatures due to increasing vapor permeating
the membrane. Therefore, it is concluded that TP is mainly responsible for a reduction in
the increasing percentage of process productivity (Pr) by 44%, 22%, and 14%. The obtained
results are in good agreement with those of Curcio & Drioli [12] and Lawson & Lloyd [35].
As stated by Abu-Zeid et al. [50] and Alkhudhiri & Hilal [51], the thermal boundary layer
(low τ value) is deemed a prime factor in restricting vapor mass transfer. For example, at a
low Tf of 50 ◦C and high τ value, a small difference (∆Tf-fm) in temperature between the
bulk (Tf) and interface (Tfm) were 0.95 ◦C and 2.33 ◦C, respectively. Correspondingly, at a
high Tf of 80 ◦C and low τ value, a large difference (∆Tf-fm) in temperature between the
bulk (Tf) and interface (Tfm) were 0.91 ◦C and 7.03 ◦C, respectively. Also, it was observed
that the heat-transfer coefficient (hf) has a noticeable drop by 4.2%, 3.9%, and 3.5%, as
shown in Figure 4c. The high decreasing percentage of hf supports the conclusion that
temperature polarization (TP) has a more effective influence on AGMD productivity (Pr)
than concentration polarization (CP). This suggests that differences in temperature across
the membrane play a more significant role in affecting the overall process efficiency. The
results of one-way ANOVA are listed in Table 4 and Figure 4a–c for Pr, τ, and hf. From the
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one-way ANOVA table, it can be shown that the contribution of the feed temperature (Tf)
parameter is the most significant for determining that the process Pr and hf (p < 0.001 ***) is
dissimilar to τ, which was non-significant (p > 0.05). Also, the high F-ratios presented in
the table support this result.
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Table 4. One-way analysis of variance (ANOVA) results for Pr, τ, and hf at Tf.

Variable
(Parameter)

ANOVA

df F-Ratio p-Value

Pr 3 227.8 <0.0001 *
τ 3 2.92 >0.999 ns
hf 3 4547.9 <0.0001 **

* significant at p < 0.05; ** highly significant at p < 0.01 and <0.001; ns—non-significant at p > 0.05.

A strong direct linear relationship (correlation coefficient > 0.90) is observed between
the variable feed temperature (Tf) and both productivity (Pr) and heat-transfer coefficient
(hf). This implies that as Tf increases, Pr and hf also tend to increase, and this relationship
is highly consistent, as shown in Table 5. There is a weak linear relationship between
Tf and τ. This indicates that as Tf increases, τ tends to decrease. The strength of the
relationship suggests that temperature changes influence these variables. There is a non-
significant negative linear relationship between Tf and τ. This means that changes in Tf do
not strongly predict changes in τ. There are non-significant negative linear relationships
between Tf and hf. This indicates that changes in Tf are not strongly linked to changes in hf,
and these relationships might not be reliable. Results reveal strong positive relationships
between Tf and Pr and hf, suggesting that, as temperature increases, these variables tend to
increase significantly, as shown in Figure 5. There are also negative relationships between
Tf and τ, indicating that changes in temperature correlate with a decrease in these variables.
However, linear regression analysis shows that the relationships between Tf, τ, and hf, are
not statistically significant.

Table 5. Spearman’s correlation analysis results for Pr, τ, and hf at Tf.

Variables
Correlations

Tf Pr τ hf

Pr
r 0.973 --- −0.625 * −0.921 **

Sig. (2-tailed) <0.0001 *** 0.030 0.000

τ
r −0.70 −0.63 --- 0.674 *

Sig. (2-tailed) 0.012 * 0.030 * 0.016

hf
r −0.97 −0.921 0.67 ---

Sig. (2-tailed) <0.0001 *** <0.0001 *** 0.016 *
* significant at p < 0.05, **, *** highly significant at p < 0.01 and <0.001; non-significant at p > 0.05.
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5.2. Effect of Temperature Polarization and Concentration Polarization on the Productivity at
Different Feed Flow Rates (Mf)

The experiments were conducted using flow rates of 3, 6, 9, and 12 L/h. These flow
rates corresponded to feed velocities of 0.014, 0.028, 0.041, and 0.055 m/s, respectively.
The experiments were performed at a feed temperature of 60 ◦C, a cooling temperature of
20 ◦C, and a concentration of 0.5%. An impressive increase of 146% in productivity (Pr) was
achieved, going from 0.52 to 1.28 kg/(m2·h) as the flow rates raised from 3 L/h to 12 L/h in
increments of 3 L/h, as displayed in Figure 6a. These experimental findings aligned with
the results by Zhang et al. [52] and Duong et al. [53].

Referring to the temperature polarization coefficient (τ), it is evident from Figure 6b
that the τ of the AGMD module decreased by 1%, 2%, and 1%. As previously indicated in
the context of feed temperature (Tf), the reduction in flow rate (Mf) significantly mitigated
the adverse effects of concentration polarization (CP) by decreasing the thickness of con-
centration boundary layers, leading to a more pronounced difference in trans-membrane
temperature [54]. Concerning thermal boundary layers, as explained by Xu et al. [55], the
thickness of these layers remained relatively stable under the tested laminar flow conditions
(Reynolds number (Re) < 2100), which resulted in a significant decrease in the observed
increase in AGMD productivity (Pr) percentages, specifically: 54%, 38%, and 16%. At a
flow rate (Mf) of 3 L/h, the temperature polarization coefficient (τ) exhibited a high value
of 0.98 ◦C, accompanied by a small trans-membrane temperature difference (Tf − Tfm) of
2.59 ◦C. In contrast, at a flow rate (Mf) of 12 L/h, the τ value was low at 0.94 ◦C, while the
trans-membrane temperature difference (Tf − Tfm) was larger at 3.68 ◦C.
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Figure 6c exhibited notable increments of 26%, 14%, and 10% in the heat-transfer
coefficient (hf). Given that the mass and heat transfer processes transpired simultaneously
within the AGMD module [56], the enhancement in the heat-transfer coefficient (hf) would
consequently be mirrored by analogous increases in the mass-transfer coefficient (Kf).

Observations drawn from the experimental results showed that elevating Tf and Mf
yielded remarkable enhancements in the driving force for the permeation and productivity
(Pr) of the AGMD process, with approximate increments of 101% and 146%, respectively.
Termpiyakul et al. [25] stated that an increase in AGMD productivity (Pr) led to negative
impacts on TP and CP. The experimental findings further highlighted that, in the context of
flow rate (Mf), the computed average reduction percentage of τ was 4%. In the scenario of
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feed temperature (Tf), these figures showed an approximately 6% reduction. Consequently,
distinct from the effect of feed temperature (Tf), the current laminar flow regime and the
elevated heat-transfer coefficient (hf) worked to mitigate the negative effects of TP and CP.
Similar findings have been reported [24,57].

The one-way ANOVA results are given for Pr, τ, and hf in Table 6 and Figure 6a–c.
Due to p-values < 0.05, the results of ANOVA showed that the flow rate (Mf) induced
highly significant differences on Pr, hf, (p < 0.001 ***) and a significant difference on τ
(p < 0.05 *). Also, large F-ratios corresponding to the flow rate (Mf) are considered the most
influential parameter.

Table 6. One-way analysis of variance (ANOVA) results for Pr, τ, and hf at Mf.

Variables
ANOVA

df F-Ratio p-Value

Pr 3 119 <0.0001 **
τ 3 4.44 <0.05 *
hf 3 3364.8 <0.0001 **

* significant at p < 0.05, ** highly significant at p < 0.01 and <0.001; non-significant at p > 0.05.

The outcomes of Spearman’s correlation analysis, outlined in both Table 7 and
Figure 7a–c, reveal a highly robust positive linear correlation between Mf and Pr, as
depicted in Figure 7a–c, owing to correlation coefficients (r) exceeding 0.90. Simultaneously,
they indicate a relatively weak adverse linear correlation between Mf and τ, as shown in
Figure 7b. They are following the execution of a simple linear regression and the application
of linear regression trendlines between Mf and each of τ and hf. Similarly, the correlation
between Mf and τ displays a weak negative linear relationship that is also considered
non-significant.

Table 7. Spearman’s correlation analysis results for Pr and τ at Mf.

Variables
Correlations

Mf Pr τ hf

Pr
r 0.975

Sig. (2-tailed) <0.0001 ***

τ
r −0.80 −0.75

Sig. (2-tailed) 0.002 ** 0.005 **

hf
r 0.972 0.933 −0.74

Sig. (2-tailed) <0.0001 *** <0.0001 *** 0.006 **
**, *** highly significant at p < 0.01 and <0.001; non-significant at p > 0.05.
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5.3. Effect of Temperature Polarization and Concentration Polarization on the Productivity at
Different Feed Salt Concentrations (Cf)

The productivity of the module changes is based on varying salt concentration (Cf), as
shown in Figure 8a. The experiment was conducted under a cooling temperature of 20 ◦C,
a feed temperature of 80 ◦C, and a flow rate of 12 L/h. As illustrated in Figure 8a, there was
a reduction of 37.57% in productivity, decreasing from 1.73 to 1.08 kg/(m2·h), as the salt
concentration (Cf) gradually increased from 0.5% to 4%. These findings align entirely with
the outcomes reported in another study [51]. The decline in productivity can be attributed
to a decrease in vapor pressure difference and water activity, which is linked to a low
Prandtl number (Pr) [35,51]. Furthermore, the detrimental effects of thermal polarization
(TP) and concentration polarization (CP) also contribute to this phenomenon [51].

Figure 8b shows reductions of 0.88%, 1.11%, and 2.14% in the τ value. Higher salt
concentrations (Cf) resulted in a decrease in the vapor pressure of the feed solution. This
led to a reduction in the effective driving force for vapor transport across the membrane.
Consequently, temperature polarization (TP) can become more pronounced. With higher
salt concentrations, the concentration of solutes near the membrane surface increases. This
concentration polarization (CP) can create a concentration gradient that, in turn, affects the
vapor pressure gradient and contributes to temperature polarization (TP).

As depicted in Figure 8c, there was an enhancement of the heat-transfer coefficient
(hf) with increasing salt concentration (Cf). The presence of dissolved salts can alter the
heat-transfer characteristics of the feed solution. This can impact the rate at which heat is
conducted through the feed solution layer, further influencing the temperature polarization
gradient. The modest increments in hf by 0.3%, 0.5%, and 1.2% can be predominantly
attributed to the decreased heat-transfer requirements due to lower productivity (Pr) at
higher salt concentrations (Cf) and smaller ∆Tf-fm. This trend aligns with the flow-rate data
but contradicts observations related to feed temperature. Notably, the rate of salt rejection
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surpassed 99% across various operating conditions, consistent with findings from a similar
study [58,59].
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The outcomes of one-way ANOVA for Pr, τ, and hf are listed in Table 8 and Figure 8a–c.
As presented in Table 8, the salt concentration (Cf) contribution is the most significant for
estimating the Pr, hf (p < 0.001 ***), and τ (p < 0.01 **). Also, the calculated large F-ratios
listed in the table emphasize this outcome. The slight influence of CP suggests that the
AGMD module could potentially be employed for treating highly saline streams, in line
with findings reported by Duong et al. [60].



Membranes 2023, 13, 821 19 of 25

Table 8. One-way analysis of variance (ANOVA) results for Pr, τ, and hf at Cf.

Variable
(Parameter)

ANOVA

df F-Ratio p-Value

Pr 3 72.4 <0.0001 ***
τ 3 8.4 <0.01 **
hf 3 306.6 <0.0001 ***

**, *** highly significant at p < 0.01 and <0.001; non-significant at p > 0.05.

Table 9 and Figure 9a–c display the results of Spearman’s correlation analysis. The
correlation coefficients (r) demonstrated strong and weak negative linear relationships
between Cf and each of Pr and τ, respectively (Figure 9a,b), while showing a very strong
positive linear relationship between Cf and hf (Figure 9c). Simple linear regression and lin-
ear regression trendlines proceeded between Cf and hf. Accordingly, there was a significant
positive linear relationship between Cf and hf.

Table 9. Spearman’s correlation analysis results for Pr, τ, and hf at Cf.

Variables
Correlations

Cf Pr τ hf

Pr
r −0.973

Sig. (2-tailed) <0.0001 ***

τ
r −0.873 0.89

Sig. (2-tailed) <0.0001 *** <0.0001 ***

hf
r 0.972 −0.91 −0.781

Sig. (2-tailed) <0.0001 *** <0.0001 *** 0.003 **
**, *** highly significant at p < 0.01 and <0.001; non-significant at p > 0.05.
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Figure 9. The correlation between feed salt concentration (Cf) and (a) Pr, (b) τ, and (c) hf for the
SP-AGMD system.

In comparison to salt concentration and feed temperature, variations in flow rate
mitigated the negative impact of temperature polarization (TP) and enhanced productivity
(Pr). The recorded average reduction percentages of the temperature polarization coefficient
(τ) were 4.2%, 6%, and 4% for Mf, Tf, and Cf, respectively.

5.4. Performance of the SP-AGMD System and Solar Collector during Winter and Summer

Figure 10 illustrates the changes in global radiation (G) impacting the outlet tempera-
ture collector under varying weather conditions. Notably, the outlet temperature reached
61 ◦C during January, with a solar radiation of 625 W/m2·K. In contrast, the temperature
increased to 85 ◦C in August, coinciding with a solar radiation of 1002 W/m2·K. This obser-
vation highlights a significant alteration in the outlet temperatures of the ETC, indicating a
39% variation between winter and summer days.
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Figure 10. Temperature of ETC and global radiation in winter and summer.
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Figure 11 displays the variations in AGMD unit productivity and inlet hot tempera-
tures during both summer and winter daytime conditions. The AGMD system employed
PVDF hollow-fiber membranes with a total internal membrane surface area of 0.36 m2, a
pore size of 0.20 µm, a contact angle of 80.5◦, a bubble point pressure of 0.11 MPa, and a
porosity of 85%, all operating at a flow rate of 12 L/h. When the inlet hot temperatures of
the AGMD unit are elevated to 54 ◦C and 73 ◦C, the corresponding productivity in January
and August reach 1.05 and 1.62 kg/(m2·h), respectively. This observation underscores the
significant impact of the AGMD’s inlet hot temperature on enhancing module productivity.
Evidently, the percentage increase of 35% is discernible in the productivity between winter
and summer days.
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5.5. Photovoltaic (PV) Panels for the Solar-Driven AGMD System

The operation of the AGMD process requires the electrical power of the circulation
water pumps for the ETC and AGMD components. To minimize costs and leverage
renewable energy sources, photovoltaic (PV) panels were employed in the solar-driven
AGMD system. The required electrical power was determined and subsequently offset
by the deployment of two PV panels. Each of these panels occupied an area of 1.6 m2

and was integrated with three batteries (12 V, 200 Ah), all analyzed using the TRNSYS
program. Through this approach, it has become evident that the electric power consumed
by the cooler and pumps aligns with the power generated by the PV system, amounting to
410 watts, as shown in Figure 12. It was found that there was a specific electricity demand
of 0.4 kWh/m3.
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Figure 12. Comparison between the power of both the cooler and pumps with the PV system for the
SP-AGMD system.

6. Conclusions

To optimize cost efficiency, a solar AGMD system was analyzed by integrating solar
collectors and photovoltaic (PV) panels using the TRNSYS program across different seasons
and weather conditions. The system achieved a temperature of 85 ◦C with a solar radiation
of 1002 W/m2·K during the summer season. By elevating the inlet hot temperature of the
AGMD module to 73 ◦C, productivity increased to 1.62 kg/(m2·h). The corresponding
electrical power was computed and substituted using two PV panels, each occupying an
area of 1.6 m2, generating 300 W power, and integrated with three batteries (12 V, 200 Ah).
Consequently, the evacuated tube collector (ETC) facilitated water heating across an area
of 0.25 m2, and the PV system’s power effectively replaced the energy required by the
cooler and circulation water pumps in the solar AGMD system. Furthermore, Spearman’s
correlation analysis showed remarkable results, revealing a highly robust positive linear
relationship between Mf and parameters such as Pr and hf. However, it exhibited a
weaker negative linear relationship between Mf and τ. The subsequent application of
simple linear regression and linear regression trendlines to Mf and the respective variable
τ indicates that no significant negative linear relationship emerged between Mf and τ.
When examining stable conditions characterized by Cf at 0.5% and Tc at 20 ◦C, notable
trends were observed. By increasing Tf (at Mf of 12 L/h) and Mf (at Tf of 60 ◦C), Pr
increased by 99% and 146%, respectively. However, with the elevation of Cf (at Mf of
12 L/h and Tf of 80 ◦C), Pr experienced a decline of approximately 37.57%. This trend
emphasized the complex interplay of parameters in AGMD processes. The calculated
average percentage decrease of τ amounted to 4.2%, 6%, and 4%, revealing the diminishing
influence of temperature polarization under varying conditions. This integrated AGMD
system, which utilizes renewable energy resources for desalination, holds promise for
broader technological applications. Such solar-based projects present compelling economic
benefits and profitability.
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Nomenclature

A Effective membrane area, m2

AGMD Air-gap membrane distillation
Cf Bulk concentration at hot-feed flow, %
Cfm Interface concentration on the membrane surface on the hot-feed side, %
Cw Distilled water salinity, %
CP Liquid heat capacity at constant pressure, J/kg·◦C
CP Concentration polarization
di Tube/hollow-fiber membrane internal diameter, m
DAB Diffusivity coefficient of water vapor (A) relative to air (B), m2/s
hf Heat-transfer coefficient through the tube-side thermal boundary layer, W/(m2·◦C)
Kf Solute diffusive mass transfer coefficient through the boundary layers, W/(m2·◦C)
K Liquid thermal conductivity, W/(m·◦C)
Mf Flow rate
n Number of permeating species
Pr Productivity, kg/(m2·h)
Pr Prandtl number
Qf Effective heat transfer over the thermal feed side boundary layer, kJ/h
Qv Rate of latent heat, kJ/h
Re Reynolds number
Sh Sherwood number
Sc Schmidt number
t Operation time, h
Tf Hot bulk feed temperature, ◦C
Tfm Interface temperature, ◦C
Tc Coolant temperature, ◦C
TP Temperature polarization

∆Tf-fm
Difference in temperature between bulk (Tf) and
interface membrane surface (Tfm) at the hot-feed side, ◦C

∆HV Latent heat of evaporation, kJ/kg
v Linear velocity, m/s
Nu Nusselt number
Wr Distilled water volume, kg
Greek Symbols
γ Concentration polarization coefficient
τ Temperature polarization coefficient
ρ Bulk liquid density, kg/m3

µ Bulk liquid dynamic viscosity, kg/(m·s)
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