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Abstract: The main concept of radiosensitization is making the tumor tissue more responsive to
ionizing radiation, which leads to an increase in the potency of radiation therapy and allows for
decreasing radiation dose and the concomitant side effects. Radiosensitization by metal oxide
nanoparticles is widely discussed, but the range of mechanisms studied is not sufficiently codified
and often does not reflect the ability of nanocarriers to have a specific impact on cells. This review
is focused on the magnetic iron oxide nanoparticles while they occupied a special niche among
the prospective radiosensitizers due to unique physicochemical characteristics and reactivity. We
collected data about the possible molecular mechanisms underlying the radiosensitizing effects of
iron oxide nanoparticles (IONPs) and the main approaches to increase their therapeutic efficacy by
variable modifications.

Keywords: radiosensitization; iron oxide nanoparticles; iron reactivity; cancer treatment; ionizing
radiation

1. Introduction

Magnetic nanoparticles (MNPs) are nanosized materials (~5 to 150 nm [1–3]) with
ferro-, ferri-, or supermagnetic properties, which are characterized by an enhanced capabil-
ity of controlling delivery to target organs using an external magnetic field [4]. Iron oxide
nanoparticles (IONPs) are the best known and most used MNPs in biomedicine. Depending
on the spatial structure of molecules and the oxidation state of iron, there are three most
common forms of IONPs structurally corresponding to iron oxide minerals: magnetite
(FeO*Fe3O4), maghemite (γ–Fe2O3), and hematite (α–Fe2O3) [5]. While α-Fe2O3 nanostruc-
tures are applied in designing micro/nanorobots [6,7], FeO*Fe3O4 and γ-Fe2O3 are widely
used in diagnostics and therapy. In practice, these are employed in the treatment of iron
deficiency anemia [8], as a contrast agent for magnetic resonance imaging (MRI) [9,10],
and in the development of various antitumor strategies: magnetic hyperthermia [11,12],
targeted delivery, and tumor sensitization [13–16].

It was recently reported that supermagnetic IONPs (also called SPIONs) can have a
radiosensitizing effect on tumor tissues, which gives them potential applications in cancer
radiation therapy (see Section 3). Moreover, some researchers [14,17–19] study the capacity
of using an applied magnetic field (AMF) for direct transport of SPIONs, which is possible
due to their ultra small size and magnetic single domain [20]. This could potentially
solve the unresolved problem of efficient delivery, at least in the case of IONPs [21,22].
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At the moment, efficient targeting is provided mainly by improving the nanoparticle
modification strategies. It should be noted that the immune status of the organism (studied
animal or patient) and the tumor microenvironment play important roles in this case. A
number of researchers note that the therapeutic efficiency of systemic exposure with IONPs
is based on the immune response leading to infiltration of the tumor with cytotoxic T
cells (CD8+) [16,23,24]. The question arises of whether immunotoxic and other damaging
effects caused by the high reactivity of iron can be effectively localized in target (tumor)
tissues. This review will consider the main points of the IONPs pharmacokinetics, modern
modification approaches imparting antitumor properties, and the mechanisms by which
IONPs sensitize tumor tissues to ionizing radiation.

2. General Dynamics of the Cellular Response upon Uptake of IONPs

Numerous mechanistic studies [25–28] demonstrated that the main pathway of cellular
uptake of nanoparticles (up to 150 nm in size) is endocytosis. The latter can be of two types:
clathrin- or caveolin-dependent and clathrin-/caveolin-independent [29,30]. The dynamics
of endocytosis is determined by the cell type and the physicochemical characteristics of
nanoparticles, including the type of protein crown and the degrees of agglomeration, diffu-
sion, and sedimentation [31]. Ultrasmall particles (<10 nm) and cationic nanoparticles with
a high charge density can penetrate into the cell through nanopores formed as a result of
adhesive interactions with the membrane [30–32]. Several studies showed that [33–35] iron
nanoparticles can be distributed from the bloodstream to various target tissues and organs,
but the exact mechanisms of their uptake into target areas are only partially understood. For
example, the PI3K/Akt/GSK-3β kinase pathways were found to be important mediators
of endothelial cell permeability induced by iron nanoparticles [36]. In particular, in order
to overcome the histohematic barriers, IONPs can be modified with various hydrophobic
molecules that facilitate penetration through the bilipid membrane by diffusion [37–39],
and magnetic guidance is proposed to overcome the mucosal intestinal barrier [40].

Due to the engagement of iron ions to participate in electron transfer reactions through-
out the most important physiological processes (such as DNA synthesis, mitochondrial
respiration, and oxygen transport [41]), IONPs can be much more active than other metal
oxide particles [42,43]. Therefore, when developing iron-based nanopreparations, special
attention should be paid to minimizing cytotoxic reactions due to iron accumulation in
healthy tissues [44]. As a rule, IONPs entering the bloodstream undergo opsonization
(adsorption of plasma proteins on the surface of particles) with subsequent recognition and
absorption by macrophages of the mononuclear phagocytic system [31,37]. Macrophages
of the liver (Kupffer cells), spleen, and circulating blood rapidly absorb opsonized nanopar-
ticles and destroy them intracellularly [45]. Ultrasmall particles comparable in size to
globular proteins (~5 nm) are likely to undergo renal clearance [46,47].

3. The Main Approaches for IONPs Modification

Nanotherapeutic drugs based on IONPs require to be modified throughout all devel-
opment stages to achieve the following goals: (i) obtaining a stable structure; (ii) improving
the physical and chemical properties of the surface; (iii) conferring a biocompatibility and
the desired properties by functionalization with bioactive molecules; and (iv) imparting
the affinity to a certain type of cells (tumor, immune). Surface modifications of IONPs can
be carried out both in situ (during the synthesis) and ex situ (after the main synthesis) to
improve the control of morphology and physicochemical characteristics [48].

The primary characteristic of IONPs is their stability. In the absence of any proper sur-
face coating, hydrophobic interactions between iron oxide MNPs cause them to aggregate
and oxidize in a physiological environment [49]. It is possible to passivate the surface and
improve the physicochemical properties of IONPs with different compounds (Figure 1).
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Figure 1. The main approaches to the modification of iron oxide nanoparticles. IONPs—iron oxide
nanoparticles, mAb—monoclonal antibodies, and HA—hyaluronic acid.

Silicon oxide (SiO2) is used to stabilize the surface due to its high thermal and
physicochemical stability [50]. Next, gold compounds not only stabilize the core of
iron oxide MNPs, but also form magnetoplasmonic nanomaterials with unique surface
chemistry and improved magneto-optical characteristics [51–53]. Since recently, hybrid
carbon coatings [54,55] proved to be a promising nanoplatform catalyst for photody-
namic/photothermal therapy. Many synthetic polymers can also improve the stability and
pharmacokinetic properties of IONPs. For example, polyethyleneimine (PEI) increases
the permeability of IONPs [56,57] and stimulates the production of pro-inflammatory cy-
tokines [56]. Polydopamine (PDA) increases the efficiency of binding various biomolecules
for targeted delivery [49,58–60], while polyethylene glycol (PEG) improves physical prop-
erties, including magnetic ones [61–63].

Various bioorganic molecules can be used to impart biocompatibility. For instance,
there are polysaccharides as dextran [64,65] and alginate [66]), proteins as albumin [67], and
biopolymers that are almost ubiquitous in biological tissues as hyaluronic acid (HA) [68].
Among the common effective strategies is also modification by peptides such as αvβ3
integrin (RGD) [69,70], transactivating transcription activator (TAT) [69,71], and chlorotoxin
(CTX) [72]. With regard to the latter, Sophie Laurent et al. presented a detailed review
of combinations of IONPs with various peptides [73] and their effects in cellular and
animal models.

In addition to the main modifications that ensure stability and biocompatibility, it
is possible to functionalize the surface of nanoparticles with monoclonal antibodies to
impart affinity to the target [74]. This strategy is often used when targeting a tumor, since
a large number of antigens are present on the surface of tumor cells. Typically, there are
used tumor-specific antibodies such as anti-HER2 (showed for SK-BR-3, MDA-MB-453
cells and mice [75,76]), anti-MUC1 (showed for MDA-MB-231, MCF-7 cells [77,78]), anti-
EGFR for glioblastoma [79,80], anti-VEGF for glioma [81,82], etc. There is also a possibility
to combine the approaches. For example, it was demonstrated that in vivo efficacy of
dextran iron nanoparticles conjugated with two mAbs was increased against antibodies
separately. While the first mAb was targeted to block the signal of the inhibitory PD-
L1 checkpoint, the second mAb stimulated T-cells through the costimulatory molecule
4-1BB [83]. Finally, within combined approaches, there is a possibility to increase tumor
infiltration with “magnetized” T-cells. Since leukocytes are the first cells that come into
contact with intravenously administered nanoparticles, magnetic iron oxide nanoparticles
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associated with the cell surface can be concentrated within the tumor due to an external
magnetic field [84].

4. Antitumor Effects of Iron Oxide Nanoparticles

The prospects of the use of iron oxide nanoparticles are driven by its high reactivity,
which can be potentially localized within tumor cells using various strategies. Among them
are functionalization with pH-dependent groups, modification with specific antibodies,
controlled delivery using an applied magnetic field, and synthesis of conjugates with
targeted antitumor agents to enhance their effect [13,14,16,74–82,85–88].

Most of the approved antitumor nanodrugs are parenteral-administrated conjugates
of nanocarriers (nanoparticles) with small molecular weight chemotherapeutic agents (such
as doxorubicin) [89,90]. The targeted action of IONPs as nanoenhancers is based on the fact
these can specifically accumulate in the vascularized part of a solid tumor [91,92], exerting
immunogenic and damaging effects at different levels [93–96]. This was demonstrated
when studying iron oxide NPs as independent agents in breast cancer models, e.g., MDA-
MB231 [97,98], prostate cancer (e.g., PC3, DU145 [99,100]), liver cancer (e.g., HepG2 [101]),
brain tumors (e.g., U87 and GL-261 [102,103]), and others. The accumulation of nanoparti-
cles inside the tumor is possible due to the inherent tumor effect of enhanced permeability
and retention (EPR). EPR is justified the fact of rapid vascular growth, occurring during
tumor development, leads to the formation of defective endothelial architecture and wide
pores, which makes it possible to selectively extravasate nanoparticles [104]. In addition,
lymphatic outflow is disturbed in the tumors, so the particles, penetrating through the
pores, are retained in the tissue [105] and exert their characteristic toxic effects. The EPR
was explored in the context of IONPs in various tumor models [106–111]. However, Jun
Wu reported [112] that interstitial fluid pressure and high density of the tumor tissue make
it difficult for the drug to penetrate deep into the tumor. Several significant characteristics
of tumors identify whether the EPR may be more significant in solid tumors: (1) substantial
tumor neovascularization with blood vessel abnormalities; (2) increased expression of
inflammatory factors; and (3) low or loss of drainage in inflammatory systems [112,113].

It was also suggested that the antitumor activity of iron-based nanoparticles is asso-
ciated with the ferroptosis induction [114–116]. The release of ferrous or ferric iron ions
in the acidic pH of lysosomes during endocytosis triggers a cycle of Fenton and Haber–
Weiss reactions, resulting in the formation of reactive oxygen species. That leads to lipid
peroxidation and damage to intracellular macromolecules [117,118].

Ferroptosis reactions are not the only advantage related to magnetic iron oxide
nanoparticles. Since SPIONs are ferrofluids whose biodistribution can be controlled by
an external magnetic field, this quickly found application as an MRI contrast agent [9,10].
Subsequently, according to the same principle, SPIONs began to be used for magnetic
nanothermotherapy. Directed by an applied magnetic field into a tumor, SPIONs generate
heat due to fluctuations in magnetic moment [16] and selectively penetrate tumor cells,
exposing them to lethal hyperthermia [119,120]. The first evidence for the success of mag-
netic hyperthermia was presented by Gordon et al. in 1979. They observed histological
signs of tumor necrosis in rats with an increase in temperature of 8 ◦C at an AMF frequency
of 450 kHz without side effects or toxic reactions to MNPs [121,122]. At the molecular
level, death occurs due to protein denaturation, DNA damage, and activation of various
apoptotic pathways [123–125]. At the cellular level, heating also increases the release of
heat shock proteins into the extracellular environment and increases the functional activ-
ity of innate immunity cells: NK killers (through NKG2D activation), macrophages, and
dendritic cells [126–128]. Dendritic cells (DCs), in turn, take up heat shock protein/tumor
antigen complexes, present tumor antigen to T cells and DC migration to lymph nodes,
where T cells are activated in an MHC-dependent manner and delivered to tumor cells,
passing through venules with high endothelium. Ultimately, activated CD8+ T cells attack
and cause tumor cell death.
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Several authors showed the potency of nanothermotherapy for various in vivo tu-
mor models: liver cancer [129], prostate cancer [130–133], brain or central nervous system
cancers [134–136], and melanoma [122,137]. Magnetic hyperthermia is often used in com-
bination with radiation therapy for tumor radiosensitization. This is due to the fact that
hyperthermia increases perfusion and oxygenation of hypoxic tumor cells that are resistant
to ionizing radiation. In addition, hyperthermia acts mainly at acidic pH and in the ra-
dioresistant S-phase of the cell cycle. This means that radiation therapy and hyperthermia
complement each other; as a result of radiation therapy, formed free radicals damage the
DNA of tumor cells, while hyperthermia inhibits its repair [138,139]. Despite a growing
body of basic research and encouraging results both in vitro and in vivo, there are the
technical difficulties of developing magnetic field applicators. Difficulty of maintaining fre-
quencies and field characteristics suitable for clinical use, while adhering to the safety rules,
is the main obstacle that holds the development of this method to clinical application [140].

Thus, the prospects for the use of magnetic iron oxide nanoparticles are due to the
potential of their application within the framework of multifunctional technologies. This
includes magnetic IONPs associated with a cytostatic drug (acting as its carrier) and a
means to control how it can be moved around the human body (a source of an external
magnetic field or implants placed into the body). Using the IONPs’ ability to local heating
can significantly increase the effectiveness of treatment by providing thermal destruction
of the tumor. It is also possible to control the dosing of drugs through the use of a shell that
has the desired properties in terms of its degradation, while ensuring a controlled release
of the cytostatic.

5. Mechanisms of Radiosensitization by Iron Oxide Nanoparticles

Since the appearance of data about the potential antitumor IONPs’ activity for glioblas-
toma, prostate, lung, liver, and breast cancers [97–103], a number of studies consider the
combination of IONPs with ionizing radiation (IR) as a promising method of tumor treat-
ment [141–145]. It is known that radiosensitizing effects quantitatively depend on the type
of IR, as well as on the characteristics of nanoparticles, such as shape, size, surface coverage,
and concentration [146]. We collected the data about some synthesized IONPs with proven
radiosensitizing potency (Table 1).

Table 1. Iron oxide nanoparticles with radiosensitizing potency.

Nanoparticles Modification Size Radiosensitization Scope Reference

IONP Gold coating 55 nm Melanoma [147]

Iron oxide Dextran-coated with
conjugated TAT-peptide 127 nm A459 carcinoma cells [141]

Commercially available
iron oxide
(Plain-NanoMag)

Dextran-coated 20 nm Human prostate carcinoma cell [142]

SPION Dextran-coated 6 nm Human glioblastoma [148]

Iron oxide Dextran-coated 15 nm MCF7 and HeLa cells [149]

SPION Poly (ethylene glycol)
methyl ether coating 9 nm Melanoma [150]

Iron oxide Silica-coated 164 nm MCF7 human breast cancer cells [151]

SPION Sodium citrate coating 6–25 nm

MCF-7 (human breast adenocarcinoma),
MDAMB-231 (human mammary gland
carcinoma) and MDAH-2774 (human
ovarian carcinoma) cell lines

[152]

SPION (3-Aminopropyle)-
Triethoxysilane 166 nm HPV-negative (HPV-) HNSCC cell lines [153]
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Table 1. Cont.

Nanoparticles Modification Size Radiosensitization Scope Reference

Fe3O4-Au NPs TPP-PEG4 (to mHsp70) 4 nm TNBC 4T1 и MDA-MB-231
(Triple-negative breast cancer) [154]

cetuximab-IONPs Ceturimab (mAb to EGFR) 10 nm Glioblastoma (U87MG, mice) [155]

We decided to summarize the mechanisms by which IONPs can sensitize a tumor to
IR and at the cellular and molecular levels (Figure 2), and establish the origin of each one.

Pharmaceutics 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

SPION 

Poly (ethylene 

glycol) methyl ether 

coating 

9 nm Melanoma [150] 

Iron oxide Silica-coated 164 nm 
MCF7 human breast cancer 

cells 
[151] 

SPION 
Sodium citrate 

coating 
6–25 nm 

MCF-7 (human breast 

adenocarcinoma), MDAMB-

231 (human mammary gland 

carcinoma) and MDAH-2774 

(human ovarian carcinoma) 

cell lines 

[152] 

SPION 
(3-Aminopropyle)-

Triethoxysilane 
166 nm 

HPV-negative (HPV-) 

HNSCC cell lines 
[153] 

Fe3O4-Au NPs 
TPP-PEG4 (to 

mHsp70) 
4 nm 

TNBC 4T1 и MDA-MB-231 

(Triple-negative breast 

cancer) 

[154] 

cetuximab-

IONPs 

Ceturimab (mAb to 

EGFR) 
10 nm Glioblastoma (U87MG, mice) [155] 

We decided to summarize the mechanisms by which IONPs can sensitize a tumor to 

IR and at the cellular and molecular levels (Figure 2), and establish the origin of each one. 

 

Figure 2. General mechanisms of radiosensitization by iron oxide nanoparticles. A black arrow cor-

responds to ionizing radiation action, and a red arrow corresponds to IONPs action. The arrows 

correspond to the ways of radiosensitivity enhancement. IR—ionizing radiation, MPs—microparti-

cles, RIBE—radiation-induced bystander effect, and ROS—reactive oxygen spp. 

5.1. Increasing the Traumatic for Tumor Cells ROS Levels 

Reactive oxygen species (ROS) are an integral part of a normal aerobic metabolism, 

this includes H2O2 and all highly reactive unstable metabolites of molecular oxygen (О2−, 

HO−, and HO2−). Whereas biological tissues interact with IR, ROS number increases 

sharply, and the balance of redox processes is disturbed [156]. Iron oxide nanoparticles 

Figure 2. General mechanisms of radiosensitization by iron oxide nanoparticles. A black arrow
corresponds to ionizing radiation action, and a red arrow corresponds to IONPs action. The arrows
correspond to the ways of radiosensitivity enhancement. IR—ionizing radiation, MPs—microparticles,
RIBE—radiation-induced bystander effect, and ROS—reactive oxygen spp.

5.1. Increasing the Traumatic for Tumor Cells ROS Levels

Reactive oxygen species (ROS) are an integral part of a normal aerobic metabolism, this
includes H2O2 and all highly reactive unstable metabolites of molecular oxygen (O2

−, HO−,
and HO2

−). Whereas biological tissues interact with IR, ROS number increases sharply,
and the balance of redox processes is disturbed [156]. Iron oxide nanoparticles enhance
this effect: the dissolution of O2

− from metal oxide can saturate the cell with oxygen
and promote the formation of ROS, as well as overcome hypoxic resistance to radiation
therapy. In addition, any dissolved metal ions can act as oxidizing and reducing agents and
increase the ROS production, for example, during the Haber–Weiss reactions and the Fenton
cycle [157,158]. All of these can provoke mitochondrial dysfunction, high autophagic
activity, and ultimately, cell death, e.g., it was demonstrated in PC12 rat pheochromocytoma
cells [159]. This effect can be localized in tumor cells in several ways. First, due to
the previously mentioned effect of increased permeability and retention, the particles
are predominantly localized in tumors. This increases the invasiveness of tumor cells,
and due to the small size of SPIONs, the absorption effect is much higher. Secondly,
in order to ensure the selectivity of this effect for tumor cells, the modifications as pH-
dependent peptides (based on the Warburg effect [160,161]), monoclonal antibodies specific
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to tumor antigens [77,79–82,162–164] are used. Thirdly, within the framework of the de
novo approach, it is possible to use the guidance of SPIONs into the tumor using an applied
magnetic field, which will enhance the effect in combination with any of the described
strategies [14,165].

Thus, IONPs can enhance the radiobiological response either by increasing the accumu-
lation and activity of free radicals and the corresponding general cytotoxicity, or by controlled
delivery of particles that are highly tropic for tumor cells and exhibit selective cytotoxicity.

5.2. Ferroptosis as a Special Case of Antioxidant Deficiency

Ferroptosis is an iron-dependent, oxidation-regulated cell death characterized by the
accumulation of peroxide lipids within the cell. It makes sense that ferroptosis is associated
with insufficiency of antioxidant defense systems [166], in particular, the glutathione-
enzyme autonomous complex. Numerous studies confirmed that iron oxide nanoparticles
induce ferroptosis [118,167–170], which is quite expected due to disturbance of iron home-
ostasis and activation of Fenton cycles [171]. It was recently demonstrated that tumor cells
can be hypersensitive to radiation due to increased ferroptosis, which also correlates with
better response and increased survival in cancer patients with radiotherapy [172–174].

Ionizing radiation itself can enhance ferroptosis through parallel mechanisms:

• By increasing the expression of acyl-CoA synthetases 4 (ACSL4) with the formation
of oxidized polyunsaturated fatty acyl fragments (PUFA-PL) in membrane phospho-
lipids [173,175–177];

• By DNA damage, resulting in the activation of ATM, which inhibits the production of
SLC7A11, a key component of the cystine/glutamate transporter. It can permanently
deplete glutathione (GSH) and inhibit glutathione peroxidase 4 (GPX4). Further, it
weakens the defense system against ferroptosis mediated by the SLC7A11-GSH-GPX4
signaling pathway and disrupting redox homeostasis [178,179];

• By DNA damage that also increases the expression of TFR1 in cells with mutations in
the RAS gene, as well as decreases the expression of iron-storing ferritin, which leads
to an increase in Fe2+ content in the cell [178–181];

• By DNA damage, causing the cyclic GMP-AMP synthase (cGAS) signal of the DNA
sensor to activate the cGAS-STING1 pathway, resulting in autophagic-dependent
ferroptosis via lipid peroxidation [182];

• By promoting the release of microparticles (MPs) from tumor cells, which alter the tu-
mor microenvironment, enhance the antitumor effect, and mediate radiation-induced
bystander effects (RIBE) in tumor cells, essentially causing ferroptosis [183].

The researchers suppose that ionizing radiation used in conjunction with ferroptosis
inducers (in our case, iron oxide nanoparticles), is promising for further research in cancer
therapy, since the potency of radiation therapy can be greatly increased [172].

5.3. Cell Cycle Arrest

The ability to recognize and repair DNA breaks is one of the criteria for determining
radiosensitivity at the cellular level [184]. Most IR-induced double-strand breaks (DSBs) are
repaired by nonhomologous end joining. However, a subset of IR-induced DSB in the S and
G2 cell cycle phases can be repaired by homologous recombination using sister chromatids
as a repair template [185]. This mediates repair of damaged replication forks in the S phase
and promotes radioresistance in the S and early G2 phases [186]. Dividing cells in the late
G2 and M phases are not capable of repairing DNA double-strand breaks [187], which
makes them radiosensitive. Impairment of the transition from dormancy to mitogenesis,
i.e., de facto independence from the G1 checkpoint, suggests a greater tumor dependence on
the intra-S-phase and G2/M checkpoints for the restoration of radiation damage. Therefore,
targeting these checkpoints can selectively sensitize tumor cells to IR [188–190]. Thus,
normal cells can still stop at the G1 checkpoint and repair damage, while tumor cells,
skipping through G1, enter mitosis and die as a result of a mitotic catastrophe, not having
enough time to recover [191].
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IONPs themselves can affect different phases of the cell cycle. For example, ultrasmall
Fe3O4 NPs notably inhibited DNA synthesis and enhanced cell apoptosis by inducing
S-phase arrest, and in this way reduced the MCF-7 cell growth and proliferation [192].
It disturbed the mRNA expressions of HMOX-1, GCLC, and GCLM, inducing the high
ROS production and decreased GSH. That led to a serious oxidative damage and growth
inhibition for MCF-7 cells. In another study, treatment with Fe3O4 nanoparticles caused
cell cycle arrest at the G2/M phase in PC12 cells, which was accompanied by increased
expression of the P53 gene without affecting the downstream P21 and GADD45 signaling
pathways [193].

The joint use of IONPs and IR showed good results in several studies. For example,
the viability of U87 cells was significantly reduced after treatment with X-rays and iron
oxide nanoparticles (Fe3O4@APTS) compared with treatment with X-rays alone [194]. In
addition, the percentage of cells in the G2/M phase and the percentage of apoptotic cells
were significantly higher in the Fe3O4@APTS irradiated group than in the X-ray-only group
(p < 0.05). Popescu R.C. et al. demonstrated that preliminary exposure to ionizing radiation
on MG-63 human osteosarcoma cells promoted enhanced internalization of doxorubicin-
conjugated nanoparticles (NP-DOX) [195]. This was accompanied by premature entry of
MG-63 cells into the G2/M phase. At 48 h after treatment, cells re-entered G1 (similar to
untreated cells) and then underwent mitotic catastrophe. At the same time, the NP-DOX
particles themselves showed hemocompatibility, the absence of systemic cytotoxicity, and
did not cause histopathological changes.

Thus, iron oxide nanoparticles can increase the radiosensitivity of the tumor by affect-
ing the cell cycle, i.e., either stopping it in the most radiosensitive G2/M phase, or stopping
replication and programming a proportion of radioresistant S-phase cells for death. All
this can lead not only to increased radiosensitization, but also to sensitization to antitumor
therapeutic agents [76], which can be used to load IONPs.

5.4. Local Weakening of the Immune Response to Radiation

As already mentioned, the immune response to IONPs depends on the individual
characteristics of the organism (immune status), so the clinical implementation is often
delayed or even stopped due to concomitant immunotoxicity [196]. One of the variants of
the immune response to iron oxide nanoparticles is local immunosuppression, upon which
the anti-inflammatory action of cytokines is inhibited. This prevents cells from efficiently
recovering from ionization stress and thus potentially has a radiosensitizing effect.

There is evidence that immune responses mediated by Th1 and Th2 T helpers are
suppressed by IONPs in OVA-sensitized mouse models [197,198]. As a result, a decrease
in the expression of IL-6, IL-17, ROR-γ, and CCR-6 [198] was shown; teamwise, these
results indicate that T cells are a sensitive target in the immune system to IONPs. It
was also recently found that AntiPD-L1 antibody-conjugated AuNP@SPIOs are able to
polarize tumor-associated macrophages (TAMs) from M2-like (pro-tumor) to M1-like (anti-
tumor) type, which is critical for the effect of radiotherapy [199]. The local radiosensitizing
effect of iron oxide nanoparticles may also result from reprogramming (weakening) of the
immunoreactive microenvironment [200,201].

5.5. Other Possible Mechanisms

Among the insufficiently studied possible mechanisms of radiosensitization, one can
also assume the effect of iron oxide nanoparticles on the chromatin structure. It is known
that actively transcribed genes are surrounded by large-scale domains of radiosensitive
chromatin, and that replicating DNA with an open chromatin structure is more sensitive
to DSB induction by IR [202]. In the process of detecting and repairing DNA damage,
chromatin must locally open the structure so that repair mechanisms have access to the
primary DNA sequence and can repair effectively. Recent studies [203] showed that IONPs
reduce hepatocyte chromatin homogeneity in a dose-dependent manner. However, whether
this is a cause or a consequence of cell death remains to be established as the detected
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changes could be discrete morphological changes in chromatin distribution occurring at
very early stages of programmed cell death. Nevertheless, this effect requires further study,
and it should be considered as a possible synergistic mechanism of radiosensitization, since
currently, there are radiosensitizers that affect the structure of chromatin (among them are
vorinostat, belinostat, and panobinostat [204]).

6. Future Prospects

Iron oxide NPs, especially supermagnetic ones, have great prospects for use in the
combined chemoradiotherapy of cancer. Firstly, extra-small size makes IONPs potentially
penetrable through histohematic barriers. Thus, when properly modified, they can have a
powerful cytostatic/cytotoxic effect on tumor cells. Secondly, due to supermagnetism, they
are able to be distributed with an applied magnetic field, the question remains only in the
technologies used and their release into wide medical practice. Thirdly, due to hyperthermic
effects, IONPs can locally heat the cell during irradiation, which potentially increases the
effectiveness of one procedure (with prospect to reduce the course length). At that moment,
there is a problem of insufficient knowledge about the signaling pathways through which
IONPs affect the cell conditioning radiosensitivity enhancement. Studying of the signaling
pathways will make it possible to better predict the effectiveness of nanoparticles along
with its surface activity. Since modified with various peptide complexes, monoclonal
antibodies, and other molecules, IONPs can mediate downstream pathways in different
manner. One more direction remains open for development: the combined therapy with an
applied magnetic field. It is still necessary to understand how AMF can be applied during
oncotherapy course. In order to take full advantage of IONPs in the development of an
effective multi-targeted radiosensitizing drug, all of the above must be taken into account.

7. Conclusions

The pharmacodynamic activity of iron oxide nanoparticles is conditioned by its high
reactivity. Thus, despite the obvious advantage of magnetic properties, giving the ability to
localize IONPs in the tumor, the design of each iron nanopreparation should be thought
out as carefully as possible. Surface modifications affect all the main nanodrug parameters,
such as physicochemical properties of IONPs, affinity to the target, biocompatibility, and
safety of the whole. Modern modification strategies make it possible to create an effective
theranostic agent that can both provide an independent therapeutic effect and sensitize
additive anticancer therapy. We collected and summarized data on possible mechanisms
contributing to the increase in tumor sensitivity to IR using iron oxide nanoparticles.

The sensitization of radiation therapy with IONPs is mediated, at first, by an increase
in the number of free radicals due to an increase in the localized emission of secondary
electrons from the nanoparticles. Moreover, the lower pH of the medium correlates with
enhanced stimulation of ROS release by IONPs, thus the Warburg effect is the probable
reason for why IONPs work better in tumor cells. Electron transfer reactions somehow
affect all cellular processes, contributing to extensive damage to cellular organelles, mito-
chondrial stress, and initiation of the protein and lipid oxidation, which ultimately leads
to a significant percentage of death by the ferroptosis mechanism. Speaking about the
mechanisms of radiosensitization by iron oxide nanoparticles, we cannot overlook the im-
munoreactivity of iron complexes. Depending on the immune status, IONPs can sensitize
the tumor to radiation therapy by reprogramming the immunoreactive cellular microen-
vironment. It can manifest in the direct weakening of T1-helper and Th2-cell immunity
by reducing the expression of IL-6, IL-17, ROR-γ, and CCR-6. It is also worth mentioning
the influence of the generally recognized effect of increased permeability and retention
(EPR) of iron oxide nanoparticles by tumor cells. Due to EPR, any sensitizing effects are
noted to a greater extent in tumors, at least because of the fact that tumor cells absorb many
times more nanoparticles than healthy epithelial ones. Along with EPR, we can use the
principle of magnetic hyperthermia for IONPs, which will absolutely provide an increased
delivery efficiency and a corresponding enhanced targeted action, unlike the same EPR.
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Finally, iron oxide nanoparticles can promote radiosensitivity by influencing the cell cycle
either by stopping it in the most radiosensitive G2/M phase or by stopping replication
and programming a proportion of radioresistant S-phase cells to die. In this case, IR and
IONPs enhance each other in damage effects within the phase, continuing to subject cells
to oxidative stress and to provoke ferroptosis.

Thus, our review emphasizes the relevance and prospects for research IONPs in cancer
therapy and to improve the understanding the mechanisms of IONPs radiosensitization
for expanding the possibilities of their therapeutic use.
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