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Abstract: In this study, we present a systematic exploration of hierarchical designs for multirobot
coverage path planning (MCPP) with a special focus on surveillance applications. Unlike conventional
studies centered on cleaning tasks, our investigation delves into the realm of surveillance problems,
specifically incorporating the sensing range (SR) factor equipped on the robots. Conventional
path-based MCPP strategies considering SR, primarily rely on naive approaches, generating nodes
(viewpoints) to be visited and a global path based on these nodes. Therefore, our study proposes
a general MCPP framework for surveillance by dealing with path-based and area-based structures
comprehensively. As the traveling salesman problem (TSP) solvers, our approach incorporates not
the naive approach but renowned and powerful algorithms such as genetic algorithms (GAs), and
ant colony optimization (ACO) to enhance the planning process. We devise six distinct methods
within the proposed MCPP framework. Two methods adopt area-based approaches which segments
areas via a hierarchical max-flow routing algorithm based on SR and the number of robots. TSP
challenges within each area are tackled using a GA or ACO, and the result paths are allocated to
individual robots. The remaining four methods are categorized by the path-based approaches with
global–local structures such as GA-GA, GA-ACO, ACO-GA, and ACO-ACO. Unlike conventional
methods which requires a global path, we further incorporate ACO- or GA-based local planning. This
supplementary step at the local level enhances the quality of the path-planning results, particularly
when dealing with a large number of nodes, by preventing any degradation in global path-planning
outcomes. An extensive comparative analysis is conducted to evaluate the proposed framework
based on execution time, total path length, and idle time. The area-based approaches tend to show a
better execution time and overall path length performance compared to the path-based approaches.
However, the path-based MCPP methods have the advantage of having a smaller idle time than the
area-based MCPP methods. Our study finds that the proposed area-based MCPP method excels
in path planning, while the proposed path-based MCPP method demonstrates superior coverage
balance performance. By selecting an appropriate MCPP structure based on the specific application
requirements, leveraging the strengths of both methodologies, efficient MCPP execution becomes
attainable. Looking forward, our future work will focus on tailoring these MCPP structures to diverse
real-world conditions, aiming to propose the most suitable approach for specific applications.

Keywords: ant colony optimization; genetic algorithm; multirobot coverage path planning; traveling
salesman problem

1. Introduction

Recently, research on multirobot coverage path planning (MCPP) has been actively
conducted for various purposes such as unmanned large space surveillance, cleaning,
lawn mowing, and crevasse exploration [1–5]. Among them, cleaning and lawn mowing
are tasks that are only allowed to directly visit all areas, regardless of the sensing range
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(SR) of the robot. The SR is the detection range of the sensor mounted on the robot. If
a LiDAR sensor is employed in outdoor environments, it usually has an SR of 30 m or
more. It usually covers a given area in the form of a boustrophedon decomposition [6].
However, surveillance and exploration problems aim to monitor, explore, and verify the
given areas perfectly based on the SR of the sensors mounted on the robots within a limited
time. To deal with this problem, SR-based viewpoints and various MCPP methods are
considered together.

Historically, MCPP originates from the path-planning (PP) problem. PP refers to the
process of planning a safe path for a robot to move from one point to another without
colliding with obstacles [7]. If the robot utilizes its onboard sensors to cover the entire given
area, the viewpoint generation is based on SR, and PP can be performed to ensure that all
viewpoints are visited. In this case, the problem of visiting all viewpoints with minimal
cost is defined as the traveling salesman problem (TSP). Coverage path planning (CPP)
encompasses this series of processes [8]. Technically, CPP deals with viewpoint generation
for the solution of the TSP for a single robot. MCPP, as a form of CPP for multiple robots,
is divided into a path-based approach and an area-based approach [9]. The path-based
approach refers to dividing the results of CPP into m robot allocations evenly, which can be
seen as a multiple traveling salesman problem (mTSP). The area-based approach involves
dividing the entire area into m regions and performing single-robot CPP for each region.
Each approach may have advantages and disadvantages in terms of path uniformity,
computational effort, and path planning. However, no research has been conducted to
include them in a surveillance system in detail. In this study, we comprehensively deal
with both path-based and area-based approaches in the general MCPP framework for
surveillance systems.

In the problem of MCPP, the visiting points (nodes) and the distance information
between them (edges) are represented by a graph. Therefore, the core of CPP is finding
the optimal path for the graph-represented area. However, most TSPs are NP-hard prob-
lems. Thus, heuristic methods are required to solve them [10]. There are many types of
heuristic algorithms. In this study, we consider genetic algorithm (GA) [11] and ant colony
optimization (ACO) [12] approaches, which are representative heuristic algorithms with
good characteristics that solve optimization problems and can be easily combined with
various techniques to solve the TSP of CPP. A GA demonstrates a rapid initial convergence.
However, it slows down subsequently due to the absence of a positive feedback mecha-
nism. Consequently, a GA excels in solving a limited number of TSP instances. On the
other hand, ACO offers the advantage of achieving optimal results for large and intricate
problems. However, it suffers from poor performance initially because of insufficient
pheromone levels [13]. The positive feedback mechanism, represented by the accumulation
of pheromones, accelerates the convergence speed, enabling ACO to handle complex tasks
more efficiently [11,14]. Although these methods have mainly been utilized to solve single-
robot CPP, this study presents four combinations of these two methods (GA-GA, GA-ACO,
ACO-GA, ACO-ACO) for MCPP and compares their performance in terms of environment
(edge shape) and the number of visiting points (node count) variations.

This study contributes in the following ways:

1. Design of hierarchical structures: We propose a hierarchical general MCPP frame-
work for surveillance systems with area-based and path-based structures, integrating
popular heuristic methods such as GAs and ACO. Unlike previous works, area-based
structures are added in the general MCPP framework. In addition, more power-
ful heuristic methods are utilized instead of naïve approaches such as the nearest
neighborhood approach.

2. Performance analysis: We conduct a comprehensive analysis of combination struc-
tures, considering factors like execution speed, total travel distance, and the sum
of idle time. The last factor is related to the distribution of travel tasks among
multiple robots.
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3. In-depth method comparison: We provide a detailed comparison between area-based
MCPP structure and path-based MCPP structure, evaluating their performance in
terms of path planning and coverage balancing.

This study is structured as follows: Section 2 provides an overview of related MCPP
research. In Section 3, GA and ACO methods and their capabilities in solving single-robot
CPP problems are discussed. Section 4 presents the hierarchical combination structures for
MCPP. Section 5 delves into comparative experiments under diverse environments, explor-
ing the impact of changes in the number of robots and SR. Performance metrics include ex-
ecution speed, total travel distance, and task distribution among robots. Section 6 analyzes
each method’s path-planning and coverage-balancing performance. Finally, Section 7
concludes our study, offering insights into future research directions.

2. Related Work

Research on CPP is being conducted in various fields, including sanitation robots [15],
harvesting robots [16], vacuum cleaning robots [17], and surveillance robots [3]. These
studies primarily focus on coverage completeness and minimizing the overlap of coverage
paths [18–20]. In CPP research, single robot CPP normally focuses on coverage completion,
but MCPP focuses on a uniform task allocation among multiple robots, minimizing overall
work time, energy efficiency, and so on. Among CPP studies, MCPP research presents a
challenging problem due to the consideration and cooperation between multiple robots [21].
However, compared to single-robot CPP, MCPP offers advantages such as the parallel
completion of tasks, a reduced time consumption, and improved efficiency. For example, if
a single robot and multiple m robots perform CPP in the same environment, each robot
visits only one node at the same rate, but m robots can visit m nodes at once. As the number
m increases, the efficiency also increases. In addition, it is possible to plan for m− 1 robots
in the event of a breakdown or charging, but it is difficult to keep performing coverage in
the case of a single robot.

The key focus of MCPP research lies in solving the mTSP problem. MCPP research can
be categorized into path-based and area-based approaches [9]. For MCPP, the area-based
method first divides the entire area for m robots and then proceeds with planning for each
area. In contrast, the path-based method first generates a global path for all nodes to be
visited (viewpoints) and then assigns each path by dividing the global path according to
the number of robots, m. For area-partitioning, methods such as Lloyd’s algorithm [22],
Voronoi partitioning [23], K-means [24], heuristic techniques [25], and the alternate-offer
protocol [26] have been explored. Technically, Lloyd’s algorithm and Voronoi partitioning
focus on region partitioning. In addition, they do not take SR into account. Since the
K-means method is a method of dividing the area iteratively, it has the limitation of not
being able to include the distribution of nodes considering SR. Ref. [25] dealt with the
region segmentation of a polygonal map without considering both arbitrary maps and SR.
Ref. [26] proposed a method to appropriately divide the region within a limited model.
However, the study was not extended to maps with obstacles.

The DARP (Divide Areas based on Robots’ Initial Positions) method [27] assigns
optimal regions to each robot based on the grid map and the initial positions of robots and
obstacles. This method has been studied in combination with a spanning tree and ACO.
However, while a preallocation of areas before path generation reduces computational
complexity, it poses challenges in obtaining optimal solutions for MCPP.

Prominent studies in path-based approaches were introduced in [28,29], based on the
art gallery problem (AGP) formulated by Klee [30]. The AGP involves placing a minimum
number of necessary guards with sensing ranges to protect an art gallery. In these studies,
the problem of placing guards was seen as a problem of generating necessary nodes
(viewpoints) to visit. The authors assumed a polygonal obstacle and then divided the
map based on the vertices of the obstacle. Within each area, nodes were generated at
equal intervals considering the SR of the robot. The resulting nodes formed the basis for
constructing graphs. For MCPP, a cyclic coverage method was proposed. The algorithm
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found the shortest tour on the graph similar to solving TSP. The tour was distributed
to the robots. In [3], these studies were enhanced and expanded for MCPP. The nodes
to be visited were generated based on the normal vector direction of the given map by
considering the sensing range (SR). It means any maps were available except polygon-
style ones. Additionally, processes such as path partitioning and recombination were
added to achieve balanced paths. In this study, the graph construction method using
the normal vectors of the map [3] is also employed. Unlike previous works, area-based
structures as well as path-based structures are considered in our general MCPP framework
for surveillance systems. ACO and GAs, which are more powerful heuristic methods, are
combined into hierarchical structures such as ACO-ACO, ACO-GA, GA-GA, and GA-ACO
instead of naïve approaches such as the nearest neighborhood approach utilized in [3].
Harrath et al. [31] proposed a hybrid methodology utilizing ACO, two-opt, and a GA. ACO
was used as a solution for the TSP problem, while a two-opt algorithm and a GA were
employed to enhance the solution. This method focused on solving the mTSP problem
using powerful heuristic methods such as ACO and GAs but is different from the general
MCPP solution for surveillance including a viewpoint generation using SR and obstacles
in the map. However, that work is similar to the core of the path-based approach with
the ACO-GA structure in our work. In this study, we design and analyze area-based and
path-based approaches in the general MCPP framework by structuring them in various
ways using heuristic methods such as ACO and GAs.

3. Coverage Path Planning

To solve CPP, it is first necessary to build a graph, G, for the entire area. The nodes
of the graph, N, are iteratively generated by considering the SR in the normal vector
direction from the occupied region of a given map [3]. An edge has a value if two nodes
are connected along the free space of the map. It is calculated as the Euclidean distance.
From the constructed graph, the problem is described as follows [32]:

min
N

∑
i=1

N

∑
j=1,j 6=i

EijCij, (1)

s.t. ∑
j,j 6=i

Ci,j = 1, i = 1, 2, , N, (2)

∑
i,i 6=j

Ci,j = 1, j = 1, 2, . . . , N, (3)

where Eij is the edge between the ith node and jth node. Cij denotes connectivity
(Cij ∈ {0, 1}) for i 6= j. Therefore, the CPP problem lies in finding Cij that satisfies (1)
in the given graph.

3.1. GA-BasedCPP Approach

When the graph is constructed, GA-based CPP proceeds in the following way. Given
the initial paths(chromosomes) P1 and P2, a crossover is performed where the crossover
rate is Rcross. A crossover is a structure that evolves as parental chromosomes cross over to
create new chromosomes. At this time, the direction of evolution is to decrease the cost of
the path that is calculated as the sum of the graph edges. Furthermore, the GA addresses
the local minimum problem by performing a mutation operation of Rmu probability, which
causes a portion of the factor information on the chromosome to change to a random
value, resulting in a different solution. The number of chromosomes, denoted as Mch,
is predetermined and employed in parallel computations. In this study, these specific
parameters were determined from the research conducted in [11].
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3.2. ACO-Based CPP Approach

ACO-based CPP operates as follows. Initially, a certain number of ants, denoted as
Nant, randomly select nodes from the constructed graph based on the initialization rules.
Each ant chooses the next node to visit using the state transition rule and undergoes an iter-
ative process of exploration. During this process, the ants update the amount of pheromone
on each visited node according to the local updating rule. After completing the exploration
phase, when all ants have finished their traversal, the amount of pheromone is further
updated based on the global updating rule. The amount of the update is determined by the
following parameters: α (pheromone coefficient), β (heuristic coefficient), and ρ (pheromone
evaporation rate). Larger values of α increase the dependency on the ant’s pheromone
information when performing CPP, while larger values of β increase the dependency on
heuristic calculations. For ρ, decreasing the value reduces the evaporation rate of the
pheromone, making the information in the pheromone last longer as the generation evolves.
Finally, each ant constructs a navigation path by considering both heuristic information to
select nearby nodes and pheromone information to select nodes with higher amounts of
pheromones. This entire process is repeated for a specified number of iterations.

The performance analysis of applying ACO to the TSP by varying the parameters
is conducted in [12]. Ref. [12] analyzed ACO by changing parameters in order to obtain
optimal ACO parameter values to solve various TSP problems. Based on this, this study
utilized the resulting parameter values.

4. Multirobot Coverage Path Planning

Figure 1 illustrates the flowchart of the proposed MCPP structures. The entire coverage
area, referred to as AGlobal , is divided and allocated to m robots as individual task quotas
(AGlobal = {ALocal_1, ALocal_2, . . . , ALocal_m}. The process begins with the given map, from
which an SR-based graph is constructed. Subsequently, the multiple TSPs are solved based
on the chosen approaches.

Figure 1. The flowchart of the proposed MCPP structures. This structure constructs an SR-based
graph of information about a given map. Subsequently, the solution of the multiple TSPs shows how
multirobot coverage performs with the chosen approach using the constructed graph.
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In the area-based approach, the entire area is initially divided into partitions based on
the number of robots, m. Each resulting partition is treated as a separate TSP, which is then
solved using a heuristic method.

In the path-based approach, a global path is planned for all N viewpoints. This path is
subsequently evenly divided into segments according to the value of m, and a replanning
process using the heuristic method is performed for each segment.

The subsequent subsections provide a detailed explanation of each approach method.

4.1. Area-Based MCPP

In the area-based MCPP method, the entire coverage area, referred to as AGlobal , is
divided and allocated to m robots as individual task quotas (AGlobal = {ALocal_1, ALocal_2, . . . ,
ALocal_m}). ALocal_i represents the subarea allocated to the ith robot after area partitioning
processing. The partitioning of AGlobal is achieved using the hierarchical max-flow rout-
ing [33] method. The viewpoints that are encompassed within each area serve as the input
for local path planning (N ∈ ALocal). Following several rounds of local path planning, each
path is assigned to robots utilizing either a GA or ACO. Consequently, the resulting paths
are denoted as PGlobal = {Pnew_Local_1, Pnew_Local_2, . . . , Pnew_Local_m}.

4.2. Path-Based MCPP

The path-based MCPP method involves conducting global coverage path planning
using either a GA or ACO on a given graph. This is because the individual coverage
path of each robot is obtained from a certain portion of the global path. The result-
ing global path denoted as PGlobal consisting of ordered nodes can be evenly divided
into segments based on the specified number of robots, m, resulting in
PGlobal = {PLocal_1, PLocal_2, . . . , PLocal_m}. For example, if PGlobal consists of 20 sorted nodes
for 4 robots, then each PLocal has 5 sorted nodes. Subsequently, a GA or ACO is applied
once again to each divided path to obtain an optimized path for each segment, resulting
in PGlobal = {Pnew_Local_1, Pnew_Local_2, . . . , Pnew_Local_m}. Thus, depending on the chosen
methodologies for global path planning and local path planning, four possible structures
can be organized: ACO-ACO, ACO-GA, GA-GA, and GA-ACO. These are all possible
structures.

The complexity of the TSP is regarded as O(N2LogN) for N nodes. Hence, in scenarios
with a large number of nodes, the MCPP approach with heuristic approaches for the
complexity of TSP may not achieve optimality due to the persistence of local minimum
problems. This can cause the MCPP approach to fail to achieve optimality. Nevertheless, in
our path-based approach, after assigning a path to an individual robot, local planning is
additionally performed for a small number of individual nodes. This increases the chance
of finding a better solution that would not have been found during global path planning
for all nodes. Consequently, the hierarchical structure proposed in this study can provide
slightly improved outcomes for individual paths.

In the path-based approach, after assigning a path to an individual robot, local plan-
ning is performed once again for a small number of individual nodes. This increases the
chance of finding a better solution that would not have been found during global path
planning for all nodes.

5. Experiment

In this section, various experiments performed for the evaluation of the proposed
MCPP structure are presented. The experiments were carried out in three environments:
simple, partially complex, and complex environments. The proposed MCPP structures
were evaluated depending on the number of nodes (N) and number of robots (m). Three
evaluation factors were used in the evaluation: the average algorithm execution time, the
total distance traveled by the robot, and the idle time of the robot.

Prior to the experiment, the aforementioned parameter values of the ACO and GA
are presented in detail in Table 1. As for the values of the parameters, we found effi-
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cient parameter values by referring to the results of analyzing the effect of changing the
parameters in [11,12]. Nant is the number of ants, N is the number of nodes, Rmu is the
probability of mutation, Rcross is the probability of crossover, and Mch is the number of
initial chromosomes.

Table 1. Major parameters values for the experiments.

Algorithm Parameter Experimental Value

ACO

α 5
β 1
ρ 0.5

Nant N

GA
Rmu 0.3

Rcross 1
Mch 50

In the experiments, a total of six methods were employed, comprising area-based
methods consisting of either ACO or a GA, as well as path-based methods with four
combinations of ACO and GAs. Furthermore, three different maps were tested, each
varying in complexity. The performance of the six methods was evaluated by varying the
number of robots and nodes based on each map. To assess performance, the path planning
efficiency of each algorithm was compared using the average algorithm execution time,
Tavg, and the total distance covered by the robots, Lsum. Additionally, the idle time of the
robots was computed to represent the effectiveness of their utilization, denoted as Tidle. For
both Lsum and Tavg, the smaller the factors, the less distance the robot can travel and the less
time it takes to compute. Thus, those factors show the coverage-path-planning performance.
For Tidle, the smaller the value, the smaller the difference between the workloads (coverage
nodes) of the robots, which shows the coverage-balancing performance. The formulas for
calculating Lsum and Tidle are as follows:

Lsum =
1
M

M

∑
k=1

m

∑
j=1

N(k)−1

∑
i=1

EPLocal{j,i} ,PLocal{j,i+1} , (4)

Tidle =
1
V

1
m

m

∑
i=1

(Dmax − Di), (5)

where M is the total number of experiments, m is the number of robots, PLocal is the
waypoint of each robot, N(k) is the size of the generated PLocal of the kth robot, Di is the
path length of the ith robot, Dmax is the path length of the longest robot path among the
robots’ paths, and V is the movement speed of the robot.

The environments utilized in the experiments were all 4704 × 3968 pixels in size. The
experiments were performed using a robot with a movement speed of V = 1 pixel/sec.

5.1. Simple Environment

A simple environment is a simple structure with no obstacles, as shown in Figure 2a.
When nodes are created in such an environment, there is a strong connectivity between
them. It means that the robot can reach any node from the current node. Therefore, even
if the optimal node selection fails at an arbitrary node, there is a high probability that the
suboptimal selection can easily be found. Experimenting in this environment, we can infer
that the global path planning performed only by the path-based MCPP method can result
in a smaller Tavg than the area-based MCPP method. In addition, if the number of robots
increases or the number of nodes decreases, the Tavg of the overall MCPP structure may
decrease because the computational factor decreases.
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(a) (b) (c)

Figure 2. Three maps for the experiments. Each map differs in complexity. (a) Simple environment;
(b) partially complex environment; (c) complex environment.

The results of our experiments in the simple environment are shown in Table 2 and
Figure 3.

(a) Evaluation experiments on Lsum

(b) Evaluation experiments on Tavg

(c) Evaluation experiments on Tidle

Figure 3. Performance evaluation in a simple environment. Each algorithm was evaluated in terms
of Lsum, Tavg, and Tidle. The horizontal axis in each figure means (m, N), and the vertical axis denotes
the measured distance or time according to the evaluation criteria.
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Table 2. Performance evaluation in a simple environment.

Area-Based MCPP Method (ACO) Area-Based MCPP Method (GA) Path-Based MCPP Method (ACO-GA)

m N Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec)

3

71 34,679 11.23 1440 36,058 9.58 1330 33,435 23.77 567

104 41,938 25.69 2428 44,145 17.46 2736 42,370 69.54 626

162 51,854 70.33 1264 57,436 32.52 451 52,129 257.97 841

6

71 33,173 11.16 1339 32,953 5.38 1405 32,726 22.95 267

104 40,353 14.72 1643 41,411 11.90 1881 41,336 65.60 428

162 50,708 31.21 2691 55,470 22.80 2670 51,744 229.82 635

10

71 35,049 12.40 3009 37,225 5.04 2002 30,587 20.52 470

104 38,420 13.14 1872 38,664 8.19 1875 37,955 58.94 650

162 50,089 22.01 2573 51,434 17.23 2887 50,741 213.18 959

Path-Based MCPP Method (ACO-ACO) Path-Based MCPP Method (GA-ACO) Path-Based MCPP Method (GA-GA)

m N Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec)

3

71 33,097 40.86 452 35,558 28.32 192 33,914 12.17 864

104 41,246 141.47 584 43,289 70.28 272 58,020 26.77 1994

162 52,709 323.38 983 55,743 157.69 1422 78,596 42.43 1465

6

71 30,879 37.38 605 30,604 26.34 476 32,557 11.59 278

104 39,608 85.74 438 42,264 30.63 298 48,377 25.48 861

162 50,623 319.65 268 57,284 146.50 443 60,517 32.66 1267

10

71 30,245 29.59 448 32,149 22.25 404 34,557 12.73 964

104 37,983 74.76 880 40,092 22.01 434 44,128 14.73 892

162 50,829 305.67 751 55,626 132.81 1052 60,152 24.44 1019

5.1.1. Experimental Results: Node and Robot Variations (N and m)

For all algorithms performed in the simple environment, Tavg and Lsum increased as
the number of nodes increased. This is because as the number of nodes increases, the
number of viewpoints the robot must pass through increases. In addition, the number of
possible paths that can be generated increases, resulting in an increase in Tavg and Lsum.

In both the area-based and path-based MCPP methods, Lsum and Tavg tended to
decrease as the number of robots increased. This outcome can be attributed to the fact that
with a higher number of robots, the nodes are distributed among more robots, resulting in a
reduced number of nodes assigned to each individual robot. Consequently, as the number
of nodes assigned to each robot decreases, the overall coverage task becomes more efficient,
leading to a decrease in both Lsum and Tavg. The specific numerical results reflecting this
trend can be observed in Table 2 and Figure 3.

5.1.2. MCPP Methods

In the area-based MCPP method, the GA showed a Tavg up to 37.81 s faster than the
ACO, but for Lsum, the ACO showed an Lsum of up to 5582 pixels shorter than the GA. The
reason for this stems from the features of each algorithm, with the GA’s fast performance
and ACO’s relatively better distance optimization performance than the GA.

In path-based MCPP, the path distance (Lsum) differences between the ACO-GA and
ACO-ACO structures were similar overall. These two algorithms had relatively good Lsum
performance among all path-based MCPP methods. In terms of the performance for Tavg,
the ACO-GA structure was up to 92.49 s faster than the ACO-ACO structure. As a result,
the ACO-GA structure showed the best path-planning performance among path-based
MCPP methods. For instance, the GA-GA method had the fastest execution time compared
to other path-based MCPP methods, but its Lsum was up to 26,467 pixels larger than that
of the ACO-GA method, showing relatively worse performance among the path-based
MCPP methods.

To compare the performance between the area-based MCPP approach and the path-
based MCPP approach themselves, the area-based MCPP method with ACO and the path-
based MCPP method with an ACO-GA structure, as their representatives, were considered.
When considering Lsum, the results indicated that the path-based MCPP method achieved
a shorter distance by up to 4461 pixels when the number of nodes, N, was 71. However, in
experiments involving 104 and 162 nodes, the area-based MCPP method demonstrated a
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shorter distance by up to 1036 pixels. In the case of the path-based MCPP method, global
path planning must be performed initially. When the number of nodes exceeded 100 in our
test scenario, this method with ACO could not reach a fine solution as the computational
complexity increased. This is due to a structural property of heuristic algorithms. In
the case of the area-based MCPP method, even when there were more than 100 nodes
generated, the coverage area was divided among the robots at first. Subsequently, the
heuristic algorithm performed well for a relatively small number of nodes. This process led
to a lower Lsum compared to the path-based MCPP method. Regarding Tavg, the area-based
MCPP method generally outperformed the path-based MCPP method with a noticeable
performance difference of up to 198.61 s. This result represents that the area division
process normally exhibits faster computation times than the global path-planning process
according to increases in the number of nodes.

In terms of Tidle, the comparison results showed that the path-based MCPP method
had a lower idle time compared to the area-based MCPP method with a difference of up
to 2538 s. This implies that the path-based method more effectively deals with the given
robots by minimizing their idle time.

These results comprehensively suggest that the area-based MCPP method provides
advantages in terms of Lsum and Tavg while the path-based MCPP method excels in mini-
mizing Tidle and ensuring an efficient robot utilization.

5.1.3. Graphical Results

Figure 4 shows the representative results of coverage paths generated by each algo-
rithm with m = 6 and N = 102. In the area-based MCPP method as shown in Figure 4a,b, the
path on the bottom right is shorter than the paths of the other robots. For the path-based
MCPP method depicted in Figure 4c–f, all robots are assigned paths consisting of the same
number of nodes (N = 16), which results in a more efficient coverage-balancing performance
compared to the area-based MCPP method. This implies that the area-based MCPP method
exhibits a larger Tidle compared to the path-based MCPP method, as previously discussed
in the analysis of the results presented in Table 2 and Figure 3.

(a) Area-based (ACO) (b) Area-based (GA) (c) Path-based (ACO-GA)

(d) Path-based
(ACO-ACO)

(e) Path-based
(GA-ACO)

(f) Path-based (GA-GA)

Figure 4. Experiment result in a simple environment. The results presented in (a–f) were obtained
from experiments conducted using 102 nodes and 6 robots.
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5.2. Partially Complex Environment

A partially complex environment refers to a scenario where the entire environment is
obstructed by certain terrain, as depicted in Figure 2b. In this case, the robot performing the
coverage is limited to moving within the white area, while the black area represents regions
where the robot is unable to navigate. When constructing graphs between nodes that are
affected by these restricted areas, additional computational steps are required to account
for the separation of such areas. Additionally, the connectivity between nodes tends to
be weaker compared to a simple environment due to the introduction of restricted paths,
which restrict the ability to find the next node from any given node. Table 3 and Figure 5
show the results of our experiments in a partially complex environment. The experimental
results in the partially complex environment introduce an additional factor for calculating
MCPP since there are more limited nodes compared to the simple environment. Therefore,
the experimental results show that the performance difference in Lsum between the GA and
ACO increases more than in the simple environment.

(a) Evaluation experiments on Lsum

(b) Evaluation experiments on Tavg

(c) Evaluation experiments on Tidle

Figure 5. Performance evaluation in a partially complex environment. Each algorithm was evaluated
in terms of Lsum, Tavg, and Tidle. The horizontal axis in each figure means (m, N), and the vertical axis
denotes the measured distance or time according to the evaluation criteria.
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Table 3. Performance evaluation in a partially complex environment.

Area-Based MCPP Method (ACO) Area-Based MCPP Method (GA) Path-Based MCPP Method (ACO-GA)

m N Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec)

3

51 27,711 11.35 3692 29,345 8.86 5088 26,218 26.72 603

102 35,227 27.09 5473 42,147 15.02 8143 32,189 91.49 605

168 42,655 73.81 5307 54,995 26.50 5018 42,107 319.54 959

6

51 24,870 8.78 4099 25,265 5.98 4276 26,146 25.63 792

102 31,808 14.58 5092 33,620 12.91 6652 31,551 85.28 519

168 41,492 36.23 2749 46,637 24.65 5374 42,080 274.05 993

10

51 26,899 6.07 2864 20,880 2.58 2763 18,992 14.90 556

102 30,228 10.15 4329 30,977 5.87 4733 31,023 82.98 965

168 39,699 23.29 3885 42,958 16.61 4075 39,314 193.95 1203

Path-Based MCPP Method (ACO-ACO) Path-Based MCPP Method (GA-ACO) Path-Based MCPP Method (GA-GA)

m N Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec)

3

51 28,420 29.24 1494 29,885 30.76 1287 31,098 13.27 1602

102 37,248 129.41 2729 38,135 55.32 904 55,505 24.87 1484

168 44,428 342.09 1720 51,173 86.98 1745 76,168 48.48 2532

6

51 28,516 30.63 871 28,866 28.24 1534 29,176 12.78 1714

102 35,125 110.43 1236 35,547 43.64 452 39,616 23.61 699

168 43,833 332.39 802 46,838 77.69 907 55,793 39.12 1377

10

51 19,453 28.15 528 20,055 14.46 634 20,357 12.50 564

102 30,579 82.86 646 33,257 39.27 584 38,513 17.54 822

168 38,467 267.57 593 42,746 62.94 724 54,461 28.70 800

5.2.1. Experimental Results: Node and Robot Variations (N and m)

The results of the experiments with the number of nodes and robots in the partially
complex environment were similar to those in the simple environment. It was observed
that Lsum and Tavg changed proportionally with the number of nodes.

5.2.2. MCPP Methods

In the area-based MCPP method, the performance difference in Tavg between the GA
and ACO was up to 47.31 s, which was 9.5 s higher than the time difference observed in
the simple environment (37.81 s). Moreover, the performance difference in Lsum was up to
12,340 pixels. This indicates that the performance difference more than doubled compared
to the Lsum difference observed in the simple environment (5582 pixels).

For the path-based MCPP method, we observed that the ACO-GA structure had the
best distance performance with the smallest Lsum, and the GA-GA structure had the best
time performance with the fastest Tavg. However, the GA-GA structure had an Lsum of
up to 34,061 pixels longer than the ACO-GA structure, indicating a worse path length
optimization performance.

Comparing the ACO structure with the shortest Lsum in the area-based MCPP method
and the ACO-GA structure with the shortest Lsum in the path-based MCPP method, it was
found that Tavg took up to 245.73 s longer in the path-based MCPP method compared to
the area-based MCPP method. It showed that area-based MCPP method was relatively
faster than the path-based one in computation time when performing path planning. On
the other hand, Tidle took up to 4867 s less in the path-based MCPP method compared
to the area-based MCPP method. As in the simple environment, the path-based MCPP
method had better coverage-balancing performance than the area-based MCPP method.
Additionally, the area-based MCPP method exhibited Tidle values ranging from 2749 to
5473 s, which was an increase from the Tidle values observed in the simple environment
(ranging from 1264 to 3009 s).

5.2.3. Graphical Results

The paths for each algorithm are depicted in Figure 6 with m = 3 and N = 51. In the case
of the area-based MCPP method as shown in Figure 6a,b, the result of the paths on the bot-
tom right reveals that Figure 6a exhibits a shorter path compared to Figure 6b. On the other
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hand, for the path-based MCPP method depicted in Figure 6c–f, the ACO-GA structure
demonstrates the shortest Lsum without any overlapping paths among different robots.

(a) Area-based (ACO) (b) Area-based (GA) (c) Path-based (ACO-GA)

(d) Path-based (ACO-ACO) (e) Path-based (GA-ACO) (f) Path-based (GA-GA)

Figure 6. Experiment result in a partially complex environment. The results presented in (a–f) were
obtained from the experiment conducted using 51 nodes and 3 robots.

Among the path-based MCPP methods, except for the ACO-GA-structured algorithm,
Figure 6d–f are not suitable for multirobot path planning, because there is a situation
where different robots represent overlapping paths, which may cause collisions between
robots. When comparing the different MCPP methods, it is observed that the path-based
MCPP method achieved a more balanced and even distribution of paths compared to the
area-based MCPP method.

5.3. Complex Environment

For the experiments conducted in a complex environment, we utilized an environment
characterized by branching terrains where only white areas were accessible for movement, as
illustrated in Figure 2c.

In this particular environment, the constructed graphs exhibited the most constrained
edges between nodes compared to the previous experiments. Consequently, this environment
displayed the weakest connectivity between nodes among all the experimental environments.
The results of our experiments in the complex environment are shown in Table 4. In this
environment, the MCPP optimization performance of the GA was significantly degraded
due to the limited number of edges between most nodes, resulting in worse Lsum values
compared to ACO.

5.3.1. Experimental Results: Node and Robot Variations (N and m)

Previous experiments performed in simple and partially complex environments gen-
erally showed that Lsum increased as the number of nodes increased. However, Table 4
and Figure 7 show that for the area-based MCPP method with ACO and the path-based
MCPP method, Lsum became shorter as the number of nodes increased from 70 to 113. In
the previous experiment, since there were many possible paths between the nodes, we were
able to construct a sufficient number of edges to pass through all the nodes, resulting in a
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near-optimal Lsum. Therefore, as the number of nodes increased, the Lsum also increased
because there was no factor other than the number of nodes that affected the computation
of the algorithm.

Table 4. Performance evaluation in a complex environment.

Area-Based MCPP Method (ACO) Area-Based MCPP Method (GA) Path-Based MCPP Method (ACO-GA)

m N Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec)

3

70 20,824 15.67 18,761 52,693 8.32 27,421 19,924 31.17 1810

113 16,755 30.31 6083 67,629 14.42 5307 15,668 86.53 1754

173 20,684 72.18 5069 72,937 22.12 7991 18,538 231.08 2324

6

70 20,651 8.56 6289 31,050 6.02 10,145 18,856 30.93 1990

113 17,148 15.81 9663 65,459 11.51 12,576 15,196 86.51 2271

173 18,215 40.15 10,008 78,579 21.37 13,261 20,095 212.31 2763

10

70 9701 3.67 12,743 11,682 3.04 12,749 12,085 28.68 563

113 11,791 10.90 16,405 12,632 7.07 16,094 10,116 77.92 861

173 16,331 29.86 17,050 15,053 13.70 16,918 11,232 208.73 913

Path-Based MCPP Method (ACO-ACO) Path-Based MCPP Method (GA-ACO) Path-Based MCPP Method (GA-GA)

m N Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec) Lsum(pixel) Tavg(sec) Tidle(sec)

3

70 20,648 62.25 2546 28,999 22.07 1814 45,226 12.07 1729

113 18,812 112.91 1355 18,979 40.42 895 42,341 25.23 840

173 19,813 252.24 1863 23,940 135.10 2193 54,858 45.40 1259

6

70 19,221 58.32 2507 24,391 16.92 1949 37,977 11.96 1046

113 17,691 109.31 1614 18,199 26.86 2375 34,164 24.55 1671

173 20,346 241.39 1308 18,526 101.48 1839 45,479 44.66 1727

10

70 12,167 31.46 572 16,878 15.52 687 15,550 12.02 1834

113 10,054 84.75 884 15,378 30.75 1052 15,521 14.67 1247

173 11,250 243.20 892 18,783 64.16 1609 24,457 22.06 1715

(a) Evaluation experiments on Lsum

(b) Evaluation experiments on Tavg

Figure 7. Cont.
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(c) Evaluation experiments on Tidle

Figure 7. Performance evaluation in a complex environment. Each algorithm was evaluated in terms
of Lsum, Tavg, and Tidle. The horizontal axis in each figure means (m, N) and the vertical axis denotes
the measured distance or time according to the evaluation criteria.

On the other hand, in the complex environment, the possible paths between the
nodes were mostly constrained by obstacles, except for a few instances. When fewer than
100 nodes were created, there were situations where nodes were not assigned to branching
points of the environment and instances where edges enabling traversal through all nodes
were not constructed. It led to a poor distance optimization performance and a larger Lsum.
However, as the number of nodes increased, the number of cases featuring passable paths
between nodes increased, ensuring that all nodes had edges facilitating traversal. This
improvement in distance optimization performance resulted in a reduced Lsum. In the other
cases of this observation, the increase from 113 to 173 nodes yielded the same increase in
Tavg and Lsum as in the previous experimental environments.

In the case of the number of robots, the results of the experiments in the complex
environment were consistent with the previous experiments, with Lsum and Tavg decreasing
as the number of robots increased.

5.3.2. MCPP Methods

The area-based MCPP method using ACO exhibited a similar pattern to the previ-
ous experimental environments, with the ACO achieving a shorter Lsum but longer Tavg
compared to the GA.

In the path-based MCPP methods, each algorithm structure resembled the experimen-
tal results in the partially complex environment, the ACO-GA structure demonstrating the
lowest Lsum and the GA-GA structure exhibiting the shortest Tavg. Analyzing the results
from all experimental environments collectively, the average difference in Lsum between the
GA-GA and ACO-GA structures increased as the number of paths restricted by obstacles
in the environment increased. In the simple environment, Lsum was 26,467 pixels. In the
partially complex environment, Lsum was 36,061 pixels. Lastly, in the complex environment,
Lsum was 36,320 pixels.

When comparing the area-based MCPP method using ACO and the path-based MCPP
method based on the ACO-GA structure, the path-based MCPP method displayed longer
Tavg and shorter Tidle values compared to the area-based MCPP method, which aligned
with the previous experimental results.

5.3.3. Graphical Results

Figure 8 shows the path results for each algorithm with m = 6 and N = 173. In
Figure 8a,b, which represent the experimental results of the area-based MCPP method, the
blue path at the top center is relatively shorter than the other paths. Based on this obser-
vation, the path-based MCPP method, depicted from Figure 8c–f, divides the paths more
evenly compared to the area-based MCPP method, as shown in Figure 8a,b. Consequently,
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the path-based MCPP method yields smaller Tidle values compared to the area-based
MCPP method.

(a) Area-based (ACO) (b) Area-based (GA) (c) Path-based (ACO-GA)

(d) Path-based (ACO-ACO) (e) Path-based (GA-ACO) (f) Path-based (GA-GA)

Figure 8. Experiment result in a complex environment. The results presented in (a–f) were obtained
from the experiment conducted using 173 nodes and 6 robots.

6. Discussion

To analyze the path-planning performance of MCPP, the results of Lsum regarding two
representative approaches were compared in experimental environments. As representative
methods with good performance, a path-based MCPP method using ACO and an area-based
MCPP method using an ACO-GA structure were chosen. The difference in Lsum ranged from
257 pixels to 7907 pixels. When the number of nodes was more than 150, the experimental
results showed that the area-based MCPP method had a smaller Lsum than the path-based
MCPP method regardless of the environmental complexity.

For Tavg, the difference in Tavg performance between MCPP methods increased dra-
matically as the number of nodes increased. In other words, the area-based MCPP method
showed relatively low Tavg values compared to the path-based MCPP method. Unlike the
path-based MCPP method, the area-based MCPP method did not require global CPP for all
nodes. In the case of the area-based MCPP method, the area was divided quickly by the
number of robots in advance, and then, a relatively small number of nodes was left in the
divided area. Because the number of nodes was small, the heuristic algorithm achieved an
optimal or near-optimal solution. This process improved both the computation time (Tavg)
and the multirobot path-planning performance (Lsum).

To evaluate the performance of MCPP in terms of the efficiency of coverage-balancing
performance, Tidle for the representative methods were compared in the same manner as
before. In all environments, the path-based MCPP method had a smaller Tidle than the area-
based MCPP method. In the simple environment, the difference in Tidle ranged from 423 to
2538 s, with an average of 1424 s. In the partially complex environment, the difference in Tidle
ranged from 1756 to 4867 s, with an average of 3366 s. Lastly, in the complex environment, the
difference in Tidle ranged from 2745 to 16,951 s, with an average of 9647 s.

Considering these results comprehensively, the performance difference between the
methods increases according to the increase in the environmental complexity. This is because
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path-based MCPP methods divide the path generated by the global path-planning process
according to the number of robots. It increases the possibility that all robots will share the
same amount of workload. On the other hand, the area-based MCPP method can divide the
space irregularly depending on the type of environment. It means that as the environment
becomes more complex, the nodes in the space are not divided evenly, and the coverage
balancing efficiency deteriorates.

Through the above comprehensive analysis, the area-based MCPP approach shows its
powerful performance in path planning whereas the path-based MCPP approach outperforms
in coverage balancing.

7. Conclusions

In this study, we presented an analytical investigation of general MCPP structures for
surveillance systems: area-based MCPP approaches and path-based MCPP approaches. To
achieve this, we carefully designed hierarchical structures based on six different methods using
the combination of ACO and GAs according to the approaches. In addition, we conducted
experiments in various environments and several conditions. For performance evaluations,
we introduced three evaluation metrics: Lsum, Tavg, and Tidle. These metrics allowed us to
analyze the path-planning performance and coverage-balancing performance of each structure
efficiently. As a result, the area-based MCPP structure showed its powerful performance in
path planning, whereas the path-based MCPP approach outperformed in coverage balancing.
Our future work will focus on applying these MCPP structures to a variety of real-world
conditions with the goal of proposing the most suitable approach for specific applications.
As a specific application, a number of robot operation tasks are currently being performed at
Jang Bogo, South Korea’s high-tech Antarctic station.
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