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Abstract

Single-cell technologies have become essential in investigative dermatology. Despite the multitude 

of available datasets, a central reference atlas of normal human skin is still lacking. As part of 

the Human Cell Atlas (HCA) project, we have assembled a Skin Biological Network to build a 

Human Skin Cell Atlas (HSCA) and outline a roadmap toward that goal. We define the drivers of 

skin diversity to be considered, hurdles that impede comprehensive representation, and technical 

considerations for tissue processing and computational analysis. By outlining our goals for Atlas 

1.0, we discuss how it will uncover new aspects of skin biology.

I. Why a Skin Cell Atlas?

Skin contains diverse cell lineages, including epithelial cells of the epidermis and 

ectodermal appendages—hair follicles, nails, sebaceous glands, and sweat glands—which 

exist in close association with mesenchymal cell lineages, including smooth muscle cells, 

adipocytes, and fibroblasts. The latter produce extracellular matrix for mechanical support 

and signals that guide immune and epithelial cell behavior across both spatial dimensions 

of the skin (e.g., epidermal differentiation at the surface), and time (e.g., cyclic growth of 

hair follicles). In addition to the principal skin cell types, there are less abundant cell types 

essential for skin function, including pigment-producing melanocytes, innate and adaptive 

immune cells, vascular and perivascular cells, and cells of neuroendocrine origin. Working 

together, these cell populations form a barrier organ—so large that no individual dataset 

can sample the entire skin—that plays mechano-protective, UV-shielding, antimicrobial, 

thermoregulatory functions, and more (Alexander et al., 2015; Donati et al., 2017; Gurtner 

et al., 2008; Takeo et al., 2015; Watt, 2014). To support these functions, different skin 

compartments are richly populated by stem cells that respond to insults by mounting 

reparative responses. As skin heals, such as after wounding, it restores anatomical integrity 

and functions by forming a scar containing new stable cell states that are distinct from 

unwounded cell states (Donati et al., 2017; Gurtner et al., 2008; Sun et al., 2022; Takeo et 

al., 2015).
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Several hundred clinically distinct disorders, both monogenic and multifactorial, affect 

human skin (Feramisco et al., 2009). While many skin diseases are well characterized 

clinically, histologically, genetically, and by bulk biochemical assays, deep mechanistic 

understanding remains obscured in part by a lack of characterization at a single-cell 

resolution. Moreover, numerous distinct diseases have near-identical clinical manifestations 

(Feramisco et al., 2009; Lamartine, 2003), challenging correct diagnosis and resulting in 

ineffective therapies. Certain diseases, like psoriasis, are spatially predisposed to appear 

in certain body regions (Dhabale & Nagpure, 2022). Other diseases, such as facial acne, 

disproportionately occur at certain ages (Williams et al., 2012), and other diseases occur 

more commonly in females than males, such as scleroderma (Andersen & Davis, 2016). 

Diseases such as keloids are more common in certain ancestries (Chike-Obi et al., 2009) and 

require tissue injury to manifest (Tuan & Nichter, 1998). Developing greater understanding 

of how different skin regions, age, gender, ancestry, and the wound response affect skin cell 

types and cell states at the single-cell resolution will enable further understanding of skin 

disease mechanisms via comparison of pathological states to normal skin at multiple scales.

The Skin Biological Network set a goal to build a consensus HSCA, as part of the HCA 

(humancellatlas.org) (Regev et al., 2017). This effort builds on previous skin cell atlas work 

under the auspices of the HCA and newer CZI-supported efforts on pediatric and ancestral 

skin, as well as the work of individual labs that have been working independently to profile 

normal human skin using scRNA-seq, to develop a comprehensive atlas of diverse skin 

cell types across several scales (Figure 1): (a) space, capturing different body sites (Figure 

1a); (b) time, capturing maturation states of the skin at the same body site (e.g., facial 

skin during prenatal development, childhood, adolescence, adulthood and advanced age) 

(Figure 1b); (c) gender scale, capturing major sexually dimorphic skin regions and changes 

associated with puberty (Figure 1c); (d) ancestry, capturing cutaneous anatomical features 

that prominently vary across ancestries, such as skin pigmentation, sweat gland and hair 

follicle differences (Figure 1d); (e) wound response scale, capturing new cell states of 

healed skin, i.e., scars, vs. unwounded skin (Figure 1e).

II. What are Key Considerations for the Human Skin Cell Atlas?

II.a. Aspects Contributing to Physiological Diversity of the Skin

To represent the full anatomical and functional diversity of skin at a single-cell level, 

several factors must be considered. First, skin from different body sites can have different 

embryonic origins. For example, dermal fibroblasts in frontal scalp skin arise from the 

craniofacial mesoderm, whereas fibroblasts in the chest skin originate from the somitic 

mesoderm (Thulabandu et al., 2018). Second, different anatomical skin sites have different 

dominant features. For example, eyelids have a thin epidermis, while palms and feet have 

significantly thicker epidermis (Sandby-Møller et al., 2003). Skin sites also vary by hair 

follicle size, density, and growth cycle parameters: scalp skin has large (i.e., terminal) hair 

follicles that produce long hairs continuously over several years, while adjacent forehead 

skin features diminutive (i.e., vellus) hair follicles that grow short, thin hairs (Vogt et al., 

2007); and areola, lip skin, and palmoplantar skin are largely devoid of hair follicles (Stone 

& Wheeler, 2015; Tsai et al., 2022). Third, the skin microbiome profile varies significantly 
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across distinct body sites and correlates with each site’s physical properties (Byrd et al., 

2018); that is, whether the skin is moist (e.g., axillary or popliteal fossa skin), dry (e.g., 

volar forearm skin), or oily (e.g., forehead skin). Fourth, UV exposure has a prominent 

physiological effect on skin; its extent and history naturally differ across anatomical space 

and are further impacted by social dress codes and skin color (Matsumura & Ananthaswamy, 

2004). For instance, sun-exposed forehead skin commonly experiences high UV exposure 

compared to typically clothed buttock skin. Fifth, many skin sites, particularly facial, 

scalp, axillary, chest and pubic skin, undergo prominent age-dependent changes (Farage 

et al., 2013; Haydont et al., 2019) and differ between genders (Dao & Kazin, 2007). 

Finally, given the inherent anatomical and physiological diversity across human populations, 

single-cell datasets from genetically diverse ancestries should be included to generate a 

comprehensive atlas. Priority should be placed on ancestral groups that are underrepresented 

in biomedical research, including but not limited to African, Asian, Hispanic, and Middle 

Eastern populations (Hirano et al., 2012; M. A. Ma et al., 2021). Further priority should be 

placed towards skin sites with prominent morphological differences across ancestral groups, 

such as scalp skin, where there is variation in hair follicle density and hair morphology, or 

axillary skin, where there are differences in apocrine sweat gland function (Luther et al., 

2012) and propensity to disease (Kilgour et al., 2021).

II.b. Practical Considerations for Sample Collection

Sample acquisition is easier for certain body sites and states (e.g. aged vs. younger skin), 

and unless proactively countered, knowledge gaps in skin-wide data will persist (Figure 

2). Fresh skin samples can be acquired in two main ways. The first is from discarded 

tissue that can be collected during certain routine surgical procedures, including: (i) 

blepharoplasty (upper eyelid skin), (ii) facelifts (temporal, frontal and parotid facial skin); 

(iii) abdominoplasty (hypogastic abdominal skin); (iv) mammoplasty (chest and areola skin); 

(v) hair transplantation (occipital scalp skin). As plastic surgery procedures commonly 

remove old scars (e.g., C-section scars during abdominoplasty), scar tissue can also be 

readily obtained. Second, normal skin samples can be obtained through purposeful biopsies 

from healthy volunteers. For certain skin sites, including trunk skin (e.g., from upper 

buttocks region) and the extremities (e.g., from thighs or forearms), obtaining biopsies will 

typically result in minimal morbidity and is well tolerated. Other skin sites, such as genital 

skin and axillary skin, can rarely be sampled without resulting in significant morbidity, and 

will require specialized arrangements.

III. Distinct Challenges

III.a. Sampling Skin to Saturation

To date, predominantly fresh skin tissue has resulted in high-quality single-cell skin 

transcriptomes. For the reasons discussed above, many anatomical skin sites will be 

generally precluded from sampling, leading to under-representation of certain skin regions 

and their distinct anatomies and functions in Atlas 1.0. Specific efforts will need to be 

undertaken to minimize anticipated data gaps. One possible solution could be greater use of 

post-mortem tissues, albeit with the additional challenge that these tissues must be as fresh 

as possible to obtain high-quality data.
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III.b. Global Representation of Human Skin Heterogeneity

A representative skin cell atlas must reflect the entire human population. The desire 

to include diverse populations and those typically underrepresented in clinical research, 

however, is met with multiple challenges (Mapes et al., 2020; Swartz et al., 2019) that 

should be addressed with directed community-engagement approaches (Borthwick et al., 

2023; Holzer et al., 2014). First, low income as a barrier to participation. Indeed, low-

income individuals are often excluded from clinical research, partly because individuals 

seen at locations that serve low-income patients are often not informed about potential 

opportunities for clinical trial participation, nor may they be able to afford surgery. Second, 

language and literacy can be a barrier to participation (Nicholson et al., 2015). Low 

reading literacy can make reliance on written recruitment materials ineffective. This can 

be partly aided through translators or by including native speakers on the research team, 

but cultural and language tailoring must go deeper. One should seek help from cultural and 

language-concordant research facilitators who can support bidirectional communication and 

knowledge transmission between researchers, participants, and their communities. Third, 

mistrust is a barrier to participation. A long history of medical and scientific exploitation 

has targeted and adversely affected diverse groups of people, creating perceptions of 

mistrust towards biomedical research. One critical way to combat mistrust is through clear 

communication and transparency by making a conscious effort to ensure that research 

materials (i.e., informed consent documents, study results, etc.) are designed in ways that 

promote clear understanding of the research questions, study design, participant protections, 

and potential community benefit (Day et al., 2020).

We note that this section specifically refers to collecting skin samples from underrepresented 

groups in the U.S.A., but, more broadly, researchers worldwide should be recruited to obtain 

these underrepresented samples. We propose to recruit participants via “deep” engagement 

with the local community, when the benefits of participation in such research are clearly 

explained and “all questions” are answered beforehand. One must work closely with 

community partners to understand not only why people may be interested in participating in 

skin research, but also to ensure that all recruitment materials and consenting documents are 

easy to understand and facilitate individuals making informed consents.

Participants of these studies should certainly receive monetary compensation for their 

time, effort, and for study-related expenses. For example, researchers must recognize 

that being given time off from work (e.g., sick or vacation) is a benefit that not every 

employer provides, so if under-resourced people are to be included in research, appropriate 

compensation must be provided.

III.c. Comprehensive Cell Type Analysis

When collecting representative skin data, both tissue handling and digestion protocols 

significantly impact the efficiency of cell isolation and viability, with uneven effects 

across cell types. For example, trimming adipose tissue prior to cell isolation leads to 

underrepresentation of cell types residing in the dermal adipose layer. Adipose minimization 

artifacts and loss of full-depth anagen hair follicle cell coverage also happens when skin 

is not biopsied at full thickness. Different skin microstructures demand different enzymatic 
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dissociation protocols, making balanced isolation of viable cells from the epidermis, dermis, 

and appendages challenging. For example, dermal papilla fibroblasts from anagen scalp 

hair follicles are difficult to isolate because they are encased in a compact extracellular 

matrix and further enveloped by the epithelial matrix. While some dissociation protocols 

preferentially yield epithelial cells, others are better optimized for cells from the dermis. 

Other factors affecting cell type coverage include: (i) whether the dataset was sequenced 

from fresh vs. frozen tissue; (ii) using a live-cell or nuclei-based protocol; (iii) whether 

there was cell type enrichment prior to profiling; or (iv) whether the platform is plate- or 

droplet-based. Thus, each dataset included in the atlas should be accompanied by a reference 

and/or detailed documentation, including biological and experimental metadata and the used 

cell isolation method.

III.d. Balanced Batch Effect Removal

A representative skin cell atlas requires integration of samples from different body sites 

that exhibit both commonalities and substantial differences in micro-anatomies, functions, 

and gene expression signatures. For example, skin also shares many essential anatomical 

and functional similarities across different sites, such as the presence of an outer epidermal 

barrier, an elastic and tear-resistant dermis, a dynamic immune niche, or hair growth. 

In contrast, axillary and breast-associated skin have hormone-rich signaling environments 

that may result in body site-specific cell sub-clusters. Unlike laboratory mouse models, 

scRNA-seq data sampled from human individuals exhibit significant batch effects, even 

when sampled from the same anatomical site. Variation in cell composition and gene 

expression can occur due to differences in individual factors, such as sex, age, ancestral 

origin, and lifestyle factors (e.g., UV exposure, environmental pollution, and nutritional 

preferences), but also due to differences in technical factors, such as sampling method, 

dissociation protocol, or library preparation protocol. These batch effects must be accounted 

for and, if possible, corrected to ensure they do not mask genuine biological differences. 

The central challenge in constructing a skin cell atlas is that differences in gene expression 

patterns between samples may consist of both batch effects and meaningful biological 

differences. To integrate these datasets, we must remove batch effects from the data while 

retaining “biological variation,” i.e., to preserve both transcriptional similarities of common 

cell lineages from different body sites and significant axes of biological variation within a 

lineage, that may reflect cell type adaptation to a particular spatial niche. For example, hair-

follicle keratinocytes from the scalp are expected to be more like hair follicle keratinocytes 

from the trunk due to their hair producing functions, rather than barrier-forming epidermal 

keratinocytes from the scalp. Therefore, the HSCA requires computational methodologies 

that strike the right balance between these two important yet diametrically opposed technical 

challenges of “biological conservation” and “batch correction” (Luecken et al., 2022). 

Additionally, it is important to integrate multiple datasets from each major axis of biological 

variation that we aim to represent in the atlas. For example, to show biological variation 

across different body sites, we must have at least two donors per site. This allows for 

validation that batch effects were removed (e.g., cells from different datasets per site are 

well mixed), while biological differences are preserved (e.g., cells sampled from different 

locations do not mix).
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Despite the plethora of methods developed to integrate multiple scRNA-seq datasets, there 

is yet no “universal method” (Chazarra-Gil et al., 2021; Luecken et al., 2022; Thi et al., 

2020). Some methods, e.g., fastMNN (Haghverdi et al., 2018), scANVI (Xu et al., 2021), 

and scGen (Lotfollahi et al., 2019), are more effective at ensuring biological conservation, at 

the risk of retaining some batch effects, while others, e.g., BBKNN (Polański et al., 2020), 

Scanorama (Hie et al., 2019), and trVAE (Lotfollahi et al., 2020), are more effective at 

batch correction at the risk of obscuring biological variation (Luecken et al., 2022). What 

is the best way to identify the most suitable method for a given dataset and intention? 

One strategy has been to test several methods and assess the most appropriate one using 

metrics that measure biological conservation and batch correction efficacy (Chazarra-Gil 

et al., 2021; Luecken et al., 2022), which was the adopted strategy used to construct the 

provisional Human Lung Cell Atlas (Sikkema et al., 2022). To confirm the robustness of cell 

populations identified after integration, it is important to map novel cell types and cell states 

that were identified in individual datasets back onto the tissue.

Constructing the atlas will require several “levels” of clustering to identify all major cell 

types and cell states: first, to identify the cell lineages present across all skin samples; 

second, to identify all cell types in a lineage; and third, to identify subtypes and cell 

states within each cell type. For example, the first round of clustering would identify broad 

immune cell populations. The second round would identify conventionally recognizable 

immune cell types like macrophages, T cells, or B cells. The third round of clustering, 

applied only to T cells, would further discriminate between major subtypes, such as CD4+, 

CD8+, and natural killer T cells, and possibly characterize new T cell states. Given the 

major variations in cell state plasticity across skin lineages, it is important to consider these 

different cell type resolutions. Some lineages may require new integrations at certain levels 

to better represent cell type heterogeneity. This multi-step integration and clustering analysis 

may require different batch correction methods at different levels, as has been done in 

previous integration studies of skin (Reynolds et al., 2021; Solé-Boldo et al., 2020; Zou et 

al., 2021)

IV. Toward Provisional Skin Cell Atlas

IV.a. Dataset Selection

The major goal set by the Skin Biological Network for the provisional cell atlas version 

1.0, denoted as Atlas 1.0, is to generate a consensus nomenclature of cells in healthy human 

skin, differentiating cell types, their subtypes, and states. The atlas seeks to achieve: (i) 

high coverage of all major cell types (keratinocytes, fibroblasts, neural crest-derived cells, 

vessel-associated cells, adipose-associated cells, muscle-associated cells, immune cells); (ii) 

coverage of all major skin micro-structures (pilosebaceous units, sweat glands, nails, touch 

domes); and (iii) inclusion of men and women. Datasets that form the basis for Atlas 1.0 will 

naturally vary across other scales, such as age, body site origin, microbiota association and 

ancestry. However, these variables will not be the primary focus, since limited sample size 

will not permit their comprehensive coverage (Figure 2).

Rather than generating scRNA-seq data de novo, the Skin Biological Network will construct 

a provisional skin cell atlas using previously reported, and publicly available high-quality 
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datasets. To date, we have identified 40 human skin scRNA-seq datasets (Figure 2a, Table 

S1), which provide sufficient basis to generate Atlas 1.0 and achieve the set Atlas 1.0 goals 

with reasonable certainty. Integrating data from these studies will produce over 500, 000 

skin cells. Several candidate datasets were selected based on their high coverage of the 

certain cell types, such as melanocytes (Belote et al., 2021), fibroblasts (Solé-Boldo et al., 

2020; Tabib et al., 2018; Wiedemann et al., 2023), keratinocytes (Cheng et al., 2018; Wang 

et al., 2019; Wiedemann et al., 2023), immune cells (Reynolds et al., 2021), and hair follicle 

cells (Takahashi et al., 2020), while all cells (including underrepresented cell types) of the 

individual datasets will add cumulative value to the aggregated data. In addition, integration 

will be performed on datasets that were generated using various cell isolation protocols and 

sequencing technologies, such as 10X (10X Genomics), Drop-seq (Macosko et al., 2015), 

Smart-seq2 (Picelli et al., 2013), and Smart-seq3 (Hagemann-Jensen et al., 2020), ensuring 

that outputs will be robust to major technical variables.

IV.b. Integration Strategy

Atlas 1.0 will be far from exhaustive. New scRNA-studies will continue to emerge and 

other biological data modalities, like epigenetic (Buenrostro et al., 2013a, 2015a), proteomic 

(Stoeckius et al., 2017), and spatial transcriptomics (Ståhl et al., 2016), are becoming 

more readily available. It will become increasingly difficult to continually reintegrate and 

re-annotate all datasets from scratch. Instead, newer computational approaches based on a 

“reference and query” strategy of integration have been proposed (Gao et al., 2021a; Hao et 

al., 2021; Lotfollahi et al., 2022). Methods like Azimuth (Hao et al., 2021), iNMF (Gao et 

al., 2021b), and scArches (Lotfollahi et al., 2022) perform integration in an iterative fashion 

by using the latent representation of an initial “reference” atlas, which may be constructed 

using a simultaneous integration approach. The result is an updated latent representation, 

which can then serve as the new reference atlas. This iterative strategy is particularly 

effective when the query datasets represent perturbations due to, for example, disease or 

gene mutation, and, for instance, was employed to construct the Human Lung Cell Atlas 

(Sikkema et al., 2022).

There are several benefits to a “sequential” integration approach over conventional 

“simultaneous” approaches. First, overall computation time is reduced, as integration does 

not need to be repeated from scratch. Second, with an initial reference atlas, subsequent 

integration enables more rapid identification of novel cell states present in the query dataset 

(in the context of the reference data), focusing on biological investigation. Third, novel 

computational approaches have been developed that are now able to project data from other 

data modalities, like single-cell ATAC-sequencing (scATAC-seq) (Buenrostro et al., 2013b, 

2015b), to the transcriptomic atlas (Cao & Gao, 2022). Such projection methods require 

using a trained atlas reference model and thus enable building a multimodal atlas even with 

only few multimodal datasets. However, we note that, eventually, there will be additions 

so significant, addressing underrepresented or missing body sites, ancestral origins, or age 

categories, that a simultaneous integration approach will be needed to construct Atlas 2.0 

and later versions.
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With any integration task, certain axes of variation are inevitably prioritized when 

constructing the integrated latent embedding. As other underemphasized axes contain 

valuable information for certain research questions and laboratories, we will ameliorate 

this “subjectivity” of integration in two ways. First, we will make the individual gene 

expression matrices and accompanying metadata used for integration available for local 

analysis through, e.g., Zenodo or the Chan Zuckerberg Initiative’s CELLxGENE repository. 

Second, we will supplement the integrated embedding with “specialized” embeddings that 

emphasize specific axes, e.g., skin sites or cell lineages.

IV.c. Annotation Strategy

Annotation efforts by the Skin Biological Network aim to achieve consensus between 

community experts. We will follow the two-step strategy employed by the Human Lung 

Cell Atlas (Sikkema et al., 2022). First, we will curate original cell annotations from 

published datasets and generate a hierarchical reference framework that spans all appropriate 

annotation levels, from the broadest cell lineage classification (e.g., epithelial, mesenchymal, 

immune, vascular) to specific within-lineage cell types and possibly skin site-specific cell 

states. The framework will be a reference to annotate datasets containing unlabeled cells, 

help harmonize labels between datasets to guide the selection of an optimal integration 

method, and improve data integration via semi-supervised learning. In order to properly 

benchmark integration and make full of previous annotations, the original cell type 

annotations from published dataset must also be made consistent when constructing the 

reference framework. Second, we will draw upon a network of experts to generate consensus 

annotation and identify cell types that are prone to ambiguous or conflicting classification. 

This will occur in three stages: 1) providing experts with the lineage-specific integrated 

objects (e.g., via CELLxGENE or the Cell Annotation Platform) to pre-annotate generated 

clusters; 2) computationally harmonizing expert annotations and identifying disagreements; 

and 3) hosting an “annotation jamboree” to resolve these disagreements.

To facilitate reproducibility, we will use tools such as the Cell Annotation Platform 

(celltype.info) to share both our cell annotation metadata and also our rationale behind 

each annotation choice, e.g., marker gene expression or label transfer and tools such as 

protocols.io (protocos.io) to share sequencing protocols.

IV.d. Metadata Standards

For standardized and meaningful analysis of scRNA-seq data, for example, to analyze inter-

individual or body site-to-site variations in cell states, it is important to annotate metadata 

with standard nomenclature. Current metadata accompanying published skin scRNA-seq 

datasets lack standardization and contain gaps (see Figure 2; Supplementary Table S1). 

For example, of the current identified 235 individual skin scRNA-seq datasets sampled 

from the 40 studies, 52 datasets do not have information about the sampled skin site 

(Figure 2a). Moreover, there are sites, such as dorsal skin, which are popular sites from 

which to sequence mouse skin, but for which there are no human samples. Data sampled 

from infants, children, and adolescents is also a notable age data gap (Figure 2b). One 

concerning data gap is that over half of the datasets (n=152) are lacking ancestry information 

(Figure 2c), while almost over one quarter of the datasets lack gender information (Figure 
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2d). Future studies should aim to address these data gaps as they have unique skin 

biology and disease profiles. Furthermore, most current studies use 10X-based sequencing 

technology (Figure 2e). Finally, the lack of detailed and standardized annotation of anatomic 

sites is a significant limitation of many studies. Table S1 details metadata variables that 

the Skin Biological Network suggests to document for each individual skin dataset (as 

far as regional ethical and consent policies allow). Biological variations include age, 

ancestral origin, gender, sex, time of day, sun exposure, smoking history, skin and systemic 

disease condition(s); while technical variations include cell enrichment protocols (if any), 

sequencing library chemistry, sequencing platform, and sequencing technology. To mitigate 

risk to privacy, strategies such as metadata aggregation will be used.

IV.e. Data Visualization and Web Portals

Intuitive and informative data visualization is necessary to convey scRNA-seq findings 

meaningfully. However, there are significant differences and limitations across current 

visualization methods: the linear PCA method can be confounded by technical factors; the 

nonlinear t-SNE method prioritizes local structure over global structure; while the nonlinear 

UMAP method can be distorted by cell composition. Moreover, these visualizations can 

only be interpreted qualitatively. For quantitative interpretation, direct visualizations of gene 

expression and cell state composition, which can take the form of box plots, violin plots, 

heatmaps, and general line graphs, are required. Tools like web-based portals are important 

to make visualization user-friendly.

We will make Atlas 1.0 accessible for easy data exploration and as a reference to 

project new disease states and annotations. Atlas 1.0 will be available on several web 

portals for exploration. Current web portals for skin include the Development Cell 

Atlas (developmental.cellatlas.io) and SkinGenes (skingenes.net). To facilitate new data 

annotation and projection onto the reference atlas, we will host Atlas 1.0 on other portals, 

such as Azimuth (azimuth.hubmapconsortium.org) or CellTypist (celltypist.org). For local 

analysis, the atlas will be uploaded to platforms like Zenodo. All related tools and Skin 

Biological Network updates will be available on the skin community landing platform 

(skincommunity.org).

V. Beyond Atlas 1.0

V.a. Sample Procurement

All datasets considered for such collections come with logistical and ethical limitations. 

For a more comprehensive atlas, sampling strategies should be expanded to include: (1) 

post-mortem tissues to enable a dramatic expansion of body site coverage and sampling skin 

sites that are otherwise challenging to procure from voluntary donors (e.g., lip skin, nail 

fold skin); and (2) frozen tissues to enable collection when or where fresh tissue cannot be 

immediately processed (e.g., hard-to-reach geographical locations or at unexpected sampling 

times).
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V.b. Closing Data Gaps

Constructing Atlas 1.0 will lead to the identification of gaps that will set goals for Atlas 

2.0. These may include: (i) anatomically distinct body sites for which there is no scRNA-seq 

data; (ii) different axes of variation with missing data such as age groups or ancestral groups; 

or (iii) missing or underrepresented cell lineages; or (iv) lack of within-donor datasets. 

Several members of the Skin Biological Network are generating body map datasets by 

sampling from multiple distinct body sites per donor.

Human skin cells have been investigated using nearly all available scRNA-seq technologies 

(Figure 2). While scarce in number, there are studies that have employed single-nucleus 

(snRNA-seq) technology, such as by Satpathy et al. (Satpathy et al., 2019), who performed 

an snRNA-seq and scATAC-seq study of cells from human basal cell carcinoma. Using 

snRNA-seq-based approaches is important for certain cell types such as lipid-containing 

adipocytes, for which droplet-based technologies are not feasible due to their large size 

and high buoyancy. Additionally, as most common scRNA-seq methods are based on short-

read sequencing, long-read sequencing data will be generated using technologies such as 

FLASH-seq (Hahaut et al., 2022) and Smart-seq3xpress (Hagemann-Jensen et al., 2022), 

to capture full-length transcript isoform information and enable variant discovery of skin-

specific differences between, for example, subjects of different ancestral origins (Cechova 

& Miga, 2023). Data with high sequencing depth and sensitivity is also needed to better 

capture stem cell markers and effector transcription factors that are naturally expressed at 

low levels, or to better represent the biology of epidermal lineages and hair follicles that 

undergo gradual changes in gene expression (Cockburn et al., 2022). Furthermore, other 

types of sequencing, such as DNA sequencing (DNA-seq), may help provide information 

about somatic mutations and clonal organization in, for example, sun-exposed skin, which 

would be particularly relevant for “same-site, different ancestral origin” studies. While 

current DNA-seq methods cannot be reliably used for single-cell studies, we expect newer 

technologies to emerge that can perform DNA-seq at the single-cell level.

Other data modalities, including scATAC-seq (Buenrostro et al., 2013a, 2015a) and CITE-

seq (Stoeckius et al., 2017), can be integrated into Atlas 2.0 to better understand cell states. 

This multiomic approach is particularly important for lineages like skin fibroblasts, for 

which inferring true cell states from scRNA-seq data alone has been challenging due to 

their significant transcriptional state plasticity and their exhibiting characteristics of both 

progenitors (high proliferative potential) and specialized differentiated cells (high expression 

levels of specialized extracellular matrix genes). While no such multiomic study of human 

skin currently exists in the literature, Thompson et al. profiled neonatal fibroblasts in 

mice using parallel scRNA-seq and scATAC-seq (Thompson et al., 2022). The chromatin 

accessibility landscape revealed that despite distinct fibroblast lineages already present in 

neonatal mouse skin, the inferred epigenetic landscape suggested a degree of state plasticity 

and capacity for state transition greater than what transcriptomic data alone suggests.

Another rapidly emerging technology is spatial transcriptomics (Burgess, 2019), which can 

capture gene expression information while retaining spatial information in tissues, albeit, 

at present, at the cost of true single-cell resolution. As skin function depends on the 

interplay of various cell types to maintain tissue renewal and specific functions within 
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spatially distinct niches, integrating scRNA-seq data with spatially resolved methods is 

highly important. There are several technologies to generate spatial data that vary by 

spatial resolution (single-cell vs. multicellular “spot”), tissue coverage, and transcriptome 

coverage. These technologies can be further divided based on RNA detection approach: 

some methods use in situ hybridization to profile native RNA species, capturing single-cell 

and even subcellular information at the cost of limited and biased gene coverage (several 

hundred selected genes at present), while other methods use next-generation sequencing to 

profile the entire transcriptome (tens of thousands of genes) at the cost of losing single-cell 

resolution or wide tissue coverage (Moses & Pachter, 2022). Currently, the most prominent 

commercially available platform is 10X Visium, which uses next-generation sequencing. 

Spatial information in the first-generation Visium platform is captured using micro-printed 

barcode-type primer spots 55µm in diameter with a center-to-center distance of 100µm. 

Visium has already been used in both mouse skin (Foster et al., 2021; Konieczny et al., 

2022) and human skin studies (Ji et al., 2020; F. Ma et al., 2021; Schäbitz et al., 2022; Shim 

et al., 2022). Beyond spatial transcriptomics, scRNA-seq data can be integrated with prior 

imaging of skin, including with single-cell resolution multiphoton microscopy and optical 

coherence tomography.

VI. Utility of the Atlas

A high-quality reference skin atlas will enable numerous analyses and potential insights. 

First, it will allow better identification of the transcriptional heterogeneity of key cell 

lineages; that is, what are the invariant gene markers of cell types and what is the spectrum 

of within-lineage cell states and their corresponding markers? Second, consensus cell type 

annotation can serve as a reference map for emerging newer studies, particularly those 

that consider perturbations (for instance, due to disease), increasing confidence in the 

identification of novel cell states and markers (Hao et al., 2021; Lotfollahi et al., 2022). 

Third, the atlas can be used to deconvolve cell type annotation to spatial transcriptomic 

spot data, helping circumvent the current issue of spatial studies having reduced statistical 

power in analyses due to the lower number of samples (Li et al., 2022). Fourth, with 

comprehensive metadata and sufficient sample sizes of each skin site and cell type, well-

informed statistical models can be constructed using one of the many appropriate statistical 

frameworks (Soneson & Robinson, 2018; Squair et al., 2021) to perform rigorous hypothesis 

testing. These parametric models allow for covariate specification to reduce confounding 

effects in statistical analyses and enable more accurate differential expression analysis of 

important biological factors, such as skin site, gender, sex, ancestral origin, health status, 

or even between individual donors. Other downstream applications of the atlas include 

characterizing active signaling pathways (Almet et al., 2021; Lewis et al., 2020); inferring 

potential gene regulatory networks of transcription factors and downstream targets that 

regulate epigenetic states (Pratapa et al., 2020), which will be further validated by scATAC-

seq; and functional interpretation of the atlas using predefined gene sets (Buettner et al., 

2017; Lotfollahi et al., 2022; Seninge et al., 2021; Zhao et al., 2021).

Atlas 1.0 can serve as a launching pad for many new scientific inquiries into human skin 

biology. Using statistical models, one could: (i) investigate whether there is an association 

between developmental origin and microanatomy of a given skin site and its functional 
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specialization and environmental exposure, or why certain skin diseases are preferentially 

localized to specific body sites; (ii) examine the dependence between skin site function and 

cellular composition, for example, whether there are distinct mesenchymal populations that 

enable the elasticity and stretchability of eyelid skin or the mechanical rigidity of palmar 

and plantar skin; (iii) describe how stable molecular coordinates at a given body region (e.g., 

developmentally assigned HOX gene expression patterns) impact the transcriptional states 

of dermal cell lineages and, in turn, affect epithelial patterning (Chang et al., 2002; Rinn et 

al., 2008); (iv) analyze whether there are identifiable single cell bases for microanatomical 

tissue differences across ancestries; (v) determine the effect of long-term exposure to UV 

with respect to changes in cell lineage populations or changes in gene expression (secretome 

or DNA damage response); or (vi) establish how skin microbiome composition may relate to 

single-cell states in host tissue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The many scales of biological variation in skin that we predict will have a significant 
effect on transcriptional heterogeneity.
a) The spatial scale represents how skin composition and characteristics vary across 

anatomical regions. b) The temporal scale represents changes to skin across the human 

lifespan. c) The gender scale represents gender-specific differences between skin sites and 

function. d) The ancestral origin scale, which affects skin characteristics and proclivity to 

disease. e) The wound response scale, where unwounded skin is distinct from skin that is 

permanently altered after the innate, acute wound repair program. For each scale, we include 

notable examples that illustrate why these factors need to be considered when generating a 

high-quality single-cell skin atlas.
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Figure 2. Summary of current skin scRNA-seq datasets in the literature.
a) A summary of the number of studies and skin donors per major body region. Head and 

neck sites include scalp, face, upper eyelid, neck, and tragus. Trunk sites include shoulder, 

chest, abdomen, breast, and flank. Extremity sites include both volar skin (palm and sole) 

and non-volar (hand and leg) skin. b–e) The number of skin donors summarized with respect 

to b) age category, c) ancestral origin, d) gender, and e) sequencing technology. There are 

numerous gaps in the literature that can be filled when constructing new data for Atlas 1.0.
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