
Citation: Li, L.; Guo, J.; Wang, Q.;

Wang, J.; Liu, Y.; Shi, Y. Design and

Experiment of a Portable

Near-Infrared Spectroscopy Device

for Convenient Prediction of Leaf

Chlorophyll Content. Sensors 2023,

23, 8585. https://doi.org/

10.3390/s23208585

Academic Editor: Francesca

Antonucci

Received: 19 September 2023

Revised: 10 October 2023

Accepted: 18 October 2023

Published: 19 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Experiment of a Portable Near-Infrared
Spectroscopy Device for Convenient Prediction of Leaf
Chlorophyll Content
Longjie Li 1 , Junxian Guo 2,*, Qian Wang 1, Jun Wang 1, Ya Liu 1 and Yong Shi 1

1 College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
lidelongjie@163.com (L.L.); hebau_wangqian@163.com (Q.W.); 320232352@xjau.edu.cn (J.W.);
zztyly@163.com (Y.L.); shiyong19860324@163.com (Y.S.)

2 Key Laboratory of Xinjiang Intelligent Agricultural Equipment, Urumqi 830052, China
* Correspondence: junxianguo@163.com

Abstract: This study designs a spectrum data collection device and system based on the Internet
of Things technology, aiming to solve the tedious process of chlorophyll collection and provide
a more convenient and accurate method for predicting chlorophyll content. The device has the
advantages of integrated design, portability, ease of operation, low power consumption, low cost,
and low maintenance requirements, making it suitable for outdoor spectrum data collection and
analysis in fields such as agriculture, environment, and geology. The core processor of the device
uses the ESP8266-12F microcontroller to collect spectrum data by communicating with the spectrum
sensor. The spectrum sensor used is the AS7341 model, but its limited number of spectral acquisition
channels and low resolution may limit the exploration and analysis of spectral data. To verify the
performance of the device and system, this experiment collected spectral data of Hami melon leaf
samples and combined it with a chlorophyll meter for related measurements and analysis. In the
experiment, twelve regression algorithms were tested, including linear regression, decision tree, and
support vector regression. The results showed that in the original spectral data, the ETR method
had the best prediction effect at a wavelength of 515 nm. In the training set, RMSEc was 0.3429, and
Rc

2 was 0.9905. In the prediction set, RMSEp was 1.5670, and Rp
2 was 0.8035. In addition, eight

preprocessing methods were used to denoise the original data, but the improvement in prediction
accuracy was not significant. To further improve the accuracy of data analysis, principal component
analysis and isolation forest algorithm were used to detect and remove outliers in the spectral data.
After removing the outliers, the RFR model performed best in predicting all wavelength combinations
of denoised spectral data using PBOR. In the training set, RMSEc was 0.8721, and Rc

2 was 0.9429. In
the prediction set, RMSEp was 1.1810, and Rp

2 was 0.8683.

Keywords: Internet of Things technology; spectral data analysis; chlorophyll content prediction;
regression algorithms; data preprocessing

1. Introduction

With the development and popularization of Internet of Things (IoT) technology, the
application scope of sensors and devices is becoming increasingly wide [1–4]. Spectrum
data can reflect the characteristics and properties of substances [5], while providing object
recognition and classification information [6]. In the field of agriculture, the collection and
analysis of spectrum data are of great significance for nutrient management and growth
monitoring of Hami melon crops [7]. Hami melon is an important economic crop [8],
and photosynthesis is crucial for ensuring healthy growth and high yield of plants [9].
Chlorophyll, as an important photosynthetic pigment in plants [10], is closely related to
the photosynthetic rate and growth status of plants [11,12]. By measuring and analyzing
spectrum data of plants, critical information such as chlorophyll content can be obtained
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non-destructively [13]. Jeremy Aditya Prananto first evaluated the ability of handheld
near-infrared spectrometers to predict nutrient content in dried and ground cotton leaf
samples, demonstrating that handheld near-infrared spectrometers are a practical choice for
accurately measuring leaf nutrient concentration [14]. Lihua Liu found that near-infrared
spectroscopy can be used as an alternative method for real-time quantitative and monitoring
of chlorophyll during the processing of Tiancha [15], providing scientific guidance for
agricultural production. Jianfeng Zhang developed a new method for estimating winter
wheat leaf chlorophyll content based on visible and near-infrared sensors [16]. Yu-Jie
Wang used a miniature near-infrared spectrometer to evaluate the pigment content of
two field tea trees. A miniature near-infrared system based on a smartphone can quickly,
non-destructively, and inexpensively diagnose plant nutrition status [17]. Xiu Jin used
a handheld miniature near-infrared spectrometer to analyze the nitrogen, phosphorus,
and potassium content of nutrient-deficient pear leaf samples, with this method able
to quickly predict nutrient deficiency during the cultivation period of pear leaves [18],
promoting crop quality and yield improvement [19]. However, traditional spectral data
collection and analysis processes have some shortcomings. For example, traditional spectral
data collection methods require the use of complex fiber optic cables to transmit spectral
information and rely on heat-generating light source equipment and spectral analyzer
equipment to collect data with a computer. The large size of the entire device is inconvenient
for outdoor collection operations, and the user interface is simple and cannot meet the
requirements of data visualization and real-time interaction.

To solve the above problems, this study proposes a spectrum data collection device and
system based on IoT technology (see Appendix A for details). Through the combination of
cloud servers, collection devices, and interactive interfaces, the system achieves automatic
collection, storage, and data visualization of spectral data. The cloud server deploys a series
of necessary software services using Docker containerization technology to achieve efficient
data reception, secure storage, and flexible interaction. The collection device integrates
advanced microcontrollers and spectral sensors to achieve accurate collection and trans-
mission of spectral data. The interactive interface uses Websocket technology to achieve
real-time synchronization of front-end and back-end data and user visualization operations.

This study demonstrates non-destructive detection of chlorophyll content in muskmelon
leaves. By collecting spectral data and chlorophyll content measurements of muskmelon
plants at different growth stages and nutrient states, a prediction model can be established,
and chlorophyll content can be predicted by analyzing the spectral data of new samples [20].
Such a prediction model provides important reference for agricultural production, helping
farmers and agricultural experts adjust fertilization and nutrient management strategies
in a timely manner [21], and maximizing the yield and quality of muskmelon [22]. The
experiment proves that the spectral data collected using IoT technology can accurately
predict the chlorophyll content of leaves through various data processing and analysis. At
the same time, the design of the interactive interface enables users to conveniently operate
and explore spectral data and obtain real-time collection results. Therefore, the research
results have important theoretical significance and practical application value, providing a
new solution for the collection and analysis of spectral data, and providing strong support
for practical application in agriculture, environmental monitoring, and other related fields.

2. Overall Design of the Device

As shown in Figure 1, the collection device ensures that equidistant spectral data can
be obtained every time through the spectral sensor (6) and leaf fixing plate (7). The opera-
tion of the device mainly depends on the cloud server, collection device, and interactive
interface. The cloud server adopts Docker containerization technology to deploy the EMQX,
Node-RED, InfluxDB, and Flask environments, realizing the reception, storage, and data
interaction of the data input by the web page users and the spectral data collected by the
collection device. The collection device uses the ESP8266-12F microcontroller (hereinafter
referred to as the microcontroller) as the core processor, communicates with the spectral
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sensor to obtain spectral data, and transmits the collected data to the cloud server through
WiFi wireless network. The interactive interface uses Websocket technology to achieve
real-time synchronization of front-end and back-end data, and visualizes the data through
chart functions, providing intuitive data analysis and display functions.
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Figure 1. Structure of the Acquisition Device. 1. Leaf blade; 2. power switch; 3. indicator light;
4. display screen; 5. function keys; 6. AS7341; 7. fixing plate; 8. force arm; 9. switch.

2.1. Deployment of IoT Server

As shown in Figure 2, the server is configured with one core CPU, 2 GB memory,
40 GB system disk, and 1 Mbps public network bandwidth, running on Ubuntu 16.04.6 LTS
x86_64. EMQX is responsible for handling the access to MQTT communication devices
and forwarding topic data to ensure efficient data transmission. Node-RED serves as
a flow orchestration tool, listening to and capturing the spectrum data collected by the
AS7341 spectrum device and the data input by the user on the web page in real-time and
forwarding them to the InfluxDB database for reliable data storage. Meanwhile, Flask
is used to subscribe to real-time spectrum data in the MQTT server and the data saved
in the final database and transmit said data to the front-end for visualization display
through WebSocket.
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2.2. Spectral Acquisition Device

The spectral acquisition device, as shown in Figure 3, uses a two-layer PCB circuit
board without copper for testing. The device is powered by a 5 V power bank, and the
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spectral sensor used is the AS7341, with a data acquisition channel covering a range of
415 nm to 940 nm. The collected spectral data are efficiently processed by the microcon-
troller through I2C communication. As shown in Figure 4, the microcontroller packages
the sensor data and wirelessly transmits it to the cloud server via a shared network WiFi
connection with a mobile phone (see Appendix B for details). Users can view the real-time
visualization of the latest collected spectral data through a web interface. At the same
time, the microcontroller receives information on light intensity, acquisition times, and
data calibration instructions from the server. By using the light intensity information to
control the current of the LED, the brightness of the LED can be adjusted. Meanwhile, by
setting the original spectral acquisition times based on the acquisition times information,
the average value calculation is performed to improve the reliability and accuracy of the
data. By receiving spectral calibration instructions, the data correction and compensation
parameters are used to adjust the whiteboard spectral curve to the same level, ensuring the
accuracy and consistency of the data.
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2.3. Interactive Interface Design

The collection interface is shown in Figure 5. The back-end uses Flask to establish a
communication connection with the MQTT server, subscribes to the spectral data sent by
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the spectral acquisition device, and uses WebSocket to transmit the spectral data to the
front-end for real-time rendering and display. The front-end is responsible for receiving and
rendering the spectral data sent by the back-end and for providing users with the function
to input experimental sample numbers, leaf temperature, and chlorophyll data. The front-
end sends the user-input data to the back-end through an interface. After receiving the data
submitted by the user through the web page, the back-end splices it with the latest spectral
data, packages it, and sends it to the MQTT server for data forwarding and storage in the
InfluxDB database. The latest database data are visualized and displayed in the front-end,
allowing operators to confirm whether their submitted data have been successfully saved.
In addition, the functionality provided by InfluxDB allows for the download of saved
data, including combined data of user-submitted data and spectral data, reducing the
workload of experimental personnel in secondary data statistics, and providing an efficient
and reliable data processing and analysis environment for them.
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2.4. Data Collection

The experiment was conducted at the experimental field of Xinjiang Academy of Agri-
cultural Sciences, with longitude of 87.476325 and latitude of 43.949915. A Top Cloud-agri
TYS-4N chlorophyll meter was selected, with a measurement range of 0.0–99.9 SPAD and
an accuracy of ±1.0 SPAD. The SPAD values of the leaves of Hami melon were measured,
avoiding measuring over the thick veins to ensure the accuracy of the measurement re-
sults [23]. The SPAD values and spectral data of 100 different plant leaf samples were
measured outdoors, and the collected spectral data are shown in Figure 6a. Before collect-
ing spectral data, the hardware acquisition parameters need to be set in the web setting
area of the collection device. In the “Acquisition Times” position on the web page, the
average collection times should be set to 3, and the LED current size should also be set
to 3 in the “LED” position. After completing these parameter settings, click the “Setting”
button to submit the set parameters. During the subsequent spectral data collection, three
original average spectral data points of the leaf samples under fixed light intensity can be
obtained [24].
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3. Results
3.1. Prediction of Raw Spectral Data

The original spectral data are shown in Figure 6a. The entire dataset was randomly
divided into a 70:30 ratio for model training and prediction, respectively. Twelve regres-
sion algorithms were used to analyze the spectral data and SPAD values, including linear
regression (LR) [25], K-nearest neighbor regression (KNN) [26], support vector regression
(SVR) [27], ridge regression (RR) [28], Lasso regression (Lasso) [29], decision tree regression
(DTR) [30], extremely randomized tree regression (ETR) [31], random forest regression
(RFR) [32], AdaBoost regression (ABR) [33], gradient boosting regression (GBR) [34], bag-
ging regression (BAR) [35], and partial least squares regression (PLSR) [36] (see Appendix C
for details). For each collection band and all band combinations between 415 nm and
940 nm, the twelve regression algorithms were used for analysis and prediction. The best
prediction results for each regression analysis are shown in Table 1. It was found that ETR,
RFR, and BAR performed well in predicting SPAD values at a wavelength of 515 nm, with
ETR attaining the best prediction performance. On the training set, the RMSEc of ETR was
0.3429 and Rc

2 was 0.9905. On the prediction set, the RMSEp of ETR was 1.5670 and Rp
2

was 0.8035. The model prediction performance is shown in Figure 9a.

Table 1. Original spectrum and SPAD analysis.

Forecasting
Method

Wavelength
(nm)

Training Set Prediction Set

RMSEc Rc
2 RMSEp Rp

2

LR 590 1.9273 0.6987 2.0030 0.6691
KNN 515 1.5182 0.8130 1.6608 0.7792
SVR 515 1.8824 0.7126 1.8471 0.7269
RR 590 1.9273 0.6987 2.0330 0.6691

Lasso 590 1.9273 0.6987 2.0330 0.6691
DTR 515 0.3429 0.9905 1.7449 0.7563
ETR 515 0.3429 0.9905 1.5670 0.8035
RFR 515 0.7062 0.9595 1.5798 0.8002
ABR 515 1.1206 0.8981 1.6480 0.7826
GBR 515 0.4692 0.9821 1.6986 0.7690
BAR 515 0.8010 0.9480 1.5777 0.8008
PLSR 590 1.9273 0.6987 2.0330 0.6691

3.2. Spectral Data Denoising Analysis

Considering the noise interference from environmental light during the collection of
original spectral data from leaf samples [37], eight widely used preprocessing methods
were employed to eliminate the effects of scattering and noise on the original data. These
methods include Multiplicative Scatter Correction (MSC) [38], Standard Normal Variate
(SNV) [39], Discrete Wavelet Transform (DWT) [40], Savitzky-Golay (SG) smoothing [41],
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MinMax scaling (MinMax) [42], Outlier Detection (OD) [43], Percentile-based outlier re-
moval (PBOR) [44], and Continuum Removal (CR) [45]. The preprocessed spectral curves
are shown in Figure 7. To evaluate the effects of these eight denoising preprocessing
methods on prediction accuracy, ETR, RFR, and BAR, the three regression algorithms
with the highest prediction accuracy in the original spectra, were used to perform regres-
sion analysis on each denoised spectrum. The analysis results are shown in Table 2. By
comparing the regression results of each denoising method with the RMSEc, Rc

2, RMSEp,
and Rp

2 values in Table 1, it was found that DWT and OD showed a trend of decreasing
prediction accuracy, while the other preprocessing methods did not significantly improve
the prediction accuracy.
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Table 2. Noise reduction analysis of spectral data.

Pretreatment
Method

Forecasting
Method

Wavelength
(nm)

Training Set Prediction Set

RMSEc Rc
2 RMSEp Rp

2

MSC
ETR

515
0.3429 0.9905 1.5670 0.8035

RFR 0.7061 0.9596 1.5826 0.7995
BAR 0.8010 0.9480 1.5777 0.8008

SNV
ETR

515
0.3429 0.9905 1.5670 0.8035

RFR 0.7061 0.9596 1.5826 0.7995
BAR 0.8010 0.9480 1.5777 0.8008

DWT
ETR 555

590
555

0.0720 0.9996 2.3676 0.5513
RFR 0.7567 0.9536 2.2347 0.6002
BAR 1.0597 0.9089 2.2184 0.6061

SG
ETR

515
0.3429 0.9905 1.5670 0.8035

RFR 0.7062 0.9595 1.5798 0.8002
BAR 0.8010 0.9480 1.5777 0.8008

MinMax
ETR

515
0.3429 0.9905 1.5670 0.8035

RFR 0.7044 0.9598 1.5798 0.8002
BAR 0.7989 0.9482 1.5777 0.8008

OD
ETR

590
0.1737 0.9971 1.8834 0.6074

RFR 0.7179 0.9508 1.7394 0.6651
BAR 0.8133 0.9369 1.7986 0.6419

PBOR
ETR

515
0.3618 0.9894 1.5813 0.7998

RFR 0.7106 0.9590 1.5853 0.7988
BAR 0.8079 0.9471 1.5679 0.8032

CR
ETR

515
0.3429 0.9905 1.5670 0.8035

RFR 0.7061 0.9596 1.5826 0.7995
BAR 0.8010 0.9480 1.5777 0.8008

3.3. Data Dimensionality Reduction and Outlier Removal

To eliminate the interference of abnormal samples in the denoised and original spectral
data, Principal Component Analysis (PCA) was used to reduce the dimensionality of the
data [46], with a final dimension of three and projection onto a three-dimensional space.
An Isolation Forest (IF) algorithm was used to detect and distinguish abnormal values
based on the distribution of each sample point in the three-dimensional space [47]. The
classification results of the original spectral data and the denoised spectral data are shown
in Figures 6b and 8, respectively. After removing the abnormal values from the original and
denoised spectral data, ETR, RFR, and BAR regression analysis were performed separately.
The specific analysis results are shown in Table 3, and the judgment analysis was compared
with the RMSEc, Rc

2, RMSEp, and Rp
2 of Table 1. The prediction accuracy of ETR decreased

significantly, while in RFR and BAR, the prediction accuracy increased significantly. Among
them, the effect of RFR was the best. Compared with the highest precision model without
removing the abnormal values, the RMSEp decreased from 1.5670 to 1.3456, and the Rp

2

increased from 0.8035 to 0.8358. After removing the abnormal values from the denoised
spectral data, all the denoising data prediction accuracies improved, and RFR showed the
best accuracy in predicting all bands under PBOR denoising. Compared with the highest
precision model of the original and denoised spectral data, the RMSEp decreased from
1.5670 to 1.1810, and the Rp

2 increased from 0.8035 to 0.8683. Therefore, RFR showed
the best modeling effect and stability in predicting chlorophyll in all bands under PBOR
denoising. The model predictions are shown in Figure 9b.
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Table 3. Outlier rejection analysis.

Pretreatment
Method

Pretreatment
Method

Forecasting
Method

Wavelength
(nm)

Training Set Prediction Set

RMSEc Rc
2 RMSEp Rp

2

Non 1
ETR

All
0.1665 0.9978 1.6408 0.7558

RFR 0.8736 0.9394 1.3456 0.8358
BAR 1.1249 0.8996 1.3799 0.8273

MSC 1
ETR 515

All
0.1665 0.9978 1.6408 0.7558

RFR 0.8736 0.9394 1.3467 0.8355
BAR 1.1249 0.8996 1.3858 0.8258

SNV 1
ETR 515

All
0.1665 0.9978 1.6408 0.7558

RFR 0.8736 0.9394 1.3456 0.8358
BAR 1.1249 0.8996 1.3799 0.8273

DWT 1
ETR

590
0.0904 0.9993 2.1442 0.6252

RFR 0.9712 0.9222 1.8656 0.7162
BAR 1.1681 0.8874 1.9453 0.6915

SG 1
ETR

515
0.1665 0.9978 1.6408 0.7558

RFR 0.8736 0.9394 1.3456 0.8358
BAR 1.1249 0.8996 1.3799 0.8273

MinMax 1
ETR

515
0.1665 0.9978 1.6408 0.7558

RFR 0.8736 0.9394 1.3461 0.8356
BAR 1.1249 0.8996 1.3858 0.8258

OD 1
ETR 515

All
555

0.5161 0.9719 1.9488 0.6732
RFR 0.7140 0.9462 1.7327 0.7417
BAR 0.9447 0.9059 1.9373 0.6771

PBOR 1
ETR 555

All
515

0.4962 0.9815 1.4004 0.8148
RFR 0.8721 0.9429 1.1810 0.8683
BAR 1.0745 0.9133 1.4931 0.7895

CR 1
ETR 515

All
All

0.1665 0.9978 1.6408 0.7558
RFR 0.8736 0.9394 1.3467 0.8355
BAR 1.1249 0.8996 1.3858 0.8258
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4. Discussion

This study successfully designed a spectrum data acquisition device and system
based on the IoT technology, which integrated the AS7341 spectral sensor and ESP8266
microcontroller to achieve integrated spectrum data acquisition. Compared with traditional
spectrometers, the spectrum acquisition device designed in this paper has many advantages
and some disadvantages.

Advantages: integrated design. The ESP8266 microcontroller, AS7341 spectral sensor,
and LED light source are integrated, which is convenient for outdoor spectrum data
collection. At the same time, since there is no exposed signal transmission part, the impact
of environmental light is relatively reduced. Portability: it has a small size and weight
which render it convenient to carry and use. In addition, there is no need to pay attention
to the bending of the optical fiber during the collection process, thus removing the risk
of breakage. Easy to operate and low power consumption: the microcontroller, AS7341
spectral sensor, and LED light source have low power consumption, solving the problem of
outdoor long-term power supply. This integrated design makes spectrum acquisition more
portable and easier to operate and is suitable for spectrum data collection and analysis
in outdoor environments, as it is often required for, e.g., agricultural, environmental, and
geological purpose. Low cost and maintenance requirements: it has the characteristics
of low cost and easy maintenance, which is suitable for some applications with high
requirements for cost and maintenance, such as scientific and teaching experiments.

Disadvantages: fewer channels. The AS7341 spectral sensor can collect data from
up to 14 channels, while traditional spectrometers can collect data from hundreds of
channels. Therefore, the effective resolution of AS7341 data is low, and many effective
information may be missed during the collection process, which limits the exploration of
spectral data. However, the 14 channels collected are sufficient to support most spectral
analysis applications.

In this study, we successfully designed a spectrum data acquisition device and system
based on the Internet of Things (IoT) technology. The collection and processing of spectral
data were achieved through integrated design and the use of AS7341 spectral sensors and
ESP8266 microcontrollers. Our research results show that the device has many advantages,
such as portability, ease of operation, and low power consumption, but also some limi-
tations, such as limited channel numbers and low resolution. In future research, we will
explore ways to further optimize the performance of the device by using transmission or
reflection combined with transmission, in order to meet the demand for higher-precision
spectral analysis. At the same time, we will also attempt to improve the light source part to
increase the device’s collection efficiency and accuracy. In terms of power supply, we will
use a battery and device integration design to make data collection more portable. These
improvements will help enhance the performance and reliability of the device, thereby
providing more accurate and reliable data support for related research.

5. Conclusions

Based on the designed spectral acquisition system and equipment, the spectral data
acquisition and SPAD regression prediction analysis of Hami melon leaf samples were
completed. The regression analysis results showed that at the wavelength of 515 nm,
ETR, RFR, and BAR regression algorithms could all predict SPAD well, among which ETR
attained the best prediction effect. On the training set, RMSEc was 0.3429, and Rc

2 was
0.9905; on the prediction set, RMSEp was 1.5670, and Rp

2 was 0.8035. After denoising
the spectral data, the improvement in prediction accuracy was not significant. Through
the use of principal component analysis and Isolation Forest algorithm, abnormal points
were successfully detected and removed. After removing the outliers, the prediction
accuracy of the dataset, as well as the raw and denoised spectral data, were improved.
Among all wavelength combination for spectral data predictions after PBOR denoising,
the RFR model performed best. On the training set, RMSEc was 0.8721 and Rc

2 was 0.9429;
on the prediction set, RMSEp was 1.1810 and Rp

2 was 0.8683. This piece of acquisition
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equipment offers several advantages, including small size, convenient portability, cloud
access, and real-time visualization of spectral data, providing technical reference value for
the development and application of intelligent spectral devices in agriculture.
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Appendix A

Traditional spectrometer section:

(1) Computer: used to read spectral data by the spectral software equipped with the
spectrometer, and then save the data in text format such as excel, csv, txt. Its operation
interface can only use the spectral software equipped with the spectrometer, and the
operating system is restricted, such as only supporting Windows system, etc.

(2) Spectrometer: used to read the spectral data emitted by plant leaves.
(3) Optical fiber: used to transmit spectral data information.
(4) Light source: the lighting device is a halogen lamp, which provides a light source for

collecting spectral data.

These four parts are independent parts, and they need to be locally built before they
can be used for collection.

Convenient spectrometer section:

(1) Cloud server: receives the spectral data collected by the spectrometer and the data
submitted by the user, automatically saves them in the database, and provides remote
historical data download and web-based visualization of spectral data functions. Its
operation interface provides a web-based visualization interface, making it easy for
users to operate across platforms.

(2) Spectrometer: integrated with ESP8266 microcontroller, AS7341 spectral sensor, and
LED light source.

These two parts are independent parts, and only a smartphone and a spectrometer are
needed to complete the collection work.

Appendix B

The communication test of the spectrum data acquisition device was based on 10 mi-
crocontrollers. The test was completed by connecting to a mobile phone’s shared network
Wi-Fi hotspot. The MQTT topic was “/xjnydx/Spectral”, and the JSON format content
was transmitted in the manner shown in the key code below. The data was transmitted
with a delay of 100 ms for each send and receive cycle. The data was sent from Urumqi,
China to a MQTT server in Guiyang, China. This sending method ensured that there
was no mutual interference between the data sent and received, and that the microcon-
troller program would not crash. When the data sent by the microcontroller was not
received, the microcontroller would stop the test. Each microcontroller published the
data 1010 times, and the data transmission time of the last 1000 pieces of data after col-
lecting 10 pieces of data was taken as the analysis object. The data transmission time
was the current data receiving time minus the current data sending time. Through the
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completion of 10,100 data transmission tests, there was no data loss. The data commu-
nication time test is shown in Figure A1. The maximum data transmission time was
found to be 179 ms and the minimum data transmission time was 63 ms through analysis.

Key Code:
void publishDate() {
StaticJsonDocument < 128 > doc;
doc[“0”] = 1981.09;//415
doc[“1”] = 1054.5;//445
doc[“2”] = 1098.69;//480
doc[“3”] = 703.11;//515
doc[“4”] = 607.74;//555
doc[“5”] = 1660.49;//590
doc[“6”] = 4100.58;//630
doc[“7”] = 5216.3;//680
doc[“8”] = 5731;//750
doc[“9”] = 2511.73;//900
char buffer [128];
serializeJson(doc, buffer);
client.publish(“/xjnydx/Spectral”, buffer);
}
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Appendix C

The time complexity of linear regression (LR) is O(n), and the space complexity is O(n).
It is fast when processing large-scale data, but the fitting effect may not be good for data
with non-linear relationships. The time complexity of K-nearest neighbor regression (KNN)
is O(nm log m), and the space complexity is O(nm). It needs to store all training samples,
so it requires a lot of memory when processing large-scale data. In addition, KNN needs to
calculate the distance between each test sample and all training samples during prediction,
so the prediction speed is slow. The time complexity of support vector regression (SVR) is
O(m3), and the space complexity is O(m2). It is slow when processing large-scale data, but
it has a good fitting effect for data with non-linear relationships. The time complexity of
ridge regression (RR) and Lasso regression (Lasso) are both O(n3), and the space complexity
is both O(n2). It is slow when processing large-scale data, but can handle high-dimensional
data and data with multicollinearity. The time complexity of decision tree regression (DTR),
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extremely randomized tree regression (ETR), random forest regression (RFR), AdaBoost
regression (ABR), gradient boosting regression (GBR), and bagging regression (BAR) are all
O(nm log m), and the space complexity is all O(nm). They are fast when processing large-
scale data, but may require feature selection or dimensionality reduction when processing
high-dimensional data and data with multicollinearity. The time complexity of partial
least squares regression (PLSR) is O(nm2), and the space complexity is O(nm). It is slow
when processing large-scale data, but can handle high-dimensional data and data with
multicollinearity. Here, n is the number of features, and m is the number of samples.

References
1. Lakshmanna, K.; Kaluri, R.; Gundluru, N.; Alzamil, Z.S.; Rajput, D.S.; Khan, A.A.; Haq, M.A.; Alhussen, A. A Review on Deep

Learning Techniques for IoT Data. Electronics 2022, 11, 1604. [CrossRef]
2. Vincent, B.; Dardenne, P. Application of NIR in Agriculture. In Near-Infrared Spectroscopy; Springer Singapore: Singapore, 2021;

pp. 331–345.
3. Demattê, J.A.M.; Horák-Terra, I.; Beirigo, R.M.; da Silva Terra, F.; Marques, K.P.P.; Fongaro, C.T.; Silva, A.C.; Vidal-Torrado, P.

Genesis and Properties of Wetland Soils by VIS-NIR-SWIR as a Technique for Environmental Monitoring. J. Environ. Manag. 2017,
197, 50–62. [CrossRef] [PubMed]

4. Amigo, J.M.; Cruz, J.; Bautista, M.; Maspoch, S.; Coello, J.; Blanco, M. Study of Pharmaceutical Samples by NIR Chemical-Image
and Multivariate Analysis. Trends Anal. Chem. 2008, 27, 696–713. [CrossRef]

5. Ma, L.; Peng, Y.; Pei, Y.; Zeng, J.; Shen, H.; Cao, J.; Qiao, Y.; Wu, Z. Systematic Discovery about NIR Spectral Assignment from
Chemical Structural Property to Natural Chemical Compounds. Sci. Rep. 2019, 9, 9503. [CrossRef]

6. Borghi, F.T.; Santos, P.C.; Santos, F.D.; Nascimento, M.H.C.; Corrêa, T.; Cesconetto, M.; Pires, A.A.; Ribeiro, A.V.F.N.; Lacerda,
V.; Romão, W.; et al. Quantification and Classification of Vegetable Oils in Extra Virgin Olive Oil Samples Using a Portable
Near-Infrared Spectrometer Associated with Chemometrics. Microchem. J. 2020, 159, 105544. [CrossRef]

7. Liu, J.; Han, J.; Chen, X.; Shi, L.; Zhang, L. Nondestructive Detection of Rape Leaf Chlorophyll Level Based on Vis-NIR
Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117202. [CrossRef]

8. Wang, B.; He, X.; Bi, Y.; Jiang, H.; Wang, Y.; Zheng, X.; Prusky, D. Preharvest Sprays with Sodium Nitroprusside Induce Resistance
in Harvested Muskmelon against the Pink Rot Disease. J. Food Process Preserv. 2021, 45, e15339. [CrossRef]

9. Takai, T.; Adachi, S.; Taguchi-Shiobara, F.; Sanoh-Arai, Y.; Iwasawa, N.; Yoshinaga, S.; Hirose, S.; Taniguchi, Y.; Yamanouchi, U.;
Wu, J.; et al. A Natural Variant of NAL1, Selected in High-Yield Rice Breeding Programs, Pleiotropically Increases Photosynthesis
Rate. Sci. Rep. 2013, 3, 2149. [CrossRef]

10. Peng, J.; Feng, Y.; Wang, X.; Li, J.; Xu, G.; Phonenasay, S.; Luo, Q.; Han, Z.; Lu, W. Effects of Nitrogen Application Rate on the
Photosynthetic Pigment, Leaf Fluorescence Characteristics, and Yield of Indica Hybrid Rice and Their Interrelations. Sci. Rep.
2021, 11, 7485. [CrossRef]

11. Xu, Q.; Ma, X.; Lv, T.; Bai, M.; Wang, Z.; Niu, J. Effects of Water Stress on Fluorescence Parameters and Photosynthetic
Characteristics of Drip Irrigation in Rice. Water 2020, 12, 289. [CrossRef]

12. Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review.
Remote Sens. 2022, 14, 5712. [CrossRef]

13. Mistele, B.; Schmidhalter, U. Estimating the Nitrogen Nutrition Index Using Spectral Canopy Reflectance Measurements. Eur. J.
Agron. 2008, 29, 184–190. [CrossRef]

14. Prananto, J.A.; Minasny, B.; Weaver, T. Rapid and Cost-Effective Nutrient Content Analysis of Cotton Leaves Using Near-Infrared
Spectroscopy (NIRS). PeerJ 2021, 9, e11042. [CrossRef] [PubMed]

15. Liu, L.; Zareef, M.; Wang, Z.; Li, H.; Chen, Q.; Ouyang, Q. Monitoring Chlorophyll Changes during Tencha Processing Using
Portable Near-Infrared Spectroscopy. Food Chem. 2023, 412, 135505. [CrossRef] [PubMed]

16. Zhang, J.; Han, W.; Huang, L.; Zhang, Z.; Ma, Y.; Hu, Y. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible
and Near-Infrared Sensors. Sensors 2016, 16, 437. [CrossRef]

17. Wang, Y.-J.; Jin, S.-S.; Li, M.-H.; Liu, Y.; Li, L.-Q.; Ning, J.-M.; Zhang, Z.-Z. Onsite Nutritional Diagnosis of Tea Plants Using Micro
Near-Infrared Spectrometer Coupled with Chemometrics. Comput. Electron. Agric. 2020, 175, 105538. [CrossRef]

18. Jin, X.; Wang, L.; Zheng, W.; Zhang, X.; Liu, L.; Li, S.; Rao, Y.; Xuan, J. Predicting the Nutrition Deficiency of Fresh Pear Leaves
with a Miniature Near-Infrared Spectrometer in the Laboratory. Measurement 2022, 188, 110553. [CrossRef]

19. Lee, Y.-H.; Sang, W.-G.; Baek, J.-K.; Kim, J.-H.; Shin, P.; Seo, M.-C.; Cho, J.-I. The Effect of Concurrent Elevation in CO2 and
Temperature on the Growth, Photosynthesis, and Yield of Potato Crops. PLoS ONE 2020, 15, e0241081. [CrossRef]

20. Song, D.; Gao, D.; Sun, H.; Qiao, L.; Zhao, R.; Tang, W.; Li, M. Chlorophyll Content Estimation Based on Cascade Spectral
Optimizations of Interval and Wavelength Characteristics. Comput. Electron. Agric. 2021, 189, 106413. [CrossRef]

21. Pampolino, M.F.; Witt, C.; Pasuquin, J.M.; Johnston, A.; Fisher, M.J. Development Approach and Evaluation of the Nutrient
Expert Software for Nutrient Management in Cereal Crops. Comput. Electron. Agric. 2012, 88, 103–110. [CrossRef]

22. Elavarasan, D.; Vincent, P.M.D.R.; Srinivasan, K.; Chang, C.-Y. A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction
for Enhanced Agricultural Crop Yield Prediction Modeling. Agriculture 2020, 10, 400. [CrossRef]

https://doi.org/10.3390/electronics11101604
https://doi.org/10.1016/j.jenvman.2017.03.014
https://www.ncbi.nlm.nih.gov/pubmed/28324781
https://doi.org/10.1016/j.trac.2008.05.010
https://doi.org/10.1038/s41598-019-45945-y
https://doi.org/10.1016/j.microc.2020.105544
https://doi.org/10.1016/j.saa.2019.117202
https://doi.org/10.1111/jfpp.15339
https://doi.org/10.1038/srep02149
https://doi.org/10.1038/s41598-021-86858-z
https://doi.org/10.3390/w12010289
https://doi.org/10.3390/rs14225712
https://doi.org/10.1016/j.eja.2008.05.007
https://doi.org/10.7717/peerj.11042
https://www.ncbi.nlm.nih.gov/pubmed/33763307
https://doi.org/10.1016/j.foodchem.2023.135505
https://www.ncbi.nlm.nih.gov/pubmed/36716622
https://doi.org/10.3390/s16040437
https://doi.org/10.1016/j.compag.2020.105538
https://doi.org/10.1016/j.measurement.2021.110553
https://doi.org/10.1371/journal.pone.0241081
https://doi.org/10.1016/j.compag.2021.106413
https://doi.org/10.1016/j.compag.2012.07.007
https://doi.org/10.3390/agriculture10090400


Sensors 2023, 23, 8585 15 of 15

23. Dong, T.; Shang, J.; Chen, J.M.; Liu, J.; Qian, B.; Ma, B.; Morrison, M.J.; Zhang, C.; Liu, Y.; Shi, Y.; et al. Assessment of Portable
Chlorophyll Meters for Measuring Crop Leaf Chlorophyll Concentration. Remote Sens. 2019, 11, 2706. [CrossRef]

24. Gutiérrez, S.; Tardaguila, J.; Fernández-Novales, J.; Diago, M.P. Support Vector Machine and Artificial Neural Network Models
for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer. PLoS ONE 2015, 10, e0143197. [CrossRef]

25. Barbon Junior, S.; Mastelini, S.M.; Barbon, A.P.A.C.; Barbin, D.F.; Calvini, R.; Lopes, J.F.; Ulrici, A. Multi-Target Prediction of
Wheat Flour Quality Parameters with Near Infrared Spectroscopy. Inf. Process. Agric. 2020, 7, 342–354. [CrossRef]

26. Hou, B.; Hu, Y.; Zhang, P.; Hou, L. Potato Late Blight Severity and Epidemic Period Prediction Based on Vis/NIR Spectroscopy.
Agriculture 2022, 12, 897. [CrossRef]

27. Wang, J.; Zhou, Q.; Shang, J.; Liu, C.; Zhuang, T.; Ding, J.; Xian, Y.; Zhao, L.; Wang, W.; Zhou, G.; et al. UAV- and Machine
Learning-Based Retrieval of Wheat SPAD Values at the Overwintering Stage for Variety Screening. Remote Sens. 2021, 13, 5166.
[CrossRef]

28. Li, Y.; Xia, H.; Liu, Y.; Huo, L.; Ni, C.; Gou, B. Detection of Moisture Content of Pinus massoniana Lamb. Seedling Leaf Based on
NIR Spectroscopy with a Multi-Learner Model. Forests 2023, 14, 883. [CrossRef]

29. Yang, Y.; Nan, R.; Mi, T.; Song, Y.; Shi, F.; Liu, X.; Wang, Y.; Sun, F.; Xi, Y.; Zhang, C. Rapid and Nondestructive Evaluation of
Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging. Int. J. Mol. Sci. 2023, 24, 5825. [CrossRef]

30. Zhang, M.; Chen, T.; Gu, X.; Kuai, Y.; Wang, C.; Chen, D.; Zhao, C. UAV-Borne Hyperspectral Estimation of Nitrogen Content in
Tobacco Leaves Based on Ensemble Learning Methods. Comput. Electron. Agric. 2023, 211, 108008. [CrossRef]

31. Zhang, J.; Zhang, W.; Xiong, S.; Song, Z.; Tian, W.; Shi, L.; Ma, X. Comparison of New Hyperspectral Index and Machine Learning
Models for Prediction of Winter Wheat Leaf Water Content. Plant Methods 2021, 17, 34. [CrossRef]

32. Yuan, Z.; Ye, Y.; Wei, L.; Yang, X.; Huang, C. Study on the Optimization of Hyperspectral Characteristic Bands Combined with
Monitoring and Visualization of Pepper Leaf SPAD Value. Sensors 2021, 22, 183. [CrossRef] [PubMed]

33. Wang, J.; Xue, W.; Shi, X.; Xu, Y.; Dong, C. Adaboost-Based Machine Learning Improved the Modeling Robust and Estimation
Accuracy of Pear Leaf Nitrogen Concentration by In-Field VIS-NIR Spectroscopy. Sensors 2021, 21, 6260. [CrossRef]

34. Wu, Q.; Zhang, Y.; Xie, M.; Zhao, Z.; Yang, L.; Liu, J.; Hou, D. Estimation of Fv/Fm in Spring Wheat Using UAV-Based
Multispectral and RGB Imagery with Multiple Machine Learning Methods. Agronomy 2023, 13, 1003. [CrossRef]

35. Qu, F.; Ren, D.; Wang, J.; Zhang, Z.; Lu, N.; Meng, L. An Ensemble Successive Project Algorithm for Liquor Detection Using Near
Infrared Sensor. Sensors 2016, 16, 89. [CrossRef] [PubMed]

36. Zhang, J.; Liu, Z.; Pu, Y.; Wang, J.; Tang, B.; Dai, L.; Yu, S.; Chen, R. Identification of Transgenic Agricultural Products and Foods
Using NIR Spectroscopy and Hyperspectral Imaging: A Review. Processes 2023, 11, 651. [CrossRef]

37. Shen, S.; Hua, J.; Zhu, H.; Yang, Y.; Deng, Y.; Li, J.; Yuan, H.; Wang, J.; Zhu, J.; Jiang, Y. Rapid and Real-Time Detection of Moisture
in Black Tea during Withering Using Micro-Near-Infrared Spectroscopy. LWT 2022, 155, 112970. [CrossRef]

38. Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. Estimating Chlorophyll Content at Leaf Scale in Viroid-Inoculated Oil
Palm Seedlings (Elaeis guineensis Jacq.) Using Reflectance Spectra (400 Nm–1050 Nm). Int. J. Remote Sens. 2019, 40, 7647–7662.
[CrossRef]

39. Bao, Y.; Kong, W.; He, Y.; Liu, F.; Tian, T.; Zhou, W. Quantitative Analysis of Total Amino Acid in Barley Leaves under Herbicide
Stress Using Spectroscopic Technology and Chemometrics. Sensors 2012, 12, 13393–13401. [CrossRef]

40. Li, F.; Wang, L.; Liu, J.; Wang, Y.; Chang, Q. Evaluation of Leaf N Concentration in Winter Wheat Based on Discrete Wavelet
Transform Analysis. Remote Sens. 2019, 11, 1331. [CrossRef]

41. Jahani, S.; Setarehdan, S.K.; Boas, D.A.; Yücel, M.A. Motion Artifact Detection and Correction in Functional Near-Infrared
Spectroscopy: A New Hybrid Method Based on Spline Interpolation Method and Savitzky–Golay Filtering. Neurophotonics 2018,
5, 1. [CrossRef]

42. Amariei, G.; Henriksen, M.L.; Friis, J.B.; Pedersen, P.K.; Hinge, M. In-Line Identification of Pb-Based Pigments in Fishing Nets
and Ropes Based on Hyperspectral Imaging and Machine Learning. Mar. Pollut. Bull. 2023, 191, 114910. [CrossRef]

43. Carlomagno, G.; Capozzo, L.; Attolico, G.; Distante, A. Non-Destructive Grading of Peaches by Near-Infrared Spectrometry.
Infrared Phys. Technol. 2004, 46, 23–29. [CrossRef]

44. Li, J.S.; Hamann, A.; Beaubien, E. Outlier Detection Methods to Improve the Quality of Citizen Science Data. Int. J. Biometeorol.
2020, 64, 1825–1833. [CrossRef] [PubMed]

45. Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In Situ Measurements of Soil Colour, Mineral Composition and Clay
Content by Vis–NIR Spectroscopy. Geoderma 2009, 150, 253–266. [CrossRef]

46. Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Application of NIR Hyperspectral Imaging for Discrimination of Lamb
Muscles. J. Food Eng. 2011, 104, 332–340. [CrossRef]

47. Huang, H.; Hu, X.; Tian, J.; Peng, X.; Luo, H.; Huang, D.; Zheng, J.; Wang, H. Rapid and Nondestructive Determination of
Sorghum Purity Combined with Deep Forest and Near-Infrared Hyperspectral Imaging. Food Chem. 2022, 377, 131981. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs11222706
https://doi.org/10.1371/journal.pone.0143197
https://doi.org/10.1016/j.inpa.2019.07.001
https://doi.org/10.3390/agriculture12070897
https://doi.org/10.3390/rs13245166
https://doi.org/10.3390/f14050883
https://doi.org/10.3390/ijms24065825
https://doi.org/10.1016/j.compag.2023.108008
https://doi.org/10.1186/s13007-021-00737-2
https://doi.org/10.3390/s22010183
https://www.ncbi.nlm.nih.gov/pubmed/35009724
https://doi.org/10.3390/s21186260
https://doi.org/10.3390/agronomy13041003
https://doi.org/10.3390/s16010089
https://www.ncbi.nlm.nih.gov/pubmed/26761015
https://doi.org/10.3390/pr11030651
https://doi.org/10.1016/j.lwt.2021.112970
https://doi.org/10.1080/01431161.2019.1584930
https://doi.org/10.3390/s121013393
https://doi.org/10.3390/rs11111331
https://doi.org/10.1117/1.NPh.5.1.015003
https://doi.org/10.1016/j.marpolbul.2023.114910
https://doi.org/10.1016/j.infrared.2004.03.004
https://doi.org/10.1007/s00484-020-01968-z
https://www.ncbi.nlm.nih.gov/pubmed/32671668
https://doi.org/10.1016/j.geoderma.2009.01.025
https://doi.org/10.1016/j.jfoodeng.2010.12.024
https://doi.org/10.1016/j.foodchem.2021.131981

	Introduction 
	Overall Design of the Device 
	Deployment of IoT Server 
	Spectral Acquisition Device 
	Interactive Interface Design 
	Data Collection 

	Results 
	Prediction of Raw Spectral Data 
	Spectral Data Denoising Analysis 
	Data Dimensionality Reduction and Outlier Removal 

	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

