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Abstract: Image registration plays a vital role in the mosaic process of multiple UAV (Unmanned
Aerial Vehicle) images acquired from different spatial positions of the same scene. Aimed at the
problem that many fast registration methods cannot provide both high speed and accuracy simul-
taneously for UAV visible light images, this work proposes a novel registration framework based
on a popular baseline registration algorithm, ORB—the Oriented FAST (Features from Accelerated
Segment Test) and Rotated BRIEF (Binary Robust Independent Elemental Features) algorithm. First,
the ORB algorithm is utilized to extract image feature points fast. On this basis, two bidirectional
matching strategies are presented to match obtained feature points. Then, the PROSRC (Progressive
Sample Consensus) algorithm is applied to remove false matches. Finally, the experiments are carried
out on UAV image pairs about different scenes including urban, road, building, farmland, and forest.
Compared with the original version and other state-of-the-art registration methods, the bi-matching
ORB algorithm exhibits higher accuracy and faster speed without any training or prior knowledge.
Meanwhile, its complexity is quite low for on-board realization.

Keywords: UAV; image registration; ORB; point feature; bidirectional matching

1. Introduction

Because of its flexibility, high efficiency, and low cost, UAV (Unmanned Aerial Vehicle)
remote sensing technology has gradually emerged in many fields, such as accurate agri-
culture, resources investigation, environment management, and disaster monitoring [1–3].
How to yield high-precision registered UAV images quickly has become an inevitable
challenge to the wide application of UAV technology [4–9]. However, the high resolutions
of UAV images have a great influence on the detection and matching of image feature
points. Meanwhile, there is a series of parameters in collecting UAV images, such as flight
speed, flight height, and weather conditions, which make detection and matching of image
feature points more difficult to achieve. Hence, the automatic registration of UAV remote
sensing images is worth studying comprehensively.

Recently, the issue of image registration has received considerable intensive attention
from scholars. For instance, the SIFT (Scale Invariant Feature Transform) operator can
obtain a sort of feature invariant to image resolution, rotation, and scaling [10]. However,
the SIFT algorithm will yield 128-dimensional features, which is heavily time-consuming.
Hence, the feature dimension in the SURF (Speeded-Up Robust Features) algorithm is
reduced to 64 through wavelet transform, which efficiently enhances the registration
speed [11,12]. Moreover, focused on matching different features, Zhang et al. combined the
image enhancement technology with the SURF algorithm to obtain better feature points
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and matching efficiencies [13]. Wei et al. divided an image into super-pixels to calculate the
information entropy of each region [14]. The redundancies in feature points are diminished
according to the values of their information entropy. Zhang et al. proposed a threshold
evaluation strategy to extract SURF rough matching points and employed the RANSAC
(Random Sample Consensus) algorithm to eliminate gross errors [15]. Furthermore, in
order to constrain the regions for fine matching, a similarity function of Delaunay triangles
constructed by Harris points is introduced to obtain matched triangle pairs. At present,
ORB (the Oriented FAST and Rotated BRIEF) is a fast local feature detection operator [16],
which is improved based on the FAST (Features from Accelerated Segment Test) [17] and
BRIEF (Binary Robust Independent Elemental Features) algorithm [18]. It overcomes the
lack of scale and rotation invariances in FAST and is faster than most classical image
registration algorithms. However, since it has the disadvantage of low accuracy, this work
attempts to improve the comprehensive performances of ORB on UAV images. The main
contributions of this work are presented below.

a. The ORB operator is utilized to extract image feature points since many fast regis-
tration methods cannot simultaneously provide high speed and accuracy for UAV
images. Its complexity is quite low for on-board realization.

b. The KNN-based search and the Hamming distance are used in the initial matching
of feature points; two bi-directional matching strategies are designed for their fine
matching; and the progressive consistency algorithm (PROSAC) is exploited to re-
move false matches and fit a geometric transformation model to enhance registration
accuracy.

c. The validation experiments were carried out on the UAV images from five typical
scenes, which were acquired by different UAV image sensors. The results indicate
that the proposed algorithm can achieve higher accuracy and faster speed than some
existing fast registration algorithms.

The remainder of this article is organized as follows. Section 2 describes an improved
ORB registration method. After images are down-sampled to speed up feature matching,
an improved ORB operator and a bi-directional matching strategy are utilized to detect
and match feature points in UAV images. After the initial matching, feature point pairs
are obtained, and the PROSRC (Progressive Sample Consensus) algorithm is performed
to screen out mismatched points to obtain an accurately matched point-pair set and final
transform parameters [19]. In Section 3, our proposed algorithm is compared with some
existing registration methods using UAV images acquired from different scenarios and
sensors. The conclusion and discussion are presented in Section 4.

2. Methodology

Because of their high resolutions, it usually takes a long time for common image regis-
tration algorithms to process UAV images. However, there are often real-time requirements
in many applications of UAV images. Therefore, based on an improved ORB operator, a
bi-directional matching strategy is combined with PROSAC to pair extracted feature points,
which can enhance the accuracies of the proposed registration algorithm. The registration
procedure of our algorithm is illustrated in Figure 1.

2.1. Image Preprocessing
2.1.1. Down-Sampling

On account of the high resolutions of UAV images, an appropriate scaling factor is
chosen to adjust the sizes of input images. If the initial size of an image is M × N, the width
and height of the image are reduced to 1/n of the original one after being down-sampled
by n. That is, the size of the obtained image becomes (M × N)/n, where the pixel values of
each n × n region in the original image are replaced by the mean pixel value of the region.
This operation can reduce the speeds of image loading and processing, which is beneficial
to the real-time performances of registration algorithms.



Sensors 2023, 23, 8566 3 of 16Sensors 2023, 23, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. The flow chart of the proposed fast registration algorithm for UAV (Unmanned Aerial 
Vehicle) images. 

2.1. Image Preprocessing 
2.1.1. Down-Sampling 

On account of the high resolutions of UAV images, an appropriate scaling factor is 
chosen to adjust the sizes of input images. If the initial size of an image is M × N, the width 
and height of the image are reduced to 1/n of the original one after being down-sampled 
by n. That is, the size of the obtained image becomes (M × N)/n, where the pixel values of 
each n × n region in the original image are replaced by the mean pixel value of the region. 
This operation can reduce the speeds of image loading and processing, which is beneficial 
to the real-time performances of registration algorithms. 

2.1.2. Graying 
It is known that the structure and texture characteristics of visible images usually will 

not vary with optical bands. For the sake of processing speeds, grayscale images are used 
as the basis of image registration in this work, and input RGB images are grayed according 
to the importance of three optical bands. The intensity of each pixel is generated from a 
weighted average of three different components. A graying instance of UAV images is 
given in Figure 2. Considering the sensitivity of human eyes to color information, the 
intensity of an arbitrary pixel can be denoted as 

= + +( , ) 0.30 ( , ) 0.59 ( , ) 0.11 ( , )f i j R i j G i j B i j  (1)

where R(i, j), G(i, j), and B(i, j) represent the three components at an arbitrary piont (i, j) in 
an input image [20]. 

  
(a) (b) 

Figure 2. A graying instance of UAV images: (a) a visible image; (b) the grayed image. 

2.2. ORB Brief 
To ensure scale invariances, a Gaussian pyramid and patch centroid calculation 

based on FAST are combined in ORB. Moreover, an improvement on the BRIEF algorithm 
for rotation invariance is designed for constructing feature descriptors of ORB [21–23]. 

  

Figure 1. The flow chart of the proposed fast registration algorithm for UAV (Unmanned Aerial
Vehicle) images.

2.1.2. Graying

It is known that the structure and texture characteristics of visible images usually will
not vary with optical bands. For the sake of processing speeds, grayscale images are used
as the basis of image registration in this work, and input RGB images are grayed according
to the importance of three optical bands. The intensity of each pixel is generated from
a weighted average of three different components. A graying instance of UAV images
is given in Figure 2. Considering the sensitivity of human eyes to color information, the
intensity of an arbitrary pixel can be denoted as

f (i, j) = 0.30R(i, j) + 0.59G(i, j) + 0.11B(i, j) (1)

where R(i, j), G(i, j), and B(i, j) represent the three components at an arbitrary piont (i, j) in
an input image [20].
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2.2. ORB Brief

To ensure scale invariances, a Gaussian pyramid and patch centroid calculation based
on FAST are combined in ORB. Moreover, an improvement on the BRIEF algorithm for
rotation invariance is designed for constructing feature descriptors of ORB [21–23].

2.2.1. Feature Point Extraction

In terms of feature point detection, the kernel method of ORB is based on FAST [24–26].
If the difference in the gray level between the central pixel and one of its neighbors is
significant enough, the point will be regarded as a feature point. This detection method
of feature points not only preserves image features as much as possible but also greatly
reduces computational complexity. It will bring about a significant improvement in the
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speed of the ORB algorithm. For an arbitrary detected feature point, the moment of its
neighbor patch mpq is defined as

mpq = ∑
x,y

xpyq I(x, y), p, q ∈ {0, 1} (2)

where I(x, y) is the intensity of the pixel at (x, y). Then, the centroid coordinate C can be
determined by

C =

(
m10

m00
,

m01

m00

)
(3)

Suppose that the feature point is O. The angle of the vector
→

OC θ is regarded as the
orientation of the feature point, as given below.

θ = arctan2
(

m01

m10

)
(4)

where arctan2 is the quadrant-aware arctan [24].

2.2.2. Feature Descriptor Construction

After the feature points in images are found, an improved BRIEF algorithm, rBRIEF
(rotation-aware BRIEF), is adopted in ORB to describe the features of feature points [27–29].
Binary coding is employed by BRIEF to construct feature description vectors, which is very
helpful for accelerating calculation. Since BRIEF does not possess rotation invariance, the
specific improvements on the BRIEF algorithm in ORB are as follows [24].

Give an M ×M pixel smoothed patch P. A binary testing τ(P; u, v) can be defined as

τ(P; u, v) =
{

1 P(u) < P(v)
0 otherwise

(5)

where P(u) and P(v) are the intensities of the pixels at two points u and v, respectively.
For n pairs of points around a feature point, the generated feature descriptor fn(P) is an
n-dimensional binary string, as follows.

f n(P) = ∑
1≤i≤n

2i−1τ(P; ui, vi) (6)

According to the orientation of feature points, a corresponding matrix S is constructed
as given in the following Equation.

S =

[
u1, u2, · · · , un
v1, v2, · · · , vn

]
(7)

Since the orientation of the feature point is θ, the corresponding rotation matrix Rθ is
defined by

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
(8)

Then, if the matrix S is transformed by the rotation matrix Rθ , a new feature description
matrix Sθ is obtained, which can be derived as below.

Sθ = RθS =

[
cos θ sin θ
− sin θ cos θ

][
u1, u2, · · · , un
v1, v2, · · · , vn

]
(9)

Consequently, the improved descriptor gn(P, θ) can be expressed as

gn(P, θ) = fn(P)|(ui, vi) ∈ Sθ (10)
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2.3. Initial Matching and Screening

The initial matched point pairs are yielded by comparing the extracted feature points
in the image to be registered and its reference image. In practice, the comparison of image
point features is realized based on the similarities of feature points. The Hamming distance
is chosen to describe the similarities between different points in this research [30–32]. To
enhance the efficiency of initial matching, a fast search based on the K-Nearest Neigh-
bor (KNN) algorithm is adopted in this work [33,34]. Unlike common violent matching
methods, it searches for a corresponding point with the highest similarity for a point to
be registered in a determined region of the reference image. Their Hamming distances to
the point to be registered are calculated. Two matched points, optimal and suboptimal,
are found by KNN. Lowe’s algorithm is adopted to compare whether the ratio of the two
distances is less than a given threshold [35]. If so, the current matching relationship will be
regarded as an acceptable matched point pair. Otherwise, the matching relationship will
be eliminated.

2.4. Bi-Directional Fine Matching

The specific means of feature point detection and feature vector construction applied
in ORB significantly contribute to processing speeds. Still, the algorithm’s performances are
poor in terms of accuracy. Hence, it is necessary to accomplish the fine matching of feature
points through an appropriate strategy. However, the matching procedures of the most
common registration methods are unidirectional, which only search matching objects for
feature points in reference images. There are many errors and omissions in their matching
results. Focused on these problems, two bi-directional matching strategies are proposed in
this work, as depicted in Figure 3.

Strategy 1: The primary idea of the first bi-directional matching strategy is to remove
wrongly matched points in initial matching results. As presented in Figure 3a, its specific
procedure is as follows. Suppose that the feature points detected in an image to be registered
are marked as {p1, p2, . . ., pn}, and the feature points detected in its reference image are
marked as {q1, q2, . . ., qm}. After forward matching, a set of matched feature points in the
two images is obtained and denoted as PQ = {piqj, 1 ≤ I ≤ n and 1 ≤ j ≤ m}. Similarly, after
backward matching, a set of matched feature points in the two images can be represented
by QP = {qspt, 1 ≤ s ≤ n and 1 ≤ t ≤ m}. Then, the backward matching results are traversed
according to the forward matching result. If it is found that there are two identical pairs
of matched points, i.e., piqj and qtps with i = s and j = t, the point pair piqj (or qtps) can
be regarded as a correct matching relationship and will be preserved. Otherwise, the
matched point pairs in the backward matching result will be eliminated. Thereby, a new
set of matched feature points P̃Q̃ can be built more reliably through this bi-directional
matching strategy.

Strategy 2: The other bi-directional matching strategy is to compensate missed feature
points into unidirectional results. The concrete realization is elaborated as follows. If there
is a matched point pair qspt (1 ≤ s ≤ n and 1 ≤ t ≤ m) in the backward matching result,
but qs and pt do not appear in the forward matching result PQ, qspt will be deemed as a
matching pair missed in forward matching. Accordingly, the point pair ptqs will be added
to the set PQ. Then, a new set P̃Q̃ containing more matched feature points is obtained until
all the point pairs in the backward matching result are examined. The detail matching flow
is elaborated in Figure 3b.
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2.5. False Match Elimination and Transform Model Fitting

In this work, PROSAC is employed to remove mismatched feature points further
from bi-directional rough matching results [36]. It is known that the classical RANSAC
method is realized by random sampling of rough matching results to fit transform models.
This method is random and heavily depends on pre-set iteration times for fitting models.
Nevertheless, PROSAC is constructed by sampling an increasing set of optimally matched
point pairs, which have been ranked based on a certain similarity measure. Sampling
and fitting models based on top-ranked point pairs help enhance the success rates of
obtaining correct models. Meanwhile, the randomness of the algorithm decreases obviously.
Specifically, matched point pairs in P̃Q̃ are sorted from near to far according to Hamming
distances of feature descriptors. Then, four point pairs are randomly chosen from the top m
pairs in the reordered feature point-pair set, which can be used to fit a 3 × 3 homography
matrix H, which can satisfy the following condition.x′

y′
1

 ∼ H3×3

x
y
1

 (11)

where (x, y) and (x’, y’) correspond to point coordinates in the image to be registered and
the reference image, respectively. According to the current parameters of the transform
matrix H, the coordinates of all other points in the image to be registered are transformed
by H into the coordinate system of the reference image. Then, these points are classified
into inner or outlier points according to the differences between their projection coordinates
and corresponding point coordinates in the reference image. These inner points are refined
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matched point pairs, and H will be renewed in light of them. Repeatedly, the inner point
set and H will be updated until the pre-set times of iterations are reached.

3. Results

The experimental hardware platform includes an Intel Core i5-4590K processor with a
main frequency of 3.5 GHz and 16 GB RAM. The experimental software environment con-
tains a 64-bit operating system Windows 10, a programming tool Visual Studio 2017, and
an open-source library OpenCV 3.20. The comprehensive performances of the proposed
registration algorithm are verified in the experiments by using UAV images of different
sensors acquired from different scenes, including urban, road, building, farmland, and
forest. Moreover, the improved ORB algorithm is compared with the existing popular algo-
rithms, including SIFT [37], SURF [38], KAZE (a Japanese word) [39], AKAZE (Accelerated
KAZE) [40], and its original version in terms of speed and accuracy.

3.1. Determining the Number of Feature Points

Since the number of feature points extracted by the ORB operator is optional, a
comparative experiment is carried out to determine an appropriate number of feature
points for optimal registration effects. Hence, the UAV images of five scenes are registered
through the different numbers of feature points extracted by the original ORB algorithm.
The relationship between the number of feature points and running time or Root Mean
Square Error (RMSE) are separately plotted in Figure 4a,b. RMSE can be denoted as
follows [2].

RMSE =

√
1
n

n

∑
i=1

(‖T(yi, θ)− xi‖)2 (12)

where xi and yi (for i = 1, 2, . . ., n) stand for one of the n matching point pairs from the
image to be registered and the reference image. T is a transform model, and θ is the model
parameter vector. ‖ • is the Euclidean distance between two points. Generally, the smaller
the value of RMSE, the higher the registration accuracy. From Figure 4a, it can be found
that the running time of the algorithm is directly proportional to the number of feature
points. Meanwhile, it can be seen from Figure 4b that there exist minimum RMSE values
individually at 1000, 2000, and 2500, and most of the values of RMSE for the five senses
reach the lowest when the number of feature points is 1000. Thereby, considering running
time and registration accuracy, the number of feature points to be extracted is uniquely set
at 1000 for different scenes in the subsequent registration experiments.
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3.2. Registration of Scene Images

The sources and parameters of UAV images used in the registration experiments are
listed in Table 1. The urban and building scene images are, respectively, selected from
the high-altitude and near-ground drone data of an ISPRS benchmark for multi-platform
photogrammetry [41]. The image pairs of a road scene are the test images provided by
Pix4Dmapper v.2.0 software. The farmland and forest scene images are self-collected.
Particularly, the image pair of a farmland scene was acquired by the Parrot Sequoia multi-
spectral camera with four bands, including green, red, red-edge, and near-infrared. Its red
edge images are employed as blue components in the registration of this work. The two
images of each scene image-pair were taken at different angles with an overlap. The image
pair of the urban scene possesses many details and is quite complex, as shown in Figure 5.
As mentioned before, 1000 pairs of feature points are extracted in the two images, and only
99 pairs of points are left after initial screening, as displayed in Figure 5c.

Table 1. The sources and parameters of UAV images used in the registration experiments.

Scenes Sensors Image
Resolution Plots Shooting Time Shooting

Height (m)
Focal Length

(mm)

urban Hasselblad
H3DII-50 2044 × 1533 Toronto, Canada June 2014 500 80

road Canon
IXUS 220HS 2000 × 1500 Brig, Switzerland September 2013 200 4

building SONY
NEX-7 3000 × 2000 Dortmund, Germany June 2014 50 16

farmland Parrot Sequoia 2404 × 1728 Dayi, China September 2017 80 5

forest ZENMUSE Z30 1920 × 1080 Wusu Foshan Forest
Park, China June 2019 152 10

Based on the result of rough matching, two bi-directional matching strategies are
adopted in fine matching, as shown in Figure 6. There are 60 matched point pairs preserved
after screening out 39 point pairs using the first bi-directional matching strategy. After
processing by the second bidirectional matching strategy, 121 matching point pairs remain,
including 22 supplemental point pairs.

Then, the elimination results of false matches using the PROASC algorithm are shown
in Figure 7, and the final registration results are presented in Figure 8. Since some pixel
points in transformed images cannot be assigned directly to new grid coordinates, bi-
linear interpolation is utilized to generate stitched images [42]. For the result of the first
bi-directional matching strategy, 23 pairs of matched point pairs remain, and 37 pairs of
matching point pairs are removed by the PROSAC algorithm. In this work, the running time
and RMSE of the registration algorithm are chosen as the main indicators in performance
comparisons. The running time of the registration process is 3.922 s, and the RMSE is
0.9926 pixels. The obtained transform matrix is as follows.

H =

1.000727295875549 0.000115774389996 −675.5347900390625
0.000406843028031 1.000958800315857 118.6014556884766
0.000000566664652 0.000000197085213 1

 (13)

For the result of the second bi-directional matching strategy, 45 pairs of matching
point pairs are left, and 76 pairs of matching point pairs are removed by the PROSAC
algorithm. The registration time is 4.031 s, and the RMSE is 1.0750 pixels. The corresponding
perspective matrix is denoted as

H =

1.000828385353088 0.000052663752680 −675.6309814453125
0.000271332741249 1.001049280166626 118.7060470581055
0.000000538613107 0.000000276266348 1

 (14)
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(b) Strategy 2.

The registration accuracies of different registration algorithms for different scenes are
listed in Table 2. For the five scene images, it can be seen that regarding accuracies, the
proposed registration algorithms can provide obvious improvements on the original ORB
algorithm, and the method based on the first bi-directional matching strategy exceeds all
the other algorithms. For the scene images of urban areas, buildings, and farmlands, our
algorithm even can achieve sub-pixel registration accuracies. In addition, it is revealed
that the accuracy improvements of the proposed methods are related to the scenes of the
experimental images. If there are rich details in images such as those found in urban, road,
and building images, the accuracies can increase by more than 20.0% compared to the
original ORB algorithm. If the images have fewer details, such as farmland and forest
images, the accuracy enhancements are not outstanding, but still about 10.0%. The reason
may be that the more details in images, the greater the differences in extracted feature
points. Furthermore, the qualities of matched feature point pairs can be improved greatly
after coarse and fine screening so that registration accuracies increase.
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Table 2. RMSE comparison of registration accuracy of different algorithms (pixels).

Scenes
Methods

SIFT SURF KAZE AKAZE ORB
Ours

(Strategy 1)
Ours

(Strategy 2)

urban 1.2322 1.1242 1.1846 1.0206 1.3282 0.9926 1.0750
road 1.1805 1.2670 1.2945 1.1546 1.3530 1.0124 1.1757

building 1.1758 1.2918 1.2173 1.1163 1.3273 0.9828 1.0471
farmland 1.3735 1.3905 1.2668 1.1606 1.2005 1.0853 0.9909

forest 1.2692 1.3344 1.2287 1.2327 1.2871 1.0490 1.0776

The best results for different scene are bolded.

The time consumption comparison of different registration algorithms is presented in
Table 2. As can be seen, the ORB algorithm has obvious advantages in running time over
the other five algorithms. The reason may be that the high resolutions of these experimental
UAV images result in more feature points being detected by the other five algorithms.
Consequently, it takes a lot of time for these methods, especially for the KAZE algorithm,
to detect and match feature points. However, it seems rational that the matching accuracy
of the ORB algorithm is the lowest in Table 3 because its performance is closely related
to the number of feature points. Our proposed registration methods cannot only inherit
the advantage in speeds from the ORB algorithm but also achieve excellent registration
qualities by combining the bi-directional matching strategies and a false-match elimination
method. Hence, it can be drawn that our proposed registration algorithm realizes accuracy
enhancement at the small cost of processing speeds.

Table 3. Time consumption comparison of different registration algorithms (s).

Scenes
Methods

SIFT SURF KAZE AKAZE ORB
Ours

(Strategy 1)
Ours

(Strategy 2)

urban 125.254 64.023 128.408 101.053 2.252 3.922 4.031
road 137.025 86.799 180.031 144.146 2.324 3.483 3.572

building 163.348 139.725 194.028 117.054 3.457 4.948 4.992
farmland 50.899 46.652 72.712 35.768 1.414 3.562 3.775

forest 93.889 42.794 84.774 103.447 1.727 3.315 3.295

In addition, the numbers of matched point pairs in the five scene images after different
process stages are illustrated in Figure 9. It is known that there are abundant detail features
in the UAV images of urban areas, buildings, and roads. In contrast, the contents of the UAV
images of farmlands and forests are relatively simple, and their feature textures are not
enough. In general, a sufficient number of feature points need to be extracted by matching
methods effectively for fitting transformation model parameters. For the scene images
of urban areas, buildings, and roads, a relatively large number of representative feature
points can be detected. Although it benefits the increases in registration accuracies, it also
spends more time in additional calculations. For the images of farmlands and forests, fewer
and lower representative feature points are detected, which leads to lower registration
accuracies but less calculation time.

The results of bi-directional matching for the other four scene image pairs are in
Figure 10, and the final stitched images are displayed in Figure 11. It can be observed from
Figure 11a that in the road scene, there are slight mismatches for one road in the mosaicking
result of the first bi-directional matching strategy. The reason may be that the less matched
point is extracted by this strategy. In Figure 11b, there are some obvious boundary effects
in the body of a transmission tower, which may be due to its incomplete appearance at
the edge of the reference image. From Figure 11c,d, it can be thought that though there
are no significant edge features such as points and lines in the scenes of farmland and
forest, the proposed fast registration provides good results for these image pairs. It can be
noted that only a visible mismatch for one road exists in the result of the first bi-directional
matching strategy for the farmland scene. This may be owing to its insufficient matched
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point pairs, as shown in Figure 10c. However, some areas for road and farmland scenes
appear blurred owing to the quality of input images. Specifically, the red edge images of
the farmland scene regarded as blue components in registration are inherently not clear
enough. In addition, imaging conditions, such as shooting heights, sensor characteristics,
atmospheric visibility and wind speed, light intensity, and the stability of drone platforms,
may all affect the quality of drone images.
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Figure 11. The stitched images of four scenes by the proposed registration algorithms. The left one
is obtained according to the first bi-directional matching strategy, and the right one is generated by
using the second bi-directional matching strategy: (a) roads; (b) buildings; (c) farmlands; (d) forests.
Some obvious mismatches are marked by red circles.

4. Conclusions

Since the ORB algorithm is not able to balance accuracy and time in the registration
of UAV-visible images, in this work, a fast automatic registration method for UAV images
is proposed by combining the ORB operator with bi-directional matching strategies. The
KNN-based search method and a similarity measurement are assembled in initial matching.
Two bidirectional matching strategies are designed for fine matching, and the PROSAC
algorithm is employed to remove mismatches. In order to verify its performance, the
proposed algorithm is compared with the existing fast algorithm for the registration of UAV
images from different sensors and scenes. From the experimental results, it can be thought
that the improvements of this work are effective. The proposed registration algorithm
can enhance matching accuracy for UAV images without requiring any training or prior
knowledge while maintaining the high registration speeds of the original ORB algorithm.
The maximum accuracy improvement for the experimental images reaches 25.95% for
the building scene. In terms of processing time and accuracy, the bi-directional matching
method of reducing matched point pairs slightly outperforms the method of increasing
matched point pairs. In addition, the proposed registration algorithm needs no training or
prior knowledge with low complexities, which is quite suitable for onboard realization.
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