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Abstract: Regarding the interpretable techniques in the field of image recognition, Grad-CAM is
widely used for feature localization in images to reflect the logical decision-making information
behind the neural network due to its high applicability. However, extensive experimentation on
a customized dataset revealed that the deep convolutional neural network (CNN) model based
on Gradient-weighted Class Activation Mapping (Grad-CAM) technology cannot effectively resist
the interference of large-scale noise. In this article, an optimization of the deep CNN model was
proposed by incorporating the Dropkey and Dropout (as a comparison) algorithm. Compared with
Grad-CAM, the improved Grad-CAM based on Dropkey applies an attention mechanism to the
feature map before calculating the gradient, which can introduce randomness and eliminate some
areas by applying a mask to the attention score. Experimental results show that the optimized
Grad-CAM deep CNN model based on the Dropkey algorithm can effectively resist large-scale noise
interference and achieve accurate localization of image features. For instance, under the interference
of a noise variance of 0.6, the Dropkey-enhanced ResNet50 model achieves a confidence level of
0.878 in predicting results, while the other two models exhibit confidence levels of 0.766 and 0.481,
respectively. Moreover, it exhibits excellent performance in visualizing tasks related to image features
such as distortion, low contrast, and small object characteristics. Furthermore, it has promising
prospects in practical computer vision applications. For instance, in the field of autonomous driving,
it can assist in verifying whether deep learning models accurately understand and process crucial
objects, road signs, pedestrians, or other elements in the environment.

Keywords: convolutional neural networks; class activation mapping; interpretability; computer
vision

1. Introduction

Convolutional neural network (CNN) models have been widely applied in the field
of computer vision, such as object detection [1,2] and image classification [3,4], due to
their remarkable feature extraction capabilities. However, the complex network structure,
parameter sharing, and non-linear operations of CNN models pose challenges in effectively
interpreting their output [5,6]. Furthermore, in real-world scenarios, the input images
or videos are often non-standard [7]. They are frequently influenced by environmental
factors, camera variations, image distortions, and other such factors. These complexities
pose challenges to the research on model interpretability. However, despite these difficul-
ties, it remains crucial to address the interpretability of models in order to ensure their
effectiveness and reliability in practical applications. Through continued advancements in
techniques such as Dropkey Grad-CAM (Gradient-weighted Class Activation Mapping),
we can strive to overcome these challenges and enhance the interpretability of models even

Sensors 2023, 23, 8351. https://doi.org/10.3390/523208351

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s23208351
https://doi.org/10.3390/s23208351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1667-2448
https://doi.org/10.3390/s23208351
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23208351?type=check_update&version=1

Sensors 2023, 23, 8351

20f12

in the face of real-world complexities. Various methods have been proposed to enhance the
interpretability of CNN models, which can be categorized into perturbation-based [8-10],
propagation-based [11,12], and activation-based approaches. Among the activation-based
approaches, Class Activation Maps (CAM) [13,14] have gained significant popularity due
to their ability to provide intuitive visualizations for CNNs.

CAM techniques have limitations in practical usage as they are specific to certain archi-
tectures and require architectural modifications. To address this, Selvaraju et al. proposed
Grad-CAM, which allows visualization and interpretation of CNN models without archi-
tectural changes [15]. Further improvements include Smooth Grad-CAM, which reduces
noise and uncertainty in visualization results [16], and Score-CAM, which enables high-
resolution activation map generation [17]. These advancements enhance the understanding
and application of CNNs in computer-aided diagnosis.

Due to the nature of Grad-CAM, which expresses the decision information of the
model in the form of a heatmap, we can indirectly improve the robustness of Grad-CAM
by enhancing the model’s robustness. There are six methods to improve model robustness:
Data Augmentation, Regularization, Ensemble Learning, Adversarial Training, Weight
Pruning, and Reinforcement Learning. In the field of Data Augmentation, Ekin D. Cubuk
et al. proposed a method called AutoAugment [18], which enhances the model’s adapt-
ability to different samples. This augmentation helps the model learn more robust feature
representations, thereby improving the model’s robustness when facing perturbations. In
the field of Adversarial Training, Alexey Kurakin et al. introduced adversarial examples in
the physical world and found that certain physical-world samples can highly confuse the
model [19]. This discovery has inspired further improvements in model robustness. In the
field of Regularization, Hongyi Zhang et al. proposed a method called Mixup [20], which
performs linear interpolation between two different samples to create new training samples.
This approach provides smoother training information, leading to improved generalization
ability and robustness of neural network models. These methods, along with others such as
Ensemble Learning, Weight Pruning, and Reinforcement Learning, contribute to enhancing
the robustness of models in various ways, which can indirectly improve the robustness of
Grad-CAM as well.

In practical applications, images are often subjected to various disturbances, such
as rotation, translation, noise, and changes in lighting conditions. Therefore, the system
needs to tolerate such disturbances while maintaining its original output. However, Grad-
CAM primarily relies on gradient information, which makes it ineffective in resisting
large-scale noise interference [21]. In this study, the Dropkey algorithm [22] is employed to
optimize CNN models and improve the robustness of Grad-CAM. The optimization process
involves passing the input through the convolutional network to extract output features
from a specified layer (layer 4). These features undergo pooling and are compressed into
a one-dimensional representation. Subsequently, the resulting output serves as the Q
(Query), K (Key), and V (Value) parameters in the Attention function, which generates
the attention map. Finally, the attention map is passed through a fully connected layer for
classification, resulting in predicted outcomes. To evaluate the performance of Grad-CAM
and the optimized Dropkey-based Grad-CAM in the presence of varying levels of noise
interference, Gaussian noise with different variances is added to images to simulate real-
world disturbances. The findings indicate that the optimized Dropkey-based Grad-CAM
effectively resists large-scale noise perturbations. In addition, the optimized Dropkey-based
Grad-CAM demonstrates superior performance in various testing tasks, including feature
localization in low-contrast images and feature localization of small objects. This technology
also holds promising prospects in various real-life applications. For instance, in the field
of autonomous driving, Dropkey Grad-CAM can be employed in deep learning models
to provide an explainable analysis of the decision-making process of autonomous driving
systems, ensuring their safety and reliability. By utilizing Dropkey Grad-CAM, we can
interpret the model’s rationale for behavior prediction and visualize the areas of focus in the
traffic scene by the deep learning model. This approach enhances transparency and allows
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for a comprehensive understanding of how the model arrives at its decisions, ultimately
contributing to the trustworthiness and interpretability of autonomous driving systems.

2. Approach
2.1. Working Principle of Grad-CAM

Grad-CAM can be comprehensively explained through mathematical derivation. By
differentiating the output y¢ of category c with respect to the feature map of the convolution
layer, the gradient information for each category in the image can be obtained as dy° /9 AF,
where A represents the class activation mapping of Grad-CAM. Back-propagating all
the gradient information leads to Equation (1) [15]. For the prediction result vector y, y°
represents the score of the target class c, which can be obtained through the output of
the last fully connected layer or softmax layer of the network, depending on the network

architecture and task. 5
1 y
o = ZZZ 9 AL 1)
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In the equation, «}, denotes the linearization coefficient of the downstream part of the
neural network model, which also represents the weight information of feature map k for a
specific class c. Z denotes the number of channels.

L =ReLU| ) afAF @)
k

By tracking the weighted combination of forward-activated maps using the ReLU
activation function, a heatmap that aligns with the size of the convolutional feature maps
can be obtained, as shown in Equation (2) [15].

Grad-CAM computes the feature maps of the output layer and computes gradients
of the respective categories by leveraging input information. Subsequently, the gradients
associated with each category are weighted and averaged across channels, and the positive
weights for each channel are aggregated. Consequently, a heat map is generated using these
calculations. Each pixel within the heat map conveys its weight representation pertaining
to the designated category [9]. The heat map is derived by selectively considering the
positive weights from each channel and aggregating them collectively.

2.2. Improvement of Grad-CAM Using Dropout-Based Method

When training a CNN model, it is crucial to address the issue of overfitting, especially
when the model has a large number of parameters and the training dataset is limited
in size [23]. In 2012, Hinton introduced the Dropout algorithm, which aims to mitigate
overfitting in complex feedforward neural networks with small training datasets [24].
Grad-CAM calculates a weight matrix by computing gradients with respect to the feature
map, which is subsequently used to generate a heatmap depicting the regions of interest
for a given model. However, most deep learning models exhibit high nonlinearity and
complexity, leading to potential influences of specific connections within the model on the
generated Grad-CAM heatmaps. Consequently, the robustness of visual interpretability
results might be compromised. In order to mitigate this issue, Dropout can be introduced
during the computation process to significantly reduce the reliance on specific neurons.
Specifically, Dropout involves randomly discarding certain neurons, which forces the model
to learn from an ensemble of sub-models. Each sub-model possesses random variations in
feature representations. Consequently, by employing this approach, the generated heatmap
considers a wider range of neuron combinations, thus reducing excessive dependence on
the activation of any particular neuron combination. Introducing Dropout in this manner
enhances the robustness of the generated heatmaps, enabling them to more reliably reflect
the regions of interest identified by the model. This approach mitigates potential biases
and noise, providing a more comprehensive representation of the model’s focus on the
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target class without overemphasizing specific neurons or connections. Consequently, we
can more reliably determine the basis for the model’s decisions.

2.3. Improvement of Grad-CAM Using Dropkey-Based Method

Dropkey is an innovative Dropout method inspired by DropAttention. It adapts atten-
tion weights in neural networks to promote smoother attention vectors [22,25]. Dropkey
employs a Dropout-before-softmax approach and migrates the Dropout operation before at-
tention matrix calculation, using the key unit as the new Dropout unit. Unlike the constant
drop rate of Dropout, Dropkey gradually decreases the drop rate along the self-attention
layers. This approach ensures system stability, facilitates attention weight regularization,
and mitigates the loss of high-level semantics and overfitting.

During neural network training, Dropkey randomly discards a percentage of the input
key units, generating an independent mask key mapping for each query. This masking of
the attention scoring matrix positions Dropkey as a technique that modifies the placement
of Dropout, lagging it to mitigate model overfitting. The mathematical formulation of
Dropkey can be analyzed using Equations (3) and (4).

gk}
exp (dj + Sw]le>

Pi= nyn qk! (3)
Z]-ilw exp (dj + Sw]le>
nynw
0= Z p]U] (4)
j=1

In the equations, p; represents the attention weights in the attention mechanism, o
denotes the output patch, g; denotes the i-th patch of the query, k; denotes the key unit of
the j-th patch of the query, v; denotes the value of the j-th patch of the query. Suppose the
input image contains three types of information: height, width, and number of channels;
the image can be divided into blocks of nj, * ny,. The expression nj, * ny, represents the
number of blocks into which the image is divided along the height and width directions,
respectively. Here, 1, represents the number of blocks along the height direction and
1y represents the number of blocks along the width direction. The scale represents the
scaling factor.

The optimized Dropkey-based Grad-CAM framework is illustrated in Figure 1. The
algorithm begins by passing the input through a convolutional network and extracting the
output features from the specified layer (layer 4). The features are then passed through
a pooling layer for pooling and compressed into a one-dimensional form. The resulting
output serves as the parameters Q, K, and V, which are fed into the Attention function to
obtain the attention map. Finally, the attention map is passed to a fully connected layer for
classification, resulting in the prediction.

Overview of optimized Dropkey-based Grad-CAM: The Dropkey algorithm introduces
a Bernoulli noise layer on the attention score matrix, which randomly masks a certain
proportion of attention weights and suppresses unnecessary signals. This prevents the
neural network model from overly relying on a piece of specific local information. Then,
Dropkey applies the softmax operation along the last dimension of the attention score
matrix to obtain weight coefficients. These coefficients are used to weigh the value vectors
and compute their average. Finally, the weighted average is returned as the encoded
representation of the query vector, q. The content within the dashed box describes the
functioning mechanism of the Q, K, and V parameters in Dropkey.

Introducing the Dropkey attention mechanism into Grad-CAM can reduce the reliance
on specific neurons during the calculation process by incorporating random binary masks.
Specifically, when computing attention weights, a binary random mask tensor of the same
shape as the original attention weights are multiplied element-wise with the attention
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weights. Additionally, a small negative value is multiplied to set the attention weights
to negative infinity at the masked positions. This ensures that the attention weights at
the masked positions, after the softmax operation, are effectively zero, thus reducing
their contribution to the final visual interpretability results. Furthermore, the Dropkey
mechanism introduces randomness and enhances the generalization capability of the
visual interpretability results by randomly discarding a portion of neurons. Through
this mechanism, Grad-CAM becomes more adaptable to different input samples, thereby
improving the generalization of the results. Consequently, the generated heatmaps better
reflect the model’s attention to the target feature regions in a more comprehensive manner.
Compared to Grad-CAM, improved with Dropout, the Dropkey mechanism alters the
distribution of attention weights by introducing random masks and neuron Dropout. This
enhances the randomness of the attention weights, leading to heat maps that are more
interpretable and stable. Overall, the Dropkey-enhanced Grad-CAM exhibits superior
robustness and generalization capability. This allows for a more accurate understanding of
the model’s focus on input image features and the decision-making process. It contributes
to improving the accuracy, reliability, and interpretability of explaining model predictions.
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Figure 1. The refined design approach for Grad-CAM based on Dropkey.

3. Result and Discussion
3.1. Robustness of Grad-CAM and Optimized Dropkey-Based Grad-CAM

The robustness of the optimized Dropkey-based Grad-CAM technique is evaluated in
this section. Grad-CAM, relying on gradient information, may face challenges in accurately
localizing image features when the input images are subjected to various disturbances such
as blurriness or image noise. To assess the performance of the proposed method under
different noise conditions, input images were augmented with noise of varying variances,
specifically 0.1, 0.5, 1.0, 1.5, and 2.0. It is important to note that the pixel values of the
augmented images were normalized to ensure they remained within the valid range of 0 to
255. The visualizations obtained from both Grad-CAM and the optimized Dropkey-based
Grad-CAM techniques under the different noise conditions are presented in Figure 2.

As shown in Figure 2, it can be clearly observed that Grad-CAM maintains good accu-
racy in classifying the specified category when the variance of the added noise is below 0.5
(Figure 2b,c), while the accuracy of Grad-CAM classification significantly decreases when
the noise variance changes from 1.0 to 1.5 (Figure 2d,e). As the noise variance gradually
increases, Grad-CAM loses its resistance to noise, eventually leading to misclassifications
(Figure 2f). Therefore, it can be concluded that Grad-CAM exhibits good accuracy in the
presence of noise within a certain range, ensuring the normal and stable operation of the
neural network model. However, when the noise exceeds a certain range, Grad-CAM
cannot guarantee the proper functioning of the system, fails to locate the specified feature
information in the image, and may even result in classification errors. Therefore, robustness
optimization is necessary for Grad-CAM.
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Figure 2. The visualization of Grad-CAM and Dropkey Grad-CAM by adding noise with variances
of 0.1, 0.5, 1.0, 1.5, and 2.0 to images. It is clear that both of these two approaches are able to highlight
the object of interest under a variance below 1, but Dropkey Grad-CAM provides more details than
Grad-CAM under a variance of 1. Note that red regions correspond to high scores for class. Figure
best viewed in color.

On the other hand, Grad-CAM improved with the Dropkey algorithm consistently
demonstrates superior localization performance when the noise variance is 1.0 or below
(Figure 2h—j). It is evident that both Grad-CAM and the optimized Dropkey-based Grad-
CAM effectively highlight the object of interest under a variance below 1. However, the
optimized Dropkey-based Grad-CAM provides more detailed visualizations compared
to Grad-CAM under a variance of 1 (Figure 2d,j). Remarkably, even in the presence of
noise with a variance of 2.0, the improved Grad-CAM based on Dropkey does not exhibit
misclassifications, as depicted in Figure 21. With gradually increasing Gaussian noise,
the optimized Dropkey-based Grad-CAM visualization method demonstrates excellent
robustness, preserving the stability of visualization results and accurately highlighting
the featured objects in the image. In contrast, Grad-CAM exhibits noticeable degradation
effects under the same noise interference, resulting in visual distortions and uninterpretable
outcomes. Moreover, the optimized Dropkey-based Grad-CAM can be applied to most
models, making it crucial for interpreting the logical decision information of computer
vision models and improving their interpretability.

Due to its inherent nature as an improvement to the ResNet50 model, we can indirectly
observe the resilience of Dropkey Grad-CAM to noise by examining the changes in the
model’s confidence in prediction results under the influence of Gaussian noise of varying
variances. The experimental results are illustrated in Figure 3.

1.0 S \ --- Grad-CAM

s S NC Dropout Grad-CAM
: s —— Dropkey Grad-CAM
0.8 4 -

0.7
0.6 4
0.5 4

0.4+
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0.0
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Figure 3. The confidence level variations of three models in image classification tasks under noise
interference.
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From the data in the graph, it can be observed that when the Gaussian noise variance
is below 0.3, all three methods, namely Grad-CAM, Dropout Grad-CAM, and Dropkey
Grad-CAM, demonstrate good resistance and maintain a high level of confidence. However,
when the Gaussian noise variance reaches 0.5, Grad-CAM'’s resistance to noise diminishes.
Furthermore, during the transition from a variance of 0.5 to 0.9, all three methods expe-
rienced a decrease in confidence levels. Nevertheless, from the data in the graph, it is
evident that Dropkey Grad-CAM exhibits better confidence levels compared to the other
two methods under the influence of noise of the same magnitude.

Under the interference of the same noise, the ResNet50 model improved with the
Dropkey mechanism and demonstrated superior confidence in prediction results. For
instance, when the noise variance is 0.5, the confidence levels for the prediction results
of the Dropkey-enhanced ResNet50 model and the Dropout-enhanced ResNet50 model
are 0.998 and 0.983, respectively, while the confidence level for the original ResNet50
model drops to 0.807. Furthermore, under the interference of a noise variance of 0.6,
the Dropkey-enhanced ResNet50 model maintains a confidence level of 0.878, while the
Dropout-enhanced ResNet50 model and the original ResNet50 model experience significant
drops in confidence levels to 0.766 and 0.481, respectively. It is evident from the model
analysis that the Dropkey-enhanced ResNet50 model possesses better noise resistance
capabilities. Additionally, improvements in the model contribute to the enhancement of
Grad-CAM performance. Therefore, we can indirectly conclude that the introduction of the
Dropkey mechanism enables effective mitigation of noise interference, thereby improving
the accuracy of Grad-CAM.

3.2. Distorted Image Feature Localization

Furthermore, changes in the structure and shape of an image, such as rotation or
stretching deformation, can also impact the localization of image features. Image rotation
alters the position and orientation of image features, potentially affecting the accuracy of
feature localization. Similarly, stretching deformation modifies the aspect ratio of target
features, leading to errors in feature localization and weight calculation, thereby influencing
the accuracy of the obtained results. As illustrated in Figure 4, both Grad-CAM (Figure 4b)
and the improved Grad-CAM based on Dropout (Figure 4c) can locate the target object
in the rotated image. However, the positioning of the target object is not sufficiently
precise, and classification errors may occur. In contrast, the improved Grad-CAM based on
Dropkey can accurately locate target features without any classification errors (Figure 4d).
It is worth noting that Grad-CAM fails to locate target features in the stretched image
(Figure 4f). Although the improved Grad-CAM based on Dropout can locate target features,
its accuracy is compromised, resulting in the loss of edge features (Figure 4g). Conversely,
the improved Grad-CAM based on Dropkey can effectively locate target features, delivering
more precise positioning results without sacrificing edge features (Figure 4h).

To further validate the resistance performance of Dropkey-enhanced Grad-CAM
against large-scale noise, we selected four mainstream methods in the field of visual
explanation for comparative verification (Figure 5).

The experimental results indicate that under noise interference with a variance of 1.5,
both Grad-CAM and its four variant methods fail to accurately locate the entire feature
object. They only make judgments based on certain parts of the feature target. On the other
hand, Grad-CAM optimized with Dropout and Dropkey can relatively accurately locate
the target feature, and Dropkey Grad-CAM exhibits more complete feature localization.
This further demonstrates the excellent performance of Dropkey Grad-CAM in resisting
noise interference.
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Figure 4. Robustness analysis of the optimized Dropout-based Grad-CAM, Grad-CAM, and optimized

Dropkey-based Grad-CAM for localizing rotated features (a-d) and deformed features (e-h) in images.
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Figure 5. Under noise interference with a variance of 1.5, the comparison between Dropkey Grad-
CAM (d) and mainstream methods in the field of visual explanation ((a-c) and (e-h)).

3.3. Low-Contrast Image Feature Localization

The localization of low-contrast image features is often challenging due to the absence of
significant brightness variations and distinct edges, resulting in blurred or ambiguous details
within the image. Additionally, noise in low-contrast images tends to be more prominent,
causing the target features to be submerged or mixed, thereby greatly impacting extraction
and localization. Consequently, the recognition and extraction of low-contrast image features
present a formidable task in assessing computer visualization and interpretability.

Based on experimental results, it is evident that the original Grad-CAM technique
exhibits significant distortions when extracting low-contrast image features, rendering it
incapable of effectively locating the target feature objects in the images, as illustrated in
Figure 6b. The improved Grad-CAM technique based on Dropout can mitigate some of the
noise interference compared to the original Grad-CAM. However, it suffers from the loss
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of edge information pertaining to the target features, leading to interpretability errors, as
shown in Figure 6c¢. In contrast, the improved Grad-CAM based on Dropkey technology
can precisely and clearly locate the key feature objects in low-contrast images. Moreover,
it demonstrates superior visualization results in terms of feature edge and texture details,
thereby effectively reducing the influence of noise and enhancing the system’s robustness
under low-contrast conditions, as shown in Figure 6d.

Figure 6. Visualization of optimized Dropkey-based Grad-CAM for localizing small features in
images (d).

3.4. Image Feature Localization of Extremely Small Objects

The recognition and extraction of extremely small feature objects pose a significant
challenge in computer visualization. Due to resolution limitations, pictures containing
small feature objects often suffer from detail loss, which hampers accurate extraction and
identification. Moreover, noise can substantially affect the recognition, extraction, and
matching of smaller features.

Based on the experimental results, it is evident that the original Grad-CAM technique
fails to effectively locate small target feature objects in the presence of noise interference
(Figure 7b). Although the improved Grad-CAM based on Dropout can locate the target
feature objects, it lacks accuracy and still exhibits recognition errors, as depicted in Figure 7c.
In contrast, the improved Grad-CAM based on Dropkey achieves precise localization of
small feature objects, mitigating image classification errors and outperforming the Grad-
CAM in terms of accuracy. This robust and reliable performance of the improved Grad-
CAM based on Dropkey is demonstrated in small feature recognition tasks, affirming its
adaptability in real-world environments, as illustrated in Figure 7d.

Flying. ¢ ane (¢)  Flying crane (d) Flying crane
g =

Figure 7. Visualization of optimized Dropkey-based Grad-CAM for localization of small features in
images (d).

Additionally, it is important to note that in practical usage, we should pay attention
to the selection of the mask ratio parameter and choose an appropriate value based on
different input scenarios. For example, in the following experiment, the visualization
heatmaps may vary depending on the chosen mask ratio value (Figure 8).



Sensors 2023, 23, 8351

10 of 12

Mask Ratio=0.2 Mask Ratio=0.4 Mask Ratio=0.6 Mask Ratio=0.8

Figure 8. Evaluation of the robustness performance of Dropkey Grad-CAM using different masking
ratios on images.

This phenomenon arises because a smaller mask ratio implies fewer lines are “re-
moved” from the model as the proportion of discarded keywords in the Dropkey algorithm
decreases. Conversely, a larger mask ratio corresponds to more lines being “removed” from
the model as the proportion of discarded keywords in the Dropkey mechanism increases.
Consequently, the mask ratio and the number of rows removed or retained in Dropkey
exhibit a proportional relationship.

In simpler terms, when the mask ratio approaches 0, the Dropkey mechanism has
minimal impact, meaning that only a few rows are discarded. On the other hand, when the
mask ratio approaches 1, the Dropkey mechanism becomes highly influential, leading to
the removal of more rows. To put it simply, when the influence of Dropkey is low, there is a
higher risk of overfitting the model. On the other hand, when the influence of Dropkey is
high, it can negatively impact the predictive performance of the model. Hence, selecting an
appropriate mask ratio becomes crucial, considering the specific circumstances and striking
a proper balance between model prediction performance and overfitting.

4. Conclusions

In this paper, the robustness of Grad-CAM is tested and improved. Since Grad-CAM
heavily relies on gradient calculations, it is susceptible to interference information. To
ensure its stability and effectiveness, Dropout and Dropkey algorithms are employed to
improve its robustness. Experimental results demonstrate that both Dropout and Dropkey
algorithms improve the generalization capability of the CNN model, thereby improving
the robustness of the Grad-CAM technique. During the experiments, it was observed that
the selection of the mask ratio parameter in the Dropkey algorithm significantly influences
the final Grad-CAM localization effect. Therefore, it is crucial to carefully choose the
appropriate parameter under specific experimental conditions and image characteristics.
Furthermore, the experimental findings indicate that the improved Grad-CAM based on
the Dropkey algorithm exhibits greater robustness compared to the enhanced Grad-CAM
based on Dropout. This can help people better validate whether neural network models
can correctly process information in images.
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