Algorithm 2: Adaptive AutoPro for Healthcare Prediction using the Fully Homomorphic Encryption (FHE) Algorithm |
Input: RemoteDataset[], Open dataset of remote users for the training of heart disease.
Labels[], Selected dataset labels to be processed by FHE algorithm.
TestSet[], A group of recent remote health patients’ data sent by
-
5.
FHE_AlgorithmTime[], Time required for the execution of the FHE algorithm.
-
6.
Initialize (DTrain, DTest, DProcessedTrain, DProcessedTest, FHE Model, DQue, candidateSet1, candidateSet2, candidateSet3, candidateSet4) = ∅
-
7.
DTrain, DTest=TrainTestRatio(RemoteDataset[], Labels, 80:20)
-
8.
-
11.
DQueue = Input (TestSet[10]) # Input encrypted Test Set of 10 patients.
-
12.
If (DQueue == Consistent)
-
13.
Print “The patient’s test set is consistent and ready to be processed”
-
14.
Else
-
15.
Print “The patient’s test set is corrupted”, exit()
-
16.
For EHR in range(sizeof(TestSet[]))
-
17.
candidateSet1 = FHE.Decision Tree(TestSet[x])
-
18.
candidateSet2 = FHE.Logistic Regression(TestSet[x])
-
19.
candidateSet3 = FHE.SVM(TestSet[x])
-
20.
candidateSet4 = FHE.XGBoost(TestSet[x])
-
21.
Print “Decision Tree:”,candidateSet 1,“Logistic Regression:”, candidateSet2, “SVM:”,candidateSet 3,“XGBoost:”,candidateSet 4
-
22.
Print “Execution Time required for Decision Tree:”, candidateSet1.time(),
“Logistic Regression:”,candidateSet2.time(), “SVM:”,candidateSet3.time(), “XGBoost:”,candidateSet4.time()
-
23.
candidateSet[] = candidateSet1 ∪ candidateSet2 ∪ candidateSet3 ∪ candidateSet4
-
24.
Return candidateSet[]
|