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SUMMARY We have studied Miettinen's multivariate confounder score method of controlling
confounding in case-control studies both theoretically and by simulation. The main conclusion
to be drawn from our results is that the method will in many practical situations seriously exaggerate
the statistical significance achieved, and its use is not to be recommended.

In epidemiologic case-control studies the standard
approach to control confounding is to cross-classify
the subjects by the confounding factors: the method
of combining 2 x 2 tables of Mantel and Haenszel
(1959) is of this type. The number of strata involved
may be large even if there are only a few confounding
variables; thus the resulting analysis is often
inefficient mainly because of certain strata including
no cases or no controls.
A number of multivariate approaches to this

problem have been suggested, based on classical
statistical ideas. Logistic discriminant analysis is
particularly useful (Breslow and Powers, 1978)
and it has recently been extended to case-control
studies involving matching (Holford et al., 1978).
A non-standard alternative multivariate approach

has been suggested by Miettinen (1976) and widely
adopted. This approach involves the construction
of a 'multivariate confounder score' with a
rationale that does not follow from classical
statistical principles. The purpose of this paper is
to present this method in standard statistical terms.

Confounder score

It is sufficient to consider only case-control studies
in which the number of cases is equal to the number
of controls. Let this number be n. For each person
we have measurements on k variables (Xl. . .XA
where Xk is the variable of main interest and
(Xl... .Xk-,) are the possibly confounding variables.
Write the observed values of the variables for the
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ith person as (xi,. . .Xik) and let the cases take the n
values i = 1. . .n and the controls the n values
i = n+fi 1...2n.
To calculate the multivariate confounder scores

for the 2n cases and controls, begin by calculating
a standard multivariate normal discriminant analysis
between cases and controls (Anderson, 1957).
Write the-resulting discriminant function as:

D = bo + bX+. . + bkXk (1)
The multivariate confounder score is then taken to be

S =bo + blX1 + .. ..+ bk-lXk-i (2)
So the score for person i is

Si-=bo + ti Xii + ..*+ bk-I Xi, k-l (3)
The range of values of Si is then examined and,
after excluding cases and controls whose S values
lie outside the range of the scores that is common
to both cases and controls, a number of nearly equal
strata (usually five) are defined, based on the
remaining S values. These 'stratified' sets of cases
and controls are then analysed for the effect of Xk
by standard methods.

The standard regression approach

Standard multivariate discriminant analysis may, be
expressed in linear regression terms (Anderson,
1957). A regression analysis of Y (Y-0= 5 if a case
and Y = - 0 5 if a control) against (Xl.. .Xk) will
produce a regression equation

Y = col CIXI +...+ CkXk (4)
where the C's are proportional to the bj's of
equation (2).
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If we write the calculated regression line of Y
against (X. ..X1) as

Y OSo+' 11LI +- . + k_1Xk-1 (5)
then the standard analysis of Xk allowing for
(Xl... .Xk -) will compare the residual sum of squares
associated with (4) with the residual sum of squares
associated with (5).
Confounder scores as covariates

Except that certain 'outlier' observations are
discarded and the S scores collapsed into strata
rather than their distinct values considered, the
confounder score method is equivalent to a
covariance analysis of Y on Xk with covariate S.
The residual sum of squares after fitting the
covariance equation

y = A + BS + CXk (6)
is the same as the residual sum of squares associated
with (4), since the least squares fit of (6) will obviously
be with A=0, B1= and C=ek since this is
equation (4). This residual sum of squares will be
tested for statistical significance by comparison
with the residual sum of squares after fitting the
equation

Y= D + ES (7)
The residual sum of squares associated with (7) will
of necessity be greater than the residual sum of
squares associated with (5), so that the test of
significance for C in equation (6) will be incorrect
and greater than is warranted, although the actual
value of C will be correct.
An example and discussion
To understand in what circumstances the errors in
the level of significance will be important, consider
the situation with k = 3 and where the distribution
of (X1, X2, X3) is trivariate normal with a simple
structure.

Let the mean vector for the cases be (iil, 12, 13)
and for the controls (0, 0, 0); and let both cases and
controls have the same covariance matrix

I 0 p
V = 0 1 p

p p I
The expectation of X3 given (X1, X2) is
E(X3 IXI, X2,case)=±3 + p(X1- x1)+ P(X2-±2) (8)
and

E (X3 Xl, X2, control) = pX1 + pX2 (9)
Thus for the discriminating value of X3, as
evidenced by the difference between p3 and 0, to be
totally 'explained' by (X1, X2), we have to have
(8) (9). Thus if

13 - Pli - P12 = 0
i.e. j3 = P31 + P312 (10)

then X3 has no ability given (X1, X2) to discriminate
further between cases and controls.

We have investigated by simulation the con-
sequences of using the multivariate confounder
score approach (as given in the section above) to
data generated using this model with equation (10)
holding. Each situation simulated had Al = ±2
and the results are shown in the Table. The first
column is the value of p for the generating
covariance matrix. The remaining columns show
for four nominal 1-sided significance levels the
estimate obtained of the true probability of rejecting
the null hypothesis at these significance levels in this
null situation. Each run was done with n = 100
for cases and controls, and for each specific
situation 1000 sets of data were generated.
The main conclusion to be drawn from these

results is that overestimation of significance can be
very pronounced, that it increases with increasing
correlation of X3 and (X1, X2), and with more,
overlap of cases and controls. For values of p less
than 0-5 (multiple correlation coefficient of X3 and
(X1, X2) is /2p = 0*71) the error is not large.

In case-control studies in which many variables
are incorporated in the regression analysis (that is,
large k), the multiple correlation of Xk and
(Xl.. .Xkl) will tend to be large. Values of k up
to 20 or more have been used. This is precisely the
situation in which the significance level claimed for
Xk using the multivariate confounder score is most
likely to be much exaggerated.

Comparison with multiple logistic regression

Miettinen's approach has also been suggested for
the situation in which logistic regression rather
than standard regression is more applicable. This
leads, however, to the same exaggerated significance
levels.
The regression function takes the form
Pr (Case Xl... .Xk)= - Pr (Control l Xl... .Xk)
= exp (bo + b1XI +. . .+bkXk) / [1 + exp
(bo + b1X1 +. . .+ bkXk)] ( 1)

Write the likelihood function generated by the
observed x's as L (bo. . .bk). The maximum
likelihood values (6.. ..) maximise L and are
equivalent to the C's in (4). For the equivalent
coefficients to (5) we maximize L subject to bk == 0-
write the resultant coefficients as (do.. * dk_4,0)
The standard likelihood ratio test for significance
of the Ck is given by
2[lnL(o .. .ek) - lnL (d... dk-"°"] (12)

which, on the null hypothesis of bk = 0, follows
approximately a x2 distribution on 1 degree of
freedom.

In place of (12), however, the confounder score
method test is approximated by

2[InL (co. . .ek) - 1nL (c4. ..ek-1 0)] (13)
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The estimate of bk which results from the use of
Miettinen's confounder score is again correct, but
expression (13) will always be larger than (12), and
the significance test (13) will therefore overstate the
significance of the value Ck. Quantitatively, this
overstatement will be similar to that seen in the
Table, because normal discriminant and logistic
discriminant results are usually close.

Table Simulation estimates ofprobability (%) Of
exceeding upper 1-sided nominal significance level*

I-sided nominal significance level (M)
Pls= 12 p 5 2 5 1 0 5

0 5 0 7 27-0 22-3 17-9 15-3
0 5 0-65 13-1 9-8 8-2 6-7
0 5 0-6 8-4 5-8 3-4 2-3
0.5 05 6-5 3-1 1*7 09
0-5 0 3 4-7 1.9 0 9 0-8
05 0.0 5-8 3-1 1-2 05

1.0 0 7 21-5 19.1 16-4 14-7
1 0 0 65 7-8 5.0 2-8 2-1
1.0 0-6 6-8 3-6 1-6 1.0

2-0 0*7 15-4 13-3 11-8 10-6
2-0 0 65 7-8 4-2 2 5 1-6
2-0 0-6 5 4 3-6 1-4 0 7

n = number of cases = number of controls = 100.
Each line of results is based on 1000 simulations.
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