
Citation: González-Meza, G.M.;

Elizondo-Luevano, J.H.;

Cuellar-Bermudez, S.P.;

Sosa-Hernández, J.E.; Iqbal, H.M.N.;

Melchor-Martínez, E.M.;

Parra-Saldívar, R. New Perspective

for Macroalgae-Based Animal

Feeding in the Context of

Challenging Sustainable Food

Production. Plants 2023, 12, 3609.

https://doi.org/10.3390/

plants12203609

Academic Editor: Hazem Salaheldin

Elshafie

Received: 12 August 2023

Revised: 14 October 2023

Accepted: 16 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

New Perspective for Macroalgae-Based Animal Feeding in the
Context of Challenging Sustainable Food Production
Georgia M. González-Meza 1,2,†, Joel H. Elizondo-Luevano 1,2,† , Sara P. Cuellar-Bermudez 1,2 ,
Juan Eduardo Sosa-Hernández 1,2 , Hafiz M. N. Iqbal 1,2 , Elda M. Melchor-Martínez 1,2,*
and Roberto Parra-Saldívar 1,2,*

1 Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing,
Monterrey 64849, Mexico; georgia.gonzalez@tec.mx (G.M.G.-M.); joel.elizondolv@uanl.edu.mx (J.H.E.-L.);
eduardo.sosa@tec.mx (J.E.S.-H.); hafiz.iqbal@tec.mx (H.M.N.I.)

2 Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
* Correspondence: elda.melchor@tec.mx (E.M.M.-M.); r.parra@tec.mx (R.P.-S.)
† These authors contributed equally to this work.

Abstract: Food production is facing challenging times due to the pandemic, and climate change. With
production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed
supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three
categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have
traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing
according to the food demand. Additionally, seaweeds are being promoted for their nutritional
benefits, which contribute to the health, growth, and performance of animals intended for human
consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated
fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess
beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory
effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae
biomass due to their nutritional profile and bioactive components, which have the potential to play a
crucial role in animal growth and making possible new sources of healthy food ingredients.

Keywords: animal feeding; animal nutrition; bioactive compounds; Chlorophyceae; macroalgae;
Phaeophyceae; Rhodophyceae; seaweed

1. Introduction

Macroalgae, also known as seaweed, offers a novel and value-added dietary ingre-
dient in formulated diets for animal feeding [1]. In applied phycology, the term macroal-
gae usually includes macroscopic algae sensu stricto, where the cell structure is eukary-
otic; these organisms are capable of photosynthesis and exist in marine and freshwater
environments [2]. Macroalgae are organisms found in the ocean and water bodies, encom-
passing 10,000 species. They are categorized into three different groups depending on their
pigmentation: brown seaweed (Phaeophyceae), red seaweed (Rhodophyceae), and green
seaweed (Chlorophyceae) [3].

Seaweed proliferates and is found in coastal and estuarine areas [3]. Brown seaweeds
are characterized by their long, thick, and leathery appearance, with some species capable
of reaching lengths of up to 45 m. In contrast, red seaweeds are relatively small and can
vary in color from red to purple or brownish-red, with a maximum size of around 1 m.
Green seaweeds and red seaweeds share similar sizes and have a close relationship with
each other [4].

Macroalgae exhibit a diverse nutritional composition, including carbohydrates, pro-
teins, lipids, vitamins, and minerals (e.g., iodine, iron, calcium) [5]. Furthermore, macroal-
gae are rich in bioactive compounds such as omega-3 fatty acids, carotenoids, phycocyanin,
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and polysaccharides. These compounds possess antimicrobial, antiviral, anti-inflammatory,
antioxidant, prebiotic, and even anticancer properties, making them crucial for various
physiological functions in animals [6–8]. Macroalgae contain unique carbohydrates, such
as laminarin and fucoidan, which can function as prebiotics, promoting the growth of
beneficial gut bacteria and enhancing nutrient digestion and absorption in mammals [9,10].
Furthermore, bioactive compounds in macroalgae can help reduce methane production in
ruminants and improve digestibility [11]. Including macroalgae in animal diets has been
shown to improve nutrient utilization, support digestive health, and reduce gastrointestinal
disorders [12].

Studies have demonstrated that incorporating macroalgae into fish and animal diets
and human functional food can positively impact growth performance [13]. However, the
potential of macroalgae is focused on its use as an animal feed resource rather than a direct
food source for human consumption. The balanced nutrient profile of macroalgae supports
optimal growth rates and body weight gain in various animal species [14,15]. Furthermore,
the bioactive compounds in macroalgae, such as polyphenols, flavonoids, and antioxidants,
contribute to improved immune function and overall health. These compounds exhibit
antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory properties [16–18].
By including macroalgae in animal diets, animals may experience reduced oxidative stress,
enhanced immune response, and improved disease resistance [19,20].

Furthermore, utilizing macroalgae as a feed ingredient promotes environmental sus-
tainability and offers a sustainable alternative to conventional feed ingredients like corn
and soybeans, reducing competition among the food, feed, and biofuel industries. Also,
macroalgae cultivation requires fewer resources (such as freshwater and arable land) than
traditional feed crops [21,22]. Moreover, macroalgae cultivation can help mitigate nutri-
ent pollution and eutrophication in aquatic environments by absorbing excess nutrients
(e.g., nitrogen and phosphorus) from wastewater or aquaculture effluents [23,24]. Besides,
macroalgae can capture and sequester carbon dioxide (CO2) during their growth [25,26].
Additionally, macroalgae supplementation in ruminant diets has shown promising results
in reducing enteric methane (CH4) emissions, significantly contributing to greenhouse
gas emissions [27]. For this reason, based on scientific evidence and research, macroalgae
represents a sustainable and viable source of ingredients for animal feed production [1].

The purpose of this review is to summarize the properties of macroalgae as an animal
feed source. Macroalgae are a promising source of biomass, providing nutrients and various
products that are biologically, commercially, and nutritionally valuable [28,29]. We gathered
information from scientific databases like PubMed, ResearchGate, and ScienceDirect. Our
search included the keywords Macroalgae, seaweed, green seaweed, red seaweed, and
brown seaweed, which we used as filters to search all fields. Moreover, we searched for
the word composition, bioactive compounds, applications, and animal health benefits.
Additionally, a comprehensive literature search was conducted for all periods using the
genus names “Chlorophyceae”; “Rhodophyceae”; and “Phaeophyceae”. After searching,
we carefully read the abstracts of the articles and selected relevant studies for review. Our
eligibility criteria included original articles written in English or Spanish that discussed or
utilized green, red, and brown seaweed.

2. Monitoring of Nutritional Profile and Bioactivities of Macroalgae

For centuries, macroalgae have been a valuable food source for humans and animals
alike. These marine organisms are incredibly diverse [2]. Lately, there has been an increas-
ing fascination with macroalgae’s nutritional and health advantages. This is primarily
because they contain many vital nutrients and bioactive components. Nevertheless, it is
only recently that their widespread cultivation and harvesting have become popular [30].
This article section examines the potential health advantages and nutritional value of macro
and micronutrients from microalgae, contributing to their market expansion. Additionally,
we highlight several crucial obstacles that still need to be addressed in this area. This
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section will discuss the importance of monitoring macroalgae’s nutritional profile and
bioactivities and provide relevant bibliographic references.

Macroalgae display significant diversity in their nutritional composition, rendering
them a valuable source of essential nutrients. They are abundant in proteins, vitamins
(such as C, E, and B complex), minerals (calcium, iodine, iron, and magnesium), and dietary
fiber [31]. Additionally, macroalgae contain various bioactive compounds like polysac-
charides, polyphenols, carotenoids, and phycobiliproteins, contributing to their potential
health benefits [32–35]. The bioactive compounds present in macroalgae possess several
beneficial properties, making them promising candidates for functional foods and nutraceu-
ticals; for instance, polysaccharides derived from macroalgae exhibit immunomodulatory,
antioxidant, and antitumor activities [33,36]. Research has demonstrated that seaweed
can benefit animal health, including antibacterial, antioxidant, and anti-inflammatory
properties. This has been observed in various species, such as pigs, fish, chickens, and
ruminants [28,37,38]. Seaweed’s chemical composition varies due to species, harvest time,
and environmental conditions like temperature, light, salinity, and nutrients [39]. In addi-
tion, they can potentially improve gut health through prebiotic activity, which stimulates
the growth of advantageous gut bacteria [9]. Additionally, the high content of polyphenols
in certain macroalgae species contributes to their anti-inflammatory, antiviral, antibacte-
rial, and cardioprotective effects [31,40,41]. Furthermore, certain species of macroalgae
contain omega-3 fatty acids, which have the potential to offer benefits for cardiovascular
health [42,43].

In contrast to macroalgae’s benefits in human and animal health, several reports have
made consistent algae’s capacities for heavy metal and toxic compound accumulations. The
marine ecosystems are exposed to organic and inorganic contaminants such as polycyclic
aromatic hydrocarbons, organochlorine pesticides, and heavy metals [44]. Therefore, the
monitoring of micropollutants in algae has demonstrated a crucial relationship between
contaminant concentration and the macroalgae specie and morphology. Green algae, of
the Ulva genus can accumulate naphthalene and benzo[a]pyrene at 68.57 and 56.14 ng g−1

concentrations, respectively. Due to its ability to accumulate these toxic substances, there is
a risk of them entering the food chain, raising concerns for human health that should be
studied and considered before its use [45]. In a red algae investigation, 72 food products
containing Rhodophyta were analyzed for human consumption and this revealed a higher
concentration of heavy metals such as Al, Cd, As, and I. Therefore, a continuous, mandatory
evaluation and analysis of seaweed biomass destined for the food and feed industry is
recommended [46].

In addition, seaweed aquaculture in the open ocean can deplete the dissolved oxygen
because the algae could take nutrients from the medium in the sea. The proper range of
dissolved oxygen for cultivation should be between 6.7 and 7.0 mg L−1, as a significantly
lower concentration could adversely impact other ecosystems [47]. In consideration, it is
essential to thoroughly evaluate where the farms will be located, considering the flow of
nutrients and the distance from other coastal ecosystems.

Hence, extensive monitoring of macroalgae’s nutritional profile should be solved to
ensure the safety of their consumption [29]. Macroalgae can accumulate harmful substances
from the marine environment, posing a risk to human health [48]. Regularly monitoring
the nutritional profile of macroalgae is essential to meet safety standards, as they con-
tain bioactive compounds with health benefits [49]. For example, brown seaweeds have
phlorotannins that offer antioxidant, anti-inflammatory, and anti-cancer benefits [33]. They
also contain fucoidans, which have immunomodulatory, antitumor, and anticoagulant
properties [50]. Therefore, monitoring the bioactivities of macroalgae is essential to iden-
tify new sources of bioactive compounds with potential health benefits. Table 1 lists the
macromolecules commonly found in macroalgae, along with their corresponding reference.
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Table 1. List of macroalgae sources, bioactive molecules and compounds, and their applications.

Seaweed Group Compound Source Use Bioactivity
Reported Reference

Brown seaweed (Phaeophyta)

Brown Polyphenol Phlorotannins

Ascophhyllum
nodosum, Eisenia

arborea, Fucus
spp., and

Sargassum spp.

Modulate gut
microbiota.

Antimicrobial and
bacterial inhibitor.
Anti-inflammatory

effects.

[51–53]

Brown Polysaccharide Alginate Phaeophyceae
spp.

Numerous
applications in food
and biotechnology.

Gelling abilities,
stabilizing, water

holding capability.

Antioxidant,
Anti-inflammatory,
antimicrobial, and

antitumor
properties.

Growth-promoting
effects in plants

and animals.

[54–56]

Brown Polysaccharide Fucoidan

Cladosiphon
novae

caledoniae, Fucus
vesiculosus,

Hizikia
fusiformis,

Phaeophyceae
spp., Saccharina

japonica,
Sargassum

crassifolium, and
Undaria

pinnatifida

Functional foods
and nutraceuticals.

Prebiotic
properties.

Antioxidant,
anti-inflammatory,

antiangiogenic,
anticoagulant, im-
munomodulatory,

anti-adhesive,
antitumoral,
antidiabetic,

antimicrobial, and
anti-

neurodegenerative.

[57,58]

Brown Polysaccharide Laminarin Laminaria spp.

Source of arabinose,
galactose, mannose,

xylose, glucose,
rhamnose, and

glucuronic acid.

Antitumour, antihy-
perglycaemic, and

antihyperlipi-
daemic agents

(mouse model).

[9,59]

Red seaweed (Rhodophyta)

Red Polysaccharide Agar
Agarophyton ver-
miculophyllum,
Gelidium spp.

Gelling thickener
and clarifying

agent.

Enhance
bifidobacterial

populations
(in vitro).
Increase

complement
pathway activity in

fish (Pangasius
bocourti).

[1,60,61]

Red Polysaccharide Carrageenan

Furcellariaceae
spp.,

Gigartinaceae
spp.,

Hypneaceae spp.,
Phyllophoraceae

spp., and
Solieriaceae spp.

Gelling, thickening,
emulsifying and

stabilizing agents.
These are the

functional
ingredients

commonly found in
vegetable-based
products, dairy,

baked items, meat,
and fish.

Antioxidant,
antiviral,

antibacterial, anti-
hyperlipidemic,
anticoagulant,

anticancer, and im-
munomodulatory

effects.

[49,62,63]
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Table 1. Cont.

Seaweed Group Compound Source Use Bioactivity
Reported Reference

Red Protein

Allophycocyanin,
Phycocyanin,

Phycoerythrin,
and Phycoery-

throcyanins

C. crispus, G.
gracilis, G.
turuturu,
Gelidium
amansii.

Porphyra spp.,
Porphyridium
cruentum, and

Rhodosorus
marinus

Colorants for food
and cosmetics

Immune system
improvement.

Antioxidant,
antitumoral,
antidiabetic,

anti-inflammatory,
antioxidative, and

anti-irradiative
effects.

[64–67]

Green seaweed (Chlorophyta)

Green Polysaccharide Ulvan Entermorpha sp.
and Ulva sp.

Gelling and
rheological

properties like
gum arabic.

Antibacterial
antitumor,

antioxidant,
anti-thrombolytic,
immunomodula-

tion, antiviral, and
anticoagulant

activity,
pharmacokinetics,

oxidative and
thermal stability

[57,62,68]

Since the 1950s, seaweeds have been a crucial ingredient in many bio-stimulant prod-
ucts available in the market [69]. Seaweed is a nutritious source of vitamins, minerals,
proteins, and dietary fibers. It also has anti-inflammatory and antioxidant benefits [70].
Seaweeds have both water-insoluble and -soluble fiber, which include cellulose, mannans,
xylan, agars, alginic acid, furonan, laminarin, and porphyrin. These fibers are not only nu-
tritious but also have potential uses in human consumption, such as seaweed-based meals,
functional foods, and nutraceuticals [71,72]. Marine algae demonstrate promising potential
as excellent sources of fiber, highlighting a wide range of chemical, physicochemical, and
rheological characteristics that can offer nutritional benefits [71].

The polysaccharides present in seaweeds exhibit various beneficial properties such as
anti-tumor and anti-herpetic activities, anticoagulant effects, LDL (low-density lipoprotein)
cholesterol reduction in rats, antiviral properties, prevention of obesity, prevention of
colorectal cancer, and prevention of diabetes [73,74]. Diverse types of seaweed contain
varying amounts of polysaccharides, with the highest concentration found in species such
as Palmaria, Ascophyllum, Ulva, and Porphyra [75]. These polysaccharides are not digested
and act as dietary fibers, which can impact the digestibility of protein and minerals [76].

3. Biomass/Extracts Macroalgae for Animal Feeding Applications

The use of macroalgae or macroalgae extracts in animal feed has garnered significant
attention due to the increasing demand for renewable and sustainable sources of animal
protein, reducing the strain on land resources [77]. Numerous studies have investigated the
incorporation of fresh or dried macroalgae and its extracts in feeding animals, focusing on
aquatic organisms (Figure 1). Macroalgae metabolites have been found to enhance growth,
boost immunity, reduce microbial load, and improve meat quality [12,78]. However, it is
essential to note that macroalgae are primarily used as fortifiers in basal animal feed rather
than as a whole feed source due to their essential amino acid content being considerably
lower than that of traditional ingredients such as animal and soybean protein, fishmeal,
and fish oil. Furthermore, macroalgae antinutrients can affect specific animal metabolisms,
particularly in monogastric animals [79].
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On the other hand, there is a growing need for alternatives to reduce or replace the
indiscriminate use of antibiotics in animal diets. This need arises due to the detrimental
effects of antibiotics, including the emergence of antibiotic-resistant bacterial strains, high
residue concentrations in meat, and undesired alterations in gastrointestinal microbial
communities. Consequently, many countries have banned the use of antibiotics as growth
promoters [80]. Several macroalgae species with favorable antimicrobial activity have been
identified as suitable candidates for inclusion in the diets of aquatic animals, cattle, rats,
chickens, laying hens, and pigs [12]. Therefore, macroalgae can be considered a natural
nutraceutical product that not only enhances the nutritional quality and meat production of
feed but also enhances antioxidant activity, immunity, and overall animal health [20,81,82].

The composition of macroalgae metabolites can vary depending on factors such as
species, geographic location, season, external conditions (pH, water temperature, sunlight
intensity), and nutrient concentration in the water [79]. This variability provides ample
opportunities to enhance feeding techniques by identifying ingredients with beneficial
characteristics such as high nutritional profiles (amino acids, fatty acids, polysaccharides,
vitamins, and minerals), digestibility, environmental and consumer safety, low production
costs, year-round availability, and suitability as alternatives to fishmeal, animal protein,
antibiotics, and immunostimulants [1,78].

3.1. Aquatic Organisms

Aquaculture has witnessed rapid growth in recent years to meet the escalating demand
for seafood. However, the aquaculture industry’s utilization of over 70% of the world’s
fishmeal, despite aquafeeds comprising only 4% of the total production of industrial feeds
(which amounted to approximately 900–1000 million t in 2018), raises concerns about the
long-term sustainability and impact on wild fish stocks due to its reliance on conventional
feed ingredients including fish oil derived from wild-caught fish [83,84]. Biomass and
extracts derived from macroalgae or seaweeds offer a promising alternative or replacement
for these ingredients due to their high growth rates, abundance, and diverse chemical
composition [85,86]. However, the nutritional composition of macroalgae can be variable,
requiring careful selection and processing to optimize the inclusion level in their use in
aquafeeds. Scientific investigations have focused on evaluating the impact of incorporating
macroalgae or macroalgae extracts into aquafeed on growth performance, feed utilization,
and health indicators. Macroalgae-derived feed supplements have positively impacted
aquatic organisms’ growth, survival rates, digestibility, and immune responses in aquatic
species [87]. The bioactive compounds in macroalgae, such as polysaccharides, polyphenols,
and antioxidants, contribute to these beneficial effects by improving nutrient absorption,
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gut health, and immune function [1,88]. While macroalgae offer nutritional benefits, it
is important to consider the presence of antinutrients in their biochemical composition
when using them as feed [89]. Antinutrients are naturally occurring compounds that can
interfere with nutrient absorption or utilization, potentially affecting animal health and
performance [90]. Some common antinutrients in macroalgae include phytates, tannins,
oxalates, and lectins [91]. Various processing methods can be employed to mitigate the
adverse effects of antinutrients. These include heat treatments (e.g., blanching, steam-
ing), fermentation, enzymatic treatments, and enzymatic liquefaction, which can reduce
the levels of antinutrients and improve the overall nutritional value of macroalgae-based
feeds [92–94]. On the other hand, the utilization of macroalgae extracts presents an alter-
native option as they are more concentrated, potentially offering higher concentrations of
specific bioactive compounds such as antioxidants or immunostimulants [19,95,96]. This
approach can effectively counteract the negative impacts of anti-nutrients in the macroalgae,
ensuring their harmful effects are minimized.

The inclusion of macroalgae in aquafeeds can enhance the fatty acid profile of fish,
increasing the levels of desirable omega-3 fatty acids. Legarda et al. (2021) conducted a
study in which they examined the dietary incorporation of Ulva fasciata at three different
inclusion levels (5%, 10%, and 20%) in the diets of Seriola dorsalis [97]. The study’s results
indicated a significant increase in the levels of docosahexaenoic acid (DHA) in the muscle
tissue of the fish. Sultana et al., in 2023, conducted a study to evaluate the effects of the
dietary inclusion of the macroalgae Hypnea sp. on Nile Tilapia (Oreochromis niloticus). The
study revealed that incorporating Hypnea sp. at a 10% inclusion level in the diets resulted
in a significant increase in the levels of eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) in the muscle tissue of the tilapia. This finding suggests that an appropriate
inclusion of Hypnea sp. in aquafeed can serve as a crucial strategy to enhance the quality
of meat in aquaculture [98]. Metabolites and bioactive compounds derived from seaweed
have been evaluated for their beneficial effects on cultivated fish, shrimps, and oysters,
including improved growth performance, enhanced digestibility, immunostimulatory and
antioxidant activities, up-regulation of immune-related genes, resistance against viruses
and bacteria, and tolerance to thermal and salinity stress [96,99–107]. Table 2 provides
up-to-date information and references to significant research studies focusing on the effects
of seaweeds and their extracts as bioactive ingredients in shrimp feeds. The discussed
studies explore dosages and the effects on growth performance, gut health, antioxidant
activity, gene regulation, immune responses, pathogen resistance, and stress in various
shrimp species.

Table 2. The effects of dietary seaweeds on growth performance, physiology, and immune response
in farmed crustaceans.

Seaweed
Specie

Used
Compound Test Organism Trial Dose Days Pathogen/

Stress Results Reference

Brown seaweed (Phaeophyta)

Cystoseira
trinodis

Polysaccharide—
fucoidan

Litopenaeus
vannamei

0, 0.1, 0.2 and
0.4%—60 days WSSV

FW, WG, SGR, expression
rate of genes: proPO I,

SOD, LYZ, and resistance
against WSSV +; GPx and

FCR −

[108]

Sargassum
horneri Hot water extract L. vannamei

0, 2.5, 5.0,
10 g kg−1—

28 days
NA

PO, THC, phagocytic rate,
WG, and expression rate
of genes: ProPO I, ProPO

II, peroxinectin,
α2macroglobulin, clotting
protein, LYZ, SOD, GPx,
penaiedin2-4, crusting +

[109]
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Table 2. Cont.

Seaweed
Specie

Used
Compound Test Organism Trial Dose Days Pathogen/

Stress Results Reference

U. pinnatifida

This is a hot water
extract that contains a
significant amount of

mannitol
and fucoidan

Pleoticus muelleri 0, 3.0 g
100 g−1—30 days UVR stress

Resistance against UVR
stress, concentrations of

UV-absorbing
compounds, and TAS +;

carotenoid
concentration −

[110]

Iyengaria
stellata Water extract L. vannamei

0, 0.5, 1,
1.5 g kg−1—

56 days

Photobacterium
damselae

WG, SGR, FE, PUFA, TAS,
PO, CAT, SOD and GPX
activities, and resistance

against P. damselae +

[99]

Padina
tetrastromat-

ica and
Sargassum
ilicifolium

Ethyl acetate, ethanol,
and methanol extracts

Penaeus
monodon

0, 2.5, and
5 g kg−1—

45 days

Vibrio para-
haemolyticus

WG, SGR, SR,
antibacterial activity, PO,
SOD, resistance against V.

parahaemolyticus +;
minimal time required for

hemolymph clotting −

[111]

S.
cristaefolium Wholemeal L. vannamei

0, 5, 10, 15, 20 and
40 g kg−1—

60 days
NA

FW, muscle total protein
=; muscle cholesterol and

triglyceride level, and
Vibrio counts in the
intestine −; THC +

[112]

Sargassum
polycystum

Powdered seaweed
flour L. vannamei 0.5 g kg−1—

56 days
Cold stress

Body proximate
composition: protein,

ether extract, ash, carcass
energy, FCR −; WG, ADG,

SGR, SR, nonspecific
immune responses,

activation of the hepatic
glandular duct system,

hemocyte infiltration, and
expression rate of genes:

SOD, penaeidin4,
HSP-70 +

[113]

Red seaweed (Rhodophyta)

Amphiroa
fragilissima

Crude
polysaccharides,

encapsulated Artemia
nauplii

L. vannamei
0, 0.1, 0.15, and

0.20 g L−1—
45 days

NA

WG, SGR,
protease/amylase

activities, and: protein,
amino acid, free sugar,
lipid, SOD, and CAT

activities +

[114]

Asparagopsis
armata Ethanolic extract L. vannamei

0, 1.5, 3.5,
7.5 g kg−1—

40 days

V. parahaemolyti-
cus

WG, SR, TAS,
antimicrobial activity, and

resistance against V.
parahaemolyticus +; FCR −

[102]

Gracilaria
birdiae

Sulfated
polysaccharide L. vannamei 0, 0.3%—32 days WSSV

Agglutinating capacity,
PO, resistance against

WSSV, and THC +
[100]

Gracilaria
verrucosa

Ethyl acetate extracts
(alkaloids, saponins,

phenolics, flavonoids,
triterpenoids, steroids,

and
glycosides)

L. vannamei
0—

2.0 g per kg−1—
14 days

Vibrio harveyi

Inhibition the growth of V.
harveyi, THC, PO activity,

phagocytosis activity,
respiratory burst activity,
and resistance against V.

harveyi +

[107]

Porphyra
haitanensis Wholemeal L. vannamei 0, 2.0%—56 days WSSV

FCR -; WG, SGR,
digestibility, TAS,

expression of immune
genes, ProPO and SOD

activities +

[105]

Jania
adherens Ethanolic extract L. vannamei

0, 0.5, 1.0, and
1.5 g kg−1—

56 days

Photobacterium
damselae

FCR −; SR =; WG, SGR,
FE, PO, GPx, lipase,

amylase, LYZ, respiratory
burst activities, and
resistance against P.

damselae +

[99]
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Table 2. Cont.

Seaweed
Specie

Used
Compound Test Organism Trial Dose Days Pathogen/

Stress Results Reference

K. alvarezii Fermented K. alvarezii
powder L. vannamei 0, 0.5,

1.5%—15 days NA FW, SGR, and SR + [115]

Kappaphycus
alvarezii κ-carrageenan P. monodon

0.0, 0.15, 0.30,
0.45, and

0.60 g kg−1—
30 days

Salinity stress

Attractability, FW, WG,
SGR, FE, and

immune-stimulating
effects on salinity stress +;

FCR −

[103]

Sarcodia
suae S. suae powder L. vannamei 0, 2.5, 5,

7.5%—20 days
Vibrio

alginolyticus

Anti-V. alginolyticus
activity, phagocytic
activity, THC, and

expression of GPx +

[116]

Green seaweed (Chlorophyta)

Caulerpa
lentillifera

Seaweed
flour P. monodon

0, 10, 20, 30, 40
and 50 g kg−1—

60 days
NA WG, SGR, and FR+;

FCR −; SR = [117]

Caulerpa sp. Caulerpa sp. flour White leg shrimp
0, 2, 4 and
6 g kg−1—

30 days
NA FW and FE +; FCR − [118]

Enteromorpha Polysaccharides Fenneropenaeus
merguiensis

0, 1, 2 and
3 g kg−1—

42 days
NA

FCR, relative abundance
of Vibrio spp., and

malondialdehyde content
−; expression of immune
genes, relative abundance

of Firmicutes, FW, WG,
SGR, TAS, GPx,

S-transferase, SOD, LYZ,
and PO activities +

[119]

U. lactuca Water extract L. vannamei 0, 5, 10
15%—28 days NA

FW, WG, SGR, FE,
chymotrypsin, lipase, and
amylase enzyme activity +

[120]

U. lactuca U. lactuca
powder L. vannamei 0, 4 g

100 g−1—36 days NA

SGR, ADG, and relative
abundance of: Agarivorans,

Sphingomonas,
Lactobacillus, Leuconostoc,

Peredibacter, Bdellovibrios +;
relative abundance of: V.

alginolyticus and
Photobacterium sp. −

[121]

Ulva clathrata
and U. lactuca Wholemeal L. vannamei 100%—28 days NA

Relative abundance of
Rubritalea, Lysinibacillus,

Acinetobacter,
Blastopirellula and

Litoreibacter spp. +; FW,
SR =; relative abundance

of Vibrio −

[122]

Ulva
intestinalis

Hot water crude
extract L. vannamei

0, 1, 5, and
10 g kg−1—

28 days

WSSV and
YHV

WG, ADG, SGR, villus
height, phagocytic activity,

resistance against YHV,
and expression of
immune genes +;

resistance against WSSV =

[123]

Ulva
prolifera

Polysaccharides and
filtered residue L. vannamei

0, 0.78, 1.33,
31.7 g kg−1—

21 days

V. parahaemolyti-
cus

FCR −; FW, LYZ, PO,
resistance against V.

parahaemolyticus, and
immune protective rate +

[124]

Combined seaweed

Sargassum
filipendula

and
U. pinnatifida

Combined seaweed
dry biomass L. vannamei

0, 15, 25,
45 g kg−1—15
and 21 days

Thermal
shock/WSSV

Resistance against WSSV,
hemocyte infiltration, and

positive changes in
shrimp gut microbiome +

[125]

S. filipendula
and

U. pinnatifida

Combined seaweed
dry biomass L. vannamei

0, 25, 30, 45,
50 g kg−1—15
and 49 days

Thermal
shock/Vibrio

spp.

Resistance against Vibrio
spp. and against thermal

shock FW, and
heterotrophic bacteria
count in organisms +

[126]
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Table 2. Cont.

Seaweed
Specie

Used
Compound Test Organism Trial Dose Days Pathogen/

Stress Results Reference

U. lactuca and
Jania rubens

Combined seaweed
powder

Procambarus
clarkii

0, 10,
15%—56 days NA Frequency of molting and

FW+; FCR −; SR = [127]

U. pinnatifida
and S.

filipendula

Combined seaweed
dry biomass L. vannamei 0, 3 and

5%—35 days
Thermal

stress/WSSV

Gut bacterial diversity,
THC, and resistance

against thermal stress +;
abundance of Vibrionaceae

spp. −; SR, FCR,
and FW =

[101]

U. lactuca,
Eisenia sp.,

and
Porphyra sp.

Mix in equal parts
of extracts L. vannamei 0.30 g kg−1—

28 days
WSSV

Resistance against WSSV
(genes related to WSSV

resistance) +
[128]

ADG: Average daily gain, FCR: feed conversion ratio, FE: feed efficiency, FW: organism final weight,
GPx: glutathione peroxidase, HSP: heat shock protein, LYZ: lysozyme, NA: not applicable, PO: phenoloxidase,
ProPO: prophenoloxidase, SGR: specific growth rate, SOD: superoxide dismutase, SR: survival rate, TAS: total
antioxidant, THC: total hemocytes count, WG: weight gain, WSSV: white spot syndrome virus, YHV: yellowhead
virus, +: positive change, −: negative change, =: no change.

3.2. Poultry

Poultry is crucial in fulfilling the worldwide need for animal protein and supplying
necessary nutrients to an ever-increasing population. However, the poultry industry faces
numerous challenges, including the need for sustainable practices, disease management
strategies, improved productivity, and the development of alternative feed ingredients [129].
Recent advancements in poultry nutrition have focused on alternative feed ingredients,
including plant-based proteins and the incorporation of macroalgae extracts, which are
alternative sources that offer potential benefits such as reduced environmental impact,
improved animal health, enhanced meat quality, and meat shelf-life indicators [130,131].
Achieving optimal weight gain is a crucial objective for producers. Macroalgae is an
alternative feed additive that can improve weight gain and promote sustainability. A
study showed that supplementing broilers with 3% Laminaria japonica and cecropin led to
better broiler growth performance and increased levels of antibodies against Newcastle
disease [132]. Moreover, in the cecum, the growth of Escherichia coli was inhibited, while
the growth of Lactobacillus was increased. Adding 2 to 3.5% of Ulva spp. to Boschveld
chicken feed increased their weight gain and feed intake but did not affect the nutrient
digestibility or feed utilization efficiency, according to a study by Nhlane et al. (2020) [133].
Balasubramanian et al. (2021) studied the addition of Halymenia palmata to broiler diets to
enhance meat quality; they evaluated concentrations of 0.05%, 0.10%, 0.15%, and 0.25%.
With increasing the inclusion levels of the red seaweed, the results indicated a linear
decrease in the water-holding capacity, a crucial meat quality parameter. Additionally, in-
corporating red seaweed has proven to have a beneficial impact on broiler growth, nutrient
absorption, microbial levels in feces, gas emissions from feces, blood composition, and tis-
sue structure analysis [134]. On the other hand, macroalgae present a sustainable approach
by offering natural compounds with antimicrobial characteristics, including tannins, which
are polyphenolic compounds with antinutritional attributes [92]. Nonetheless, tannins have
demonstrated antimicrobial, antioxidant, and anti-inflammatory properties, making them
an intriguing prospect as bioactive agents to address the concerns associated with removing
antimicrobials in the poultry sector [135]. Furthermore, according to Kulshreshtha et al.
(2020), red algae-derived polysaccharides demonstrate antimicrobial properties due to
their affinity for bacterial surface appendages, affecting Salmonella enteritidis virulence
factors [136]. Dietary supplementation with macroalgae has been observed to increase
the population of beneficial probiotic bacteria while reducing harmful enteric bacteria in
poultry, as well as improving egg production and quality by reducing lipid and cholesterol
levels [137–139].
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3.3. Ruminants

Ruminant cattle production is essential for meeting the global protein demand (both
meat and dairy products), but conventional feeding methods heavily rely on resource-
intensive feed production, leading to environmental degradation [140]; additionally, rumi-
nant livestock contributes 14.5% of greenhouse gas emissions [11,141,142]. Cattle release
methane into the atmosphere by exhaling primarily through their mouths and nostrils.
Methane is produced during enteric fermentation in the foregut of ruminants, where 95% is
expelled through belching and the remaining 5% through the hindgut, expelled through the
anus. It is important to highlight that the production of enteric methane represents a loss of
dietary energy and constitutes an inefficiency in livestock feeding. Therefore, it is crucial
to consider livestock feed ingredients to reduce methanogenesis, improve nutrition, and
mitigate CH4 emissions [143]. Macroalgae may be a suitable alternative feed source due to
their nutritional value; studies show that including macroalgae in ruminant diets improves
animal performance and reduces methane emissions [144]. Sofyan et al. (2022) found varied
effects of brown, green, and red macroalgae on methane production in ruminants [145]
(Figure 2).
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Notably, Ascophyllum nodosum and Asparagopsis taxiformis demonstrated significant
potential for methane (CH4) reduction, although their effects on dairy cows and small ru-
minants were minimal. The study suggests that incorporating macroalgae into animal feed
can effectively mitigate CH4 emissions without compromising animal performance [145].
Nevertheless, caution should be exercised regarding the elevated levels of bromoform and
iodine residues in milk when utilizing high levels of A. taxiformis. Macroalgae contain
bioactive compounds that can suppress methanogenesis and improve livestock health.
A. nodosum promotes weight gain and enhances meat quality while reducing saturated
fatty acids [126,148]. Including A. taxiformis and Asparagopsis armata in cattle and sheep feed
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can reduce methane production by up to 98% [146]. Roque et al. (2019) found that Holstein
cows consuming A. armata showed a significant decrease in CH4 production of 26% at
0.5% inclusion and 67% at 1% inclusion, improving feed utilization efficiency [32]. Feed
consumption was reduced by 10.8% and 38.0% for the respective inclusion levels, and CH4
yield was reduced by 20.3% and 42.7%. Also, Kinley et al. (2020) examined A. taxiformis as
a feed component for the primary reduction of enteric CH4 in cattle. Feeding cows with
Asparagopsis spp. reduces CH4 emissions by up to 98% and improves weight gain by up to
53%, with no adverse effects on feed consumption or meat quality [149]. In addition to the
controversial efforts to reduce emissions by meat consumption, dairy products come from
the same ruminal cattle.

Limited scientific evidence currently exists regarding the supplementation of ruminant
diets with macroalgae and its impact on milk yield and composition. However, several
studies have provided valuable insights on this topic. Studies have shown that feeding
Lithothamnion calcareum [150] to dairy cows and supplementing lactating ewes’ diets with
a combination of A. nodosum and flaxseed resulted in a higher milk production [151] and
improved oxidative stability of fats. Additionally, cows supplemented with A. nodosum
showed increased levels of δ-tocopherol in their milk [152]. A dietary supplement of
pineapple oil, garlic, and brown algae in Holstein cows also demonstrated antioxidant
activity, reduced COX-2 expression, and increased milk production; additionally, cows in
the supplement group displayed a higher milk production and a tendency to engage in
increased rumination when experiencing heat stress compared to the control group. Despite
the potential benefits, challenges must be addressed to successfully integrate macroalgae
into ruminant diets [104]. These include identifying suitable macroalgae species, optimizing
the processing techniques, assessing the long-term effects on animal health and productivity,
and the economic viability [12,153].

3.4. Pigs

Pork production plays a vital role in meeting the global demand for protein [154].
However, pig farming poses challenges related to environmental sustainability and ani-
mal health [155]. Since the middle of the last century, studies have been reported using
macroalgae as a sustainable dietary supplement for pigs. However, a significant increase in
interest in this area has been found since the year 2000. In addition to their role as nutri-
tional supplements, macroalgae are known to be rich in beneficial bioactive compounds
for pigs [156]. They offer a potential solution to reduce dependency on antimicrobials and
antibiotics while serving as prebiotics to prevent gastrointestinal diseases, especially in
weaned piglets [157,158]. All three types of macroalgae have been extensively studied
as feed and nutraceuticals in pigs due to their observed ability to enhance the immune
system, improve the oxidative stability of meat, and promote intestinal health [159–161].
Polysaccharides found in red algae, such as laminarin, fucoidan, ulvans, and carrageenan,
are responsible for this. Among these, brown algae supplementation in pigs is particularly
preferred as laminarin demonstrates anti-inflammatory properties, thereby mitigating the
proinflammatory cytokine response [162,163]. Moreover, brown algae supplements may
boost the immune system by stimulating immunoglobulin production and modulating
cytokine production [28].

3.5. Other Animals

Macroalgae cultivation and commercialization are essential in fisheries and aqua-
culture economic sectors. Despite the potential benefits of macroalgae-based foods as
sustainable and nutritious components in animal feed, a lack of scientific literature has
hindered their widespread adoption by domesticated animals. Macroalgae can provide
essential nutrients to domestic animals, including chelated micro-minerals that are more
readily absorbed than inorganic minerals [164]. Complex carbohydrates with prebiotic
properties, pigments, and polyunsaturated fatty acids found in macroalgae can also pos-
itively impact consumer health [165]. Therefore, this section provides a comprehensive
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scientific overview of recent studies conducted within the past five years. These studies
investigate the potential advantages of incorporating macroalgae-based feeds to promote
the health and growth of various domestic animal species, such as cats, dogs, and rabbits.

Despite the widespread use of Ascophyllum nodosum, a brown alga (Phaeophyceae)
from the Fucaceae family, in animal products, there is a lack of studies assessing its impact
on pet feed palatability. Isidori et al., in 2019, studied the effect of A. nodosum (0.3 &
1% of inclusion) on the palatability of extruded dog foods using the split plate test, and
reported a negative impact [166]. Furthermore, a study by Pinna et al. (2021) examined
the effects of supplementation with Ascophyllum nodosum, Undaria pinnatifida, Saccharina
japonica (brown seaweed), and Palmaria palmata (red seaweed) in healthy adult dogs [167].
The study administered 15 g/kg per 28 days and evaluated parameters such as the fecal
bacterial metabolites, fecal IgA, and tract digestibility of nutrients. However, no significant
effects were observed. These findings suggest that further investigation is necessary
regarding the formulation and processing of dog feed. While there are limited reports
indicating that macroalgae may not be recommended for canine feeding, conducting more
comprehensive tests is necessary to make informed decisions. Regarding cat feed, only
one study has investigated the effects of dietary supplementation with enzymolysis algae
powder (20 g/kg of food). The results showed that the supplemented group displayed an
increase in Bacteroidetes, Lachnospiraceae, Prevotellaceae, and Faecalibacterium. This suggests
that the addition of macroalgae powder to the diet may enhance gut health and gut
microbiota [168]. On the other hand, a study by Abu Hafsa et al. (2021) reported that the
inclusion of 1% U. lactuca in rabbit diets positively affected gut health and growth [169].
Additionally, other studies have indicated that including extracts of Laminaria digitate,
such as polysaccharides and polyphenols, at concentrations of 0.3–0.6%, can enhance the
antioxidant status and metabolism of fat while providing essential minerals and nutrients,
thereby promoting animal growth [170–172]. Two similar studies employing the same
percentage inclusion of macroalgae extracts reported improved growth, reduced cholesterol,
enhanced oxidative stability, and an improved sensory quality of the meat [173,174]. Finally,
in accordance with sustainable agriculture programs, specifically the European Green Deal
Plan, incorporating seaweed in rabbit nutrition has been highlighted in a review paper as
a promising approach to improve animal health. The integration of seaweed into rabbit
nutrition serves as a nutraceutical, a viable alternative to antibiotics, and it can potentially
enhance gut health [175].

4. Major Commercial Products from Macroalgae in the Feeding Market

Macroalgae cultivation and commercialization are part of the fisheries and aquaculture
economic sector, a very important economic activity contributing to the growing domestic
products (GDP). This sector accounts for about 0.2% of the GDP [176]. However, when
analyzed per region, the highest contribution of this sector is reported for Oceania (exclud-
ing Australia and New Zealand), accounting for about 1.8% of the GDP. Current estimates
value the macroalgal global market between USD 6.5 billion to USD 11.3 billion for 2021 and
2022, which is expected to increase at a 6–8.7% compound annual growth rate. In addition,
increases in the production of macroalgae worldwide are also reported [177]. According to
recent reports, global macroalgae cultivation increased from 10.6 million t (live weight) in
2000 to 35.1 million t in 2020, equivalent to a 231% increase [176]. The significant species
contributing to this production are L. japonica, Eucheuma spp., Gracilaria spp., U. pinnatifida,
Porphyra spp., K. alvarezii, Sargassum fusiforme, and Eucheuma denticulatum.

Besides cultivation, the formulation of products and their consumption in the feeding
market is notorious. In Table 3, we presented macroalgae products commercially available
in the market. It can be observed that most of the listed products correspond to cattle.
This can be explained by the recent interest in feeding Asparagopsis sp. to cattle, which has
shown a reduction in CH4 production above 80% [141]. Other commercial feed products of
macroalgae include poultry, horse, and swine feed, as well as aquariums and aquaculture.
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Table 3. Macroalgae products commercially available in the market for animal feeding.

Product Name Macroalgae Application Country Reference

A la Carte
Palmaria palmata,

Porphyra umbilicalis,
Porphyra yezoensis

Seawater
fish—aquarium France

https:
//www.aquariumsystems.eu/

accessed on 19 May 2023

AlgaeMAX Ulva, U. pinnatifida
(wakame), Kelp

Seawater
fish—aquarium United States

https://www.feedspectrum.com/
seaweeds

accessed on 19 May 2023

Algimun Not specified
(algal extracts)

Cattle, poultry, swine,
horse, fish France

https://www.olmix.com/animal-
care/algimun

accessed on 22 May 2023

AlgoFeed+ Not specified
(algal extracts) Swine, poultry, and fish France

https://www.olmix.com/animal-
care/algofeedtm

accessed on 22 May 2023

AquaArom Laminaria sp. Salmonid feed Canada https://addican.com/aquaarom/
accessed on 19 May 2023; [178]

Betterplants
seaweed meal A. nodosum Cattle and horses Ireland

https://betterplants.ie/product-
category/natural-animal-

nutrition/
accessed on 19 May 2023

Brominata A. taxiformis Cattle United States https://blueoceanbarns.com/
accessed on 19 May 2023

FutureFeed Asparagopsis sp. Ruminants Australia https://www.future-feed.com
accessed on 19 May 2023

Garnelio
Seealgenmehl Not specified Fan shrimp

and mussels Germany
https://www.garnelio.de/en/
garnelio-seaweed-flour-25-g

accessed on 19 May 2023

NAF Life-Guard
Seaweed Not specified Poultry United Kingdom

https://www.naf-equine.eu/uk/
life-guard/lg-seaweed

accessed on 19 May 2023
Nettex Poultry

Seaweed Not specified Poultry United Kingdom https://www.nettexpoultry.com/
accessed on 19 May 2023

OceanFeed Not specified Bovine, equine, swine,
poultry, aqua United Kingdom

https:
//oceanharvesttechnology.com/

accessed on 24 May 2023

Plankton vital Nori
Freshwater and

seawater
fish—aquarium

Germany https://planktonvital.de/
accessed on 19 May 2023

Sea Forest Asparagopsis sp. Cattle and sheep Australia https://www.seaforest.com.au/
accessed on 19 May 2023

SeaGraze A. taxiformis Ruminants United States https://symbrosia.co/seagraze
accessed on 19 May 2023

Seaperia Seaweed
Meal A. nodosum Ruminants Australia https://www.seaperia.com/

accessed on 19 May 2023

Seaweed extreme Nori Tropical seawater
fish—aquarium Japan

https://www.hikari.info/
product/index.html

accessed on 19 May 2023

Seealgenmehl A. nodosum Horse Germany https://www.pernaturam.de
accessed on 19 May 2023

ShiLai A. taxiformis Cattle China
https://

asparagopsistaxiformisfeed.com/
accessed on 19 May 2023

Volta Seaweed A. taxiformis Cattle Sweden
https:

//www.voltagreentech.com/
accessed on 19 May 2023

5. Future Perspectives

The growing demand for food, especially for proteins of animal origin, makes the live-
stock and aquaculture industries focus on the search for sustainable and environmentally
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friendly production alternatives [179]. Advances in technology and research are focused on
developing new functional feeds for animals that not only help with nutrition and growth
but also provide benefits for animal health [180]. Some studies offer optimistic prospects for
integrating macroalgae as functional ingredients for animal feed production. Macroalgae
can be sustainable protein sources for animal feed, replacing expensive ingredients, reduc-
ing the prices of animal products such as meat, milk, and eggs, and helping the economy
of producers and consumers [181]. Likewise, the action of bioactive compounds from algae
extracts can improve animal health and impact the quality of products of animal origin,
being more beneficial for human consumption [20].

Future research should aim to determine the long-term effects of macroalgae on animal
performance and the quality of protein products, including meat, milk, and eggs consumed
by humans. Such investigations can potentially promote the scaling up of commercializa-
tion and the widespread adoption of macroalgae in feed production [182]. Nevertheless,
understanding the specific requirements and preferences of various livestock farms is es-
sential for deciding which species of macroalgae should undergo processing. Additionally,
it is crucial to evaluate the biochemical and nutritional composition of macroalgae, which
can vary based on factors such as species, geographical location, season, and external
conditions [183]. These variations may result in different outcomes concerning animal
health, growth, and product quality [184]. Therefore, comprehensive knowledge about the
optimal sites for macroalgae growth, harvesting, and processing is imperative.

This review shows the positive impact of supplementing with different percentages
of macroalgae in feeds for aquatic organisms, livestock, and pets. Palatability is a funda-
mental characteristic of the different rates of inclusion of macroalgae in animal feed [185].
Monogastric animals may reject meals with high percentages of macroalgae due to the
sensory characteristics of the feed, such as the particle size, fracture strength, and dry matter
content [186]. Different biomass processing techniques, such as salt extraction, drying,
and milling, which can enhance the palatability in monogastric terrestrial animals [187],
should be reviewed. Another technique to consider is the fermentation of macroalgae. This
method has been shown to serve as a functional pretreatment of biomass, resulting in a
fermentation process that produces appealing volatile compounds. Additionally, it can
introduce lactic acid bacteria to act as animal probiotics and yield prebiotics through the
fermentation of polysaccharides. This process also eliminates anti-nutritional compounds
like phenols and tannins, which can negatively affect the palatability [188], also, it can
negatively affect the sensory attributes of meat or milk [189]. It is essential to consider it in
detail since the antinutrients such as alginate in macroalgae can affect its digestibility in
monogastric animals [190].

On the other hand, bioactive compounds from macroalgae can be used to improve
aspects, such as stimulation of the immune system, improved health, and enhanced antioxi-
dant and antimicrobial properties. One disadvantage of bioactive compound extracts is that
they require more processing, extraction equipment, and solvents [191]. More innovative
procedures, like hydrothermal or microwave processing of seaweed, have been employed
to enhance the bioavailability of nutrients such as proteins, pigments, and fatty acids.
Simultaneously, these methods eliminate antinutrients such as polysaccharides that can
negatively impact palatability (Magnusson). For the sustainable production and promotion
of feed with veterinary properties aimed at enhancing animal health, there is a growing
interest in utilizing macroalgae extracts, such as laminarin, fucoidan, and phlorotannin
exclusively. Optimizing green extraction processes and establishing economically viable
biorefineries is imperative to achieve this goal. Consequently, research efforts should be
directed toward exploring large-scale extractions and assessing the long-term impacts on
animal health and animal-derived protein products.

Related to the above, there are industrial limitations for the processing of macroalgae,
and the formulation and preparation of animal feed since there is a lack of knowledge
about the profitability and scaling of processing plants for this type of feed. Several factors
must be considered to scale up and industrialize this promising feed technology. Firstly,
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significant amounts of algal biomass are necessary to ensure the viability of the products in
the market. The feed industry should engage in large-scale macroalgae cultivation through
aquaculture or by utilizing invasive algae species like sargassum. This approach aligns
with the principles of a circular economy. Also, macroalgae farming can be a strategy to
mitigate greenhouse gases, treat agro-industrial effluents, and reduce carbon footprint [192].
Therefore, it is imperative to conduct studies on the carbon sequestration-based life cycle
assessment of macroalgae, from cultivation to feed production and consumption, to assess
the balance of carbon sequestration by algal culture and the total carbon release during the
life cycle of feed production [193,194].

6. Conclusions

In this review, we found that macroalgae or their extracts emerge as an alternative
supplement for the formulation of feed based on their nutritional profile and bioactive
compound concentration. Despite its potential for feed, challenges persist. These include
the need for acceptance, palatability, inclusion level, and conducting studies focusing on
the immunological or digestive response in terrestrial animals, specifically monogastric
organisms. Due to their aquatic origin, macroalgae are well-accepted within aquaculture.
However, there is a need to address improvements in feed formulation technology to
counter diseases and ensure sustainable production. Moreover, further research is impera-
tive to understand the long-term effects of incorporating macroalgae into feeds, particularly
concerning the quality of meat and animal products such as milk and eggs. The challenge
lies in effectively integrating macroalgae through interdisciplinary approaches, contributing
to improving aquaculture and livestock practices. Such efforts will expand the commercial-
ization of macroalgae-based feed globally, aligning a circular economy approach to combat
climate change.
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