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Abstract: Transdermal administration of chemo therapeutics into burn healing may be an effective
treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal
delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocom-
patibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of
Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD
can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mech-
anism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy,
and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that
the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that
of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure
and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin
tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height
and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile,
CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging
cell integrity, which provided a new viewpoint for understanding the absorption mechanism with
the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD
could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of
lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for
future engineering.

Keywords: CLD-hFGF2; percutaneous delivery; intercellular lipid layer; cuticular barrier

1. Introduction

A burn is described as a skin injury brought on by intense heat or caustic substances.
Burn wounds are a widespread medical issue globally and a cause for 300,000 deaths
annually. Burn wounds frequently experience severe bacterial infections and provide
an ideal location for the proliferation of bacteria due to the formation of moist necrotic
tissue [1]. It affects patients’ health as it prolongs the inflammatory response and hinders
re-epithelialization, which delays wound healing as a consequence [2]. Therefore, the
question of how to accelerate burn healing is the urgent problem to be solved at present.
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Compared with oral administration, transdermal delivery has the ability of long-term
drug release and improving patient compliance. Furthermore, the transdermal delivery
system was found to be the most acceptable modality of administration in long-term treat-
ment, characterized with a high patient compliance and avoids liver first-pass effects [3].
However, the main barrier preventing the penetration of transdermal drugs is the stratum
corneum (SC). To deliver adequate amounts of drugs into the deep skin, various attempts
have been made, such as chemical enhancement, osmotic enhancers, ion electroosmotic
therapy, microneedle pretreatment, ultrasound, and electroporation [4–9]. However, there
are several uncertainties regarding the potential toxicity and treatment feasibility of these
methods.

With the continuous research and development of techniques, liposomes (lipid droplets)
have been approved by the FDA for second-generation transdermal delivery. The plant
lipid droplet system was introduced as a new and safe biomaterial that can promote the
absorption of drugs through topical and transdermal drug delivery [10,11]. Plant lipid
droplets (known as oil bodies) contain a large amount of triacylglycerol inside and are
wrapped with a monolayer of phospholipid molecular layers outside, which exhibit a
protective effect to maintain the stability of the lipid droplets [12]. Moreover, on the surface
of the lipid droplets, the oleosin protein is anchored in a single phospholipid molecule. The
two variable amphipathic C- and N-terminal domains of oleosin cover the surface of the
lipid droplets. This configuration generates resistance and electrostatic repulsion, keeping
lipid droplets as small single units and preventing their coalescence [13,14].

Previous studies have suggested that oleic acid is an effective FDA-approved chemical
osmosis accelerator and has been widely used in commercial formulations [15]. Electron
microscopic studies have shown that the lipid domain in the cuticle of the skin was
stimulated after oleic acid was applied to the skin tissue [16]. The formation of such pools
provides permeability defects within the lipid bilayers and thus facilitates the permeation
of macromolecules into the deeper epidermal and dermal layers. Coincidentally, Camelina
lipid droplets contain many unsaturated fatty acids, such as oleic acid and palmitic acid,
which also provide a great convenience for the absorption of foreign proteins in organisms.
In addition, as a carrier of transdermal delivery, plant lipid droplets not only have the
ability to promote protein absorption, but also have the beneficial characteristics of simple
preparation, low cost, few side effects, and easy application.

Camelina [Camelina sativa (L.) Crantz] is an oil crop that has been cultivated for
6000 years, and renewed interest was inspired, including that it grows well under a
range of agroecosystems and environments [17–19]. Its economic value is emerging as an
industrial oil raw material, a heart-healthy edible oil, and as an FDA-approved ingredient
in animal feed [20–22]. In addition, human basic fibroblast growth factor-2 (hFGF2) is an
important polypeptide growth factor in organisms. As a national first-class new drug, it is
an innovative drug for the treatment of wound repair and chronic ulcer diseases [23,24].
However, as the hFGF2 protein is a highly hydrophilic substance, its absorption was limited,
and the effective concentration was greatly reduced in the skin [25].

Therefore, using oleosin fusion technology, hFGF2 was successfully expressed on
the surface of Camelina lipid droplets (CLD) in the seeds, and this project developed a
natural and long-term storage freeze-dried powder formulation (Figure 1), which can
promote the absorption of hFGF2 and prevent the onset of inflammation for accelerating
wound healing. In this paper, we found that the cumulative release rate of CLD-hFGF2
freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder
into the skin. At the same time, CLD-hFGF2 freeze-dried powder was able to change
the structure and content of lipids and keratin to increase the permeability of hFGF2
freeze-dried powder and improve the deep second-degree burn wound healing process
in the skin tissue. This paper revealed the mechanism of the interaction between CLD-
hFGF2 freeze-dried powder and skin epidermal tissue, which helped to obtain valuable
information to enhance skin permeability and explore the absorption characteristics of CLD-
hFGF2 particles in epidermal tissue. Overall, CLD-hFGF2 freeze-dried powder provides an
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excellent candidate for the development of new burn-healing agents with a wide feature
for the pharmaco-therapeutic application prospect.
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Figure 1. The diagram of freeze-dried Camelina lipid droplets loaded with the hFGF2 formulation.

2. Results
2.1. Characterization of CLD-hFGF2 Freeze-Dried Powder

As a safe, natural, and effective transdermal delivery system, the CLD system allows
pharmaceutical proteins to be fixed on the C-terminal end of the oleosin protein and be
anchored onto the surface of the lipid droplets [26,27]. It enables a simple and convenient
separation from the Camelina seeds with a gentle liquid-liquid phase centrifugation pro-
cess [28,29]. In this study, we successfully prepared an economic and efficient solution of
Camelina lipid droplets linked to hFGF2 freeze-dried powder, which has been stably stored
at room temperature and breaks the limitation for commercial hFGF2 freeze-dried powder
only stored under low temperatures. The nanostructure of Camelina lipid droplets linked
to hFGF2 was analyzed using transmission electron microscopy. As shown in Figure 2A,B,
the results demonstrated that CLD-hFGF2 freeze-dried powder was uniformly dispersed in
a spherical structure, and the particle size was approximately 100 nm, which is beneficial for
absorption in the skin tissue. The band of CLD-hFGF2 freeze-dried powder was detected
at 34 kD, but the CLD freeze-dried powder did not show the hybridization signal clearly
(Figure 2C). Furthermore, the CLD-hFGF2 freeze-dried powder was able to significantly
promote cell proliferation more than hFGF2 (Figure 2D).

2.2. In Vitro Percutaneous Permeation for CLD-hFGF2 Freeze-Dried Powder

To evaluate the absorption effect of CLD-hFGF2 freeze-dried powder in the skin tissue,
the method of HE stains, Western blots, SEM, and Franz diffusion cells were applied.
As shown in Figure 3, the structure of the skin stratum corneum was relatively intact
with PBS treatment, and the skin tissue became thin and loose with hFGF2 treatment;
however, after CLD-hFGF2 treatment, the skin stratum corneum was significantly thinner,
the subcutaneous cell space was significantly larger, and the subcutaneous epidermal tissue
became loose (Figure 3A). Meanwhile, SEM was used to further observe the changes in
the skin tissue, as shown in Figure 3B, where the skin surface structure became loose and
porous with the presence of CLD-hFGF2 freeze-dried powder, while hFGF2 freeze-dried
powder did not cause similar effects. In addition, after treatment with CLD-hFGF2 freeze-
dried powder, the content of hFGF2 in the skin tissue was significantly higher than hFGF2
freeze-dried powder from E. coli (Figure 3C). Furthermore, Franz diffusion cells was used
to analyze whether CLD-hFGF2 freeze-dried powder could penetrate the stratum corneum
to reach the dermis of the skin. According to the results in Figure 3D, with an extension
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of time, the cumulative release amount under the subcutaneous skin of the CLD-hFGF2
freeze-dried powder group was significantly higher than that observed with the hFGF2
freeze-dried powder group at 150 min, and the cumulative amounts in the CLD-hFGF2 and
hFGF2 groups were 18.55 ± 9.64 µg/cm and 9.58 ± 5.72 µg/cm2, respectively (p < 0.05).
Together, these results indicate that CLD not only improve the stability of the hFGF2 protein
in the skin tissue to prevent it from being hydrolyzed by trypsin, but also affect skin tissue
permeability, thereby promoting the rapid absorption of the hFGF2 protein and making it
more conducive to skin tissue wound healing [10].
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Figure 2. Microstructural observation and activity analysis of CLD-hFGF2. (A) Ultrastructural obser-
vation of CLD-hFGF2 using TEM; (B) analysis of particle size of CLD-hFGF2 with DSL; (C) detection
of the protein for CLD-hFGF2 freeze-dried powder with Western blot; and (D) assay of cell viability
of CLD-hFGF2 and CLD-hFGF2 freeze-dried powder. (** p < 0.01).

2.3. CLD-hFGF2 Freeze-Dried Powder Changes the Structure of the Stratum Corneum

Several studies have shown that unsaturated fatty acids, such as oleic acid and palmitic
acid, have been approved by the FDA as promoters of drug epidermal absorption and
have been widely used in commercial formulations [30,31]. To clarify the components of
the CLD-hFGF2 freeze-dried powder, the method of HPLC was applied. As shown in
Figure 4, the proportions of linolenic acid, oleic acid, palmitic acid and linoleic acid were
26.7%, 15.88%, 13.37%, and 9.51%, respectively. From this finding, it was clear that CLD
freeze-dried powder was a natural drug delivery system for accelerating the absorption of
hFGF2 in the skin.
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Figure 3. Evaluation of the cumulative release of CLD-hFGF2 in the skin tissue. (A) Histological dia-
gram analysis of the skin under the treatment of PBS, CLD-hFGF2, and hFGF2. The red arrow shows
the changes of the stratum corneum of the skin tissue for different treatment, the blue boxes show
how loose the subcutaneous tissue after different treatment contact with the skin tissue. (B) effect of
CLD on the stratum corneum of the skin was observed using SEM. The red boxes shows pores in the
skin tissue after CLD-hFGF2 was applied to the skin. (C) effect of the absorption of CLD-hFGF2 and
hFGF2 freeze-dried powder in the skin at different times using Western blots; and (D) the cumulative
release of hFGF2 and CLD-hFGF2 freeze-dry powder in the skin tissue was measured using ELISA.
Data are presented as mean ± SD (n = 5; scale bar = 1 µm).

The cuticle is the main barrier to drug absorption through the skin. Therefore, the
effect of CLD-hFGF2 freeze-dried powder treatment on the cuticle was investigated during
the process of absorption. As shown in Figure 4B, compared with the hFGF2 freeze-dried
powder group, the change in the melting point and enthalpy for the keratin proteins of
the skin was more obvious in the CLD-hFGF2 freeze-dried powder group; these results
showed that CLD could change the structure and content of keratin. Meanwhile, the lipid
absorption peak (νas CH2, νs CH2, and νs C=O) and keratin absorption peak (Amide I and
Amide II) in the skin was further accessed using FITR [32–34]. As shown in Figure 3C,D,
compared with the PBS group, the characteristic absorption peak of keratin did not change
after hFGF2 freeze-dried powder treatment, while the absorption peak of keratin and
lipid in the CLD-hFGF2 freeze-dried powder treatment group were significantly shifted,
indicating that CLD could change the structure and content of lipids in the skin. In this
paper, the characteristic peak areas of keratin and lipid were reduced to varying degrees,
especially in the CLD-hFGF2 > CLD > hFGF2 > PBS freeze-dried powder groups. Our
experiment results indicated that CLD could cause lipid and keratin structure changes in
the skin tissue, which provides a favorable condition for the rapid absorption of the hFGF2
protein in the skin tissue.
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Figure 4. Observation of the skin structure with the treatment of PBS, CLD, CLD-hFGF2, and hFGF2
freeze-dried powder. (A) Analysis for the components of the CLD-hFGF2 freeze-dried powder.
(B) Analysis for the DSC thermograms of skin treated with PBS, hFGF2, CLD, and CLD-hFGF2 freeze-
dried powder. (C,D) Analysis for the FITR of skin treated with PBS, hFGF2, CLD, and CLD-hFGF2
freeze-dried powder.

2.4. CLD-hFGF2 Freeze-Dried Powder Changes HaCat Cell Morphology

The epidermal tissue of skin is mainly composed of keratin and HaCat cells [35]. Based
on the above results, CLD could accelerate the absorption of the hFGF2 protein into skin
tissues by changing the structure and content of keratin, but the changes in the morphology
of the HaCat cells were unknown. Therefore, atomic force microscopy (AFM) was used to
observe the cell height and adhesion force under liquid environments. Compared with PBS
treatment, the morphology of the HaCat cells was altered to varying degrees (Figure 5A–D).
The peak height of the keratinocytes was 6.15 ± 0.24 µm, 11.5 ± 0.24 µm, 13.25 ± 0.48 µm,
and 9.67 ± 0.23 µm under treatment with PBS, CLD, CLD-hFGF2, and hFGF2 freeze-dried
powder, respectively (Figure 5E–H). Meanwhile, the adhesion force of the HaCat cells was
mainly distributed at 0–3 nN, 0–2.0 nN, 0–2.5 nN, and 0–3.5 nN under treatment with PBS,
CLD, CLD-hFGF2, and hFGF2 freeze-dried powder, respectively (Figure 5I–L). Together,
these results indicate that CLD-hFGF2 freeze-dried powder could change the height and
adhesion force of the HaCat cells. To evaluate whether CLD-hFGF2 freeze-dried powder
affects cell morphology by disrupting cell integrity, Triton X-100, a surfactant that can
damage the cell membrane, was used as a positive control to evaluate the integrity of the
cell membrane.

As shown in Figure 5 M-N, the number of damaged cells was significantly increased
after treatment with Triton X-100, while the number of damaged cells did not increase with
increasing CLD-hFGF2 freeze-dried powder at different times and concentrations. This
result showed that CLD-hFGF2 freeze-dried powder changed the cellular morphology it
did not damage the integrity of the keratinocytes. Therefore, CLD-hFGF2 freeze-dried
powder is able to change the morphology of the HaCat cells and be non-toxic in the process
of percutaneous absorption.
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Figure 5. Analysis of HaCat cell morphology after treatment with PBS, CLD, CLD-hFGF2 (100 ng/mL),
and hFGF2 (100 ng/mL) freeze-dried powder. (A–D) AFM images of the HaCat cell height following
treatment with PBS, CLD, CLD-hFGF2, and hFGF2 freeze-dried powder; (E–H) statistical analysis
for HaCat cell heights were treated with PBS, CLD, CLD-hFGF2, and hFGF2 freeze-dried powder;
(I–L) statistical analysis of the HaCat cell adhesion force under the treatment of PBS, CLD, CLD-
hFGF2, and hFGF2 freeze-dried powder; and (M,N) evaluation of keratinocyte membrane integrity
with PBS, CLD, CLD-hFGF2, and hFGF2 freeze-dried powder treatment at different times and
concentrations; Data are presented as the mean ± SD (n = 5; *** p < 0.01).

2.5. CLD-hFGF2 Freeze-Dried Powder Enhances Deep Second-Degree Burn Wound Closure
in Rats

In order to ascertain the biological role of the CLD-hFGF2 freeze-dried powder
in second-degree burn healing, a deep second-degree burn on the skin of rats was
established, and the process of burn healing was evaluated at 1, 7, 14, and 21 days,
respectively. As shown in Figure 6A,B, the CLD-hFGF2 and hFGF2 freeze-dried powder
groups demonstrated better wound healing effects than the other groups. Significantly,
the area of healing with the presence of CLD-hFGF2 and hFGF2 freeze-dried powder
was 98% and 88% at 21 days (p < 0.01), respectively; the burn healing was most
remarkable with the presence of the CLD-hFGF2 freeze-dried powder. Interestingly,
compared with the PBS freeze-dried powder, the CLD freeze-dried powder also had
the effect of promoting burn healing (p < 0.05). Meanwhile, HE and Masson stains
were used to observe the progress of burn healing at 21 days; it could be found that the
collagen fibers were more tightly packed and well-integrated with the surrounding
region with the presence of the CLD-hFGF2 freeze-dried powder. Therefore, this
empathizes that CLD-hFGF2 freeze-dried powder can make the burn healing more
perfect through percutaneous absorption.
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Figure 6. Burn healing assessment for CLD-hFGF2. (A) The burn wound under the treatment of PBS,
CLD, hFGF2, and CLD-hFGF2 were photographed at days 0, 7, 14, and 21, respectively; (B) wound
closure rates were counted using Image J at days 0, 7, 14, and 21, respectively; and (C) the wound skin
tissue was analyzed with HE and Masson staining. The images were shown at 40× magnification.
The red boxes represent the effect of the subcutaneous connective tissue and skin appendages (n = 15;
scale bars = 50 µm; * p < 0.05, ** p < 0.01, compared with the PBS treatment).

To verify whether the lipid-soluble drug of the CLD-hFGF2 freeze-dried powder can
improve the efficiency of burn healing by inhibiting inflammatory reactions, the expression
of the inflammatory factors Caspase 3 and HMGB1 were evaluated and identified during
the process of burn wound healing. Immunohistochemistry assays with the burn wound
tissues showed that many apoptotic cells surrounded the burn area by the treatment with
the control groups at day 21. Interestingly, Caspase 3 and HMGB1 were markedly inhibited
with the treatments of CLD and CLD-hFGF2 freeze-dried powder (Figure 7A). In addition,
the expression levels of Caspase 3 and HMGB1 genes were significantly decreased in both
the hFGF2 and CLD-hFGF2 freeze-dried powder groups (Figure 7B,C). Notably, compared
with the hFGF2 group, the expression levels of HMGB1 and Caspase 3 in the CLD-hFGF2
freeze-dried powder group were significantly decreased (p < 0.05) (Figure 7B,C). Therefore,
CLD can not only generate an easier permeation into the skin for promoting the absorption
of hFGF2 in the process of burn wound healing but can also induce a significant inhibitory
effect on cell death and reduction in the secretion of inflammatory factors. This may be due
to the high content of oleic acid and linoleic acid in the CLD-hFGF2 freeze-dried powder,
which can significantly shorten the inflammatory reactions for improving the process of
burn wound healing [36].
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Figure 7. Formation of necrosis and apoptotic cells, and quantitative analysis in the process of burn
healing. (A) Immunohistochemical staining for Caspase 3 and HNGB1 in the process of burn healing
at day 7. The red box shows the corresponding cell changes of total Caspase 3 and HNGB1 during
wound healing. (B,C) Analysis of Caspase 3 and HMGB1 gene expression levels in the process of
burn healing at day 7 using qRT-PCR. The images were shown at 20 × 10 magnification (n = 3; scale
bars = 50 µm; * p < 0.05, ** p < 0.01, compared with the PBS treatment; # p < 0.05, compared with the
hFGF2 treatment).

3. Discussion

Plant raw materials have been recently used for numerous applications, including for
the synthesis of anti-inflammatory products and cosmetic emulsions [37–40]. Among the
natural materials, fatty vegetable oils (triglycerides) are valuable components of medicinal
and decorative cosmetics. As a part of cosmetic compositions, plant fatty acids play
the role of emollients, and perform a transport function of the delivery of biologically
active substances through the lipid barrier of the skin [41]. The main driving force for
the transdermal mode is the hydration gradient, which can produce an osmotic pressure
difference. After hydration, permeability was enhanced and the intercellular space of the
stratum corneum was dilated. Moreover, plant oil-based emulsion exhibits a higher level of
antioxidant activity, and it provides a balance of moisture and fats on the skin for a longer
time [42]. Therefore, we speculate that CLD contain a lot of fatty acids to change the skin’s
structure and enhance the drug’s permeability into the skin.

As a natural lipid carrier, the lecithin of the CLD membrane can exchange with the
skin lipids, increasing the cellular space, making the cuticle structure loose, and increasing
the penetration ability of drugs in the skin. Furthermore, an FDA-approved skin penetrant,
oleic acid, can effectively improve lipid fluidity into the skin tissues and enter the skin
lipids to produce fluidity channels that are easy to penetrate [43,44]. Additionally, CLD-
hFGF2 contain lecithin in its monomolecular layer, which can exchange with skin lipids
and increase the cellular space, thereby providing a theoretical basis and scientific guidance
for the transdermal absorption [15]. Based on the above characteristics, the CLD system
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can play a positive role during the process of skin administration and is conducive to
the passage of the hFGF2 protein through the skin cuticle to further increase the skin
penetration ability of drugs.

Although many studies have reported that liposomes can carry foreign proteins and
promote their absorption, the correlation between skin tissues has not been reported [45].
In our paper, the melting point of keratin in the epidermis was lower, the peak position of
the phase transition peak was changed, and the changes in enthalpy were increased, which
directly reflected the change in the keratin and lipid structure after CLD-hFGF2 treatment.
This was observed as Camelina lipid droplets contain many unsaturated fatty acids, such as
oleic acid and palmitic acid, which can effectively improve the fluidity of the lipids between
the cells of the skin tissue to produce easily permeable fluidity pores [46,47]. These data
further revealed that CLD-hFGF2 can break through the barrier of the stratum corneum
by changing the helical structure of the skin keratin and lipids to achieve percutaneous
absorption.

The skin stratum corneum is composed of HaCats, keratins, and lipid layers. The
ability of CLDs to break through the barrier of the skin stratum corneum, loosen the tissue
of the skin stratum epidermis, and promote the absorption of hFGF2 water-soluble proteins
in the skin tissue has been clearly observed from previous studies, but the interaction with
skin HaCats is unknown. In this study, the biophysical properties of single cells, including
their height and adhesion force, were markedly changed under CLD-hFGF2 treatment, and
the CLD system had no destructive effect on HaCat cell integrity. Most liposomes were
reported to enter the cells through endocytosis without causing the destruction of the cell
membrane integrity [48,49], which is consistent with our findings. These data fully proved
that CLD-hFGF2 can affect the shape of HaCats to achieve loose skin tissue.

In this paper, the CLD-hFGF2 treatment significantly promoted wound healing more
than the free state of hFGF2. This is due to the fact that the skin wound healing process was
accelerated for promoting the absorption of the hFGF2 protein by improving the skin cuticle
barrier. Meanwhile, a series of experiments were carried out to explore the absorption
mechanism of CLD-hFGF2 in this paper. Under the CLD-hFGF2 treatment, the skin tissue
was significantly loosened, and the subcutaneous cumulative release of hFGF2 was twice
that of free hFGF2. As a natural lipid carrier, CLD-hFGF2 contains a large amount of
unsaturated fatty acids, such as oleic acid and palmitic acid. As an FDA-approved skin
penetrant, oleic acid can effectively improve lipid fluidity between the skin tissues and enter
skin lipids to produce fluidity channels that are easy to penetrate [50,51]. Therefore, based
on the above characteristics, the CLD system can play a positive role during the process of
skin administration, and is conducive to the passage of the hFGF2 protein through the skin
cuticle to further increase the skin penetration ability of drugs.

In a few words, we focused on clarifying the process regarding the transdermal
absorption of CLD-hFGF2 freeze-dried powder in the skin. Regarding the particularity of
the CLD component, the absorption effect of the drug in the skin tissue was enhanced in
the subcutaneous tissue for accelerating the skin wound healing process by changing the
structure of the lipids and keratin, endowing it with unique transport characteristics. This
study clarified the enhanced penetration mechanisms of CLD freeze-dried powder, which
provides a step for the utilization of the CLD system in transdermal drug delivery both
theoretically and practically.

4. Materials and Methods
4.1. Materials

Transgenic Camelina seeds were preserved by Jilin Agricultural University; the se-
quence of the hFGF2 gene was obtained from the GenBank (Gene ID: E04331.1) and
modified through codon optimization. The hFGF2 was inserted into the pOTB plasmid
and the recombinant plasmid was transformed into Agrobacterium receptor cells, resulting
in the formation of the transgenic Camelina.
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4.2. Preparation and Characterization of CLD-hFGF2 Freeze-Dried Powder

In order to obtain the CLD-hFGF2, Camelina seeds were ground in a colloid mill with
Tris-HCl for 1 min and well crushed. The mixture was then centrifuged and the upper
solution underwent emulsion in the Tris-HCl. To obtain the pure CLD-hFGF2, the emulsion
was centrifuged at 12,000× g and 4 ◦C for 20 min. The upper emulsion was collected and
that it is for CLD-hFGF2.

The CLD-hFGF2 freeze-dried powder was diluted 100 times and then transferred
to a copper sheet and dried. The morphology of CLD-hFGF2 freeze-dried powder was
analyzed using transmission electron microscopy (TEM: H-600; Hitachi). In addition, the
particle size of the CLD-hFGF2 freeze-dried powder was measured with dynamic light
scattering analysis (Zetasizer Nano ZS 90, Malvern, UK). The measurements were repeated
three times at 25 ◦C for all samples.

4.3. Permeation Assessment of CLD-hFGF2 Freeze-Dried Powder In Vitro

BALB/c mice were fed for one week, and their dorsal hairs were removed with
depilate cream. They were sacrificed, and the dorsal skin without subcutaneous fatty tissue
was obtained. CLD-hFGF2 (30 µg), hFGF2 (30 µg), and PBS (pH = 7.0) were added to the
Franz (Franz, Shanghai Yuyan Scientific Instrument Co., Ltd., shanghai), and the effective
contact area was 1.55 cm2. In the in vitro permeation study, the CLD-hFGF2 freeze-dried
powder (30 µg), hFGF2 freeze-dried powder (30 µg), and PBS groups were used, and the
cumulative release of hFGF2 in the subcutaneous tissue was also evaluated. ELISA was
used to detect the reception pool under predetermined intervals (60, 90, 120, and 150 min,
respectively). The calculation formula is as follows:

Mn = [Cn × V + ∑(CiVi)]/A

where A is the effective area of skin contact, V is the volume of normal saline, Vi is the
volume of samples taken at each time point, Ci is the ith measured drug concentration,
I = 60, 90, 120, and 150 min, Cn is the Nth measured drug concentration, and Mn denotes the
cumulative amount of skin absorption and permeability of the hFGF2 protein at different
time points.

4.4. Histopathological Analysis of the Skin Cuticle Structure

BALB/c mice were purchased from YiSi Biotechnology Limited Company (Changchun,
China). They were randomly divided into four groups (n = 12 per group). Chloral hydrate
(0.1 mL/10 g) was injected into the abdominal cavity of the mice. The dorsal hairs of the
BALB/c mice were shaved using the depilator, and then a small amount of depilation
cream was applied to remove the dorsal hairs of the mice. Drug treatment: samples from
the hFGF2 freeze-dried powder (30 µg and 200 µL) group, CLD-hFGF2 freeze-dried powder
(30 µg and 200 µL) group, and PBS freeze-dried powder group (200 µL) were smeared onto
the back skin of the mice, and the absorption effect of the CLD-hFGF2 freeze-dried powder
in the tissues was observed at 60 min, 90 min, 120 min, and 150 min, respectively. The skin
tissues of the BALB/c mice were collected and soaked in 4% paraformaldehyde. The skin
was cut to a 0.5 µm thickness for H&E staining and was observed using a fluorescence
inverted microscope (IX51, OLYMPUS, Tokyo, Japan).

4.5. Analysis of Skin Cuticle Thermotropic Properties with Differential Scanning
Calorimetry (DSC)

The dorsal hairs of the BALB/c mice were removed; drug treatment consisted of
the following: samples from the hFGF2 freeze-dried powder (30 µg and 200 µL) group,
CLD-hFGF2 freeze-dried powder (30 µg and 200 µL) group, and PBS freeze-dried powder
group (200 µL) were smeared onto the back skin of the mice. After treatment for 60 min,
tissue residues were removed with clean water and the skin tissues of the mice were then
stripped. To remove moisture, the skin tissue was pre frozen in a −80 ◦C refrigerator, and
the pre-frozen skin tissue was transferred into a freeze-drying machine for drying treatment
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after 12 h. The freeze-drying parameters of the freeze-drying machine: the temperature
of the cold trap is −45 ◦C, the temperature above the cold trap is about 0 ◦C, the vacuum
degree is 10 Pa, and the freeze-drying time is set to 30 h. After that, the dry skin tissue was
used for thermodynamic analysis with DSC (Q2000, Waters, American). The skin tissues of
the mice were peeled off for thermodynamic analysis under the conditions of a 20–150 ◦C
temperature and a temperature rise rate of 10 ◦C.min−1.

4.6. Analysis of the Skin Cuticle Components Using Fourier Transform Infrared
Spectroscopy (FTIR)

The dorsal hairs of the BALB/c mice were removed; drug treatment consisted of
the following: samples from the hFGF2 freeze-dried powder (30 µg and 200 µL) group,
CLD-hFGF2 freeze-dried powder (30 µg and 200 µL) group, and PBS freeze-dried powder
group (200 µL) were smeared onto the back skin of the mice. After treatment for 60 min, the
residual samples on the skin were washed using clean water. The skin tissue was removed
and ground into powder under liquid nitrogen conditions. Then, a Fourier transform
infrared spectrometer (Nicolet 6700 FT-IR, Thermo Fisher Scientific, USA) was used to
scan the infrared spectrum of the cuticle with a photovoltaic MCT detector at 37 ◦C. The
scanning wave number was 600~4000 cm−1, the resolution was 2 cm−1, and the scanning
number was 20.

4.7. Atomic Force Microscope Assay

HaCat cells were seeded into 6-well plates (4000 cells per well) and cultured overnight
in 10% PBS. Fresh medium was added to replace the old medium, and PBS freeze-dried
powder, CLD freeze-dried powder, hFGF2 freeze-dried powder (100 ng/mL), and CLD-
hFGF2 freeze-dried powder (100 ng/mL) were added to the culture for 24 h. The height
and adhesion force of the cells were observed using atomic force microscopy (AFM).
AFM measurements, using an Agilent Technologies 5500 Scanning Probe Microscope
(SPM, Agilent Technologies Company, Palo Alto, CA, USA) and JPK (NanoWizard®3, JPK
instruments, Berlin, Germany), were performed.

4.8. Deep Second-Degree Burn Wound Model and Treatment

Wistar rats (n = 60, 200–220 g) were purchased from Yisi Biotechnology Limited
Company (Changchun, China), raised to adapt to the environment (23 ± 2 ◦C, humidity:
40–60%) for a week, and were provided adequate commercial feed and water. Sixty male
adult Wistar rats were randomly divided into four groups, and sodium pentobarbital
at a 0.06 mg/g body weight was intraperitoneally injected for anesthesia. At the same
time, the hairs with the backside were shaved and used to make the burn model. A
brass hot block (with a diameter of 2 cm and weight of 100 g) was used to cause contact
burns on the back of the rat. The hot block was preheated in temperature-controlled
boiling water set at 100 ◦C. It was deemed to be convenient to prepare burn wounds of
the same degree by keeping the brass hot block on the skin for 5 s. Then, these rats were
divided into four groups: the blank control group (PBS freeze-dried powder), negative
group (CLD freeze-dried powder: 8.75 mg/mL total protein), positive group (hFGF2
freeze-dried powder: 0.25 mg/mL total protein), and treatment group (CLD-hFGF2
freeze-dried powder: the total protein of 10 mg/mL with contain the hFGF2 was 0.25
mg), and every treatment was added as a 400 uL volume on the burn area every day.

To evaluate the healing of the skin tissue after drug treatment, all the rats were
sacrificed with intraperitoneal injections of 0.1 mg/g body weight pentobarbital sodium at
7, 14, and 21 days after injury. Images of the wounds were obtained at 7, 14, and 21 days after
healing and were analyzed using Image J software. Wound healing rate = (initial wound
area-final wound area)/initial wound area × 100%. Animal care and experimental protocols
were approved by the Department of Laboratory Animal Resources, Jilin Agricultural
University Ethics Committee (No. 2019.06.20001).
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4.9. Quantitative Real-Time PCR

Burn skin tissue RNA was extracted using Trizol reagent (Thermo Fisher science
company of the United States). Gene-specific primers for HMGB1, Caspase 3, and GAPDH
were designed. The forward primer of GAPDH: TCCCTCAAGATTGTCAGCAA, and
the reverse primer of GAPDH: AGATCCACAACGGATACATT. The forward primer of
HMGB1: ATGGGCAAAGGAGATCCTA, and the reverse primer of HMGB1: ATTCATCAT-
CATCATCTTCT. The forward primer of Caspase 3: ATGGAGAACAATAAAACCT, and the
reverse primer of Caspase 3: CTAGTGATAAAAGTAGAGTTC. Quantitative experiments
were set for three times, and three parallel experiments were set for each experiment.

4.10. Statistical Analysis

All statistical data were analyzed in the format of mean ± standard deviation. Stu-
dent’s t-tests were used to determine the significant differences between the groups, with
* p < 0.05 and ** p < 0.01 considered as statistically significant and highly significant,
respectively.
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