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Abstract: Wearable sensors are widely used to gather psychophysiological data in the laboratory
and real-world applications. However, the accuracy of these devices should be carefully assessed.
The study focused on testing the accuracy of the Empatica 4 (E4) wristband for the detection of
heart rate variability (HRV) and electrodermal activity (EDA) metrics in stress-inducing conditions
and growing-risk driving scenarios. Fourteen healthy subjects were recruited for the experimental
campaign, where HRV and EDA were recorded over six experimental conditions (Baseline, Video
Clip, Scream, No-Risk Driving, Low-Risk Driving, and High-Risk Driving) and by means of two
measurement systems: the E4 device and a gold standard system. The overall quality of the E4 data
was investigated; agreement and reliability were assessed by performing a Bland–Altman analysis
and by computing the Spearman’s correlation coefficient. HRV time-domain parameters reported
high reliability levels in Baseline (r > 0.72), Video Clip (r > 0.71), and No-Risk Driving (r > 0.67),
while HRV frequency domain parameters were sufficient in Baseline (r > 0.58), Video Clip (r > 0.59),
No-Risk (r > 0.51), and Low-Risk Driving (r > 0.52). As for the EDA parameters, no correlation was
found. Further studies could enhance the HRV and EDA quality through further optimizations of the
acquisition protocol and improvement of the processing algorithms.

Keywords: heart rate variability; skin conductance; stress; arousal; driving

1. Introduction

Physiological responses while driving are mainly associated with driving stress [1],
which is caused by both personal characteristics and environmental conditions (e.g., traffic,
weather, road type). Although moderate levels of stress can benefit driver attention [2],
excessive levels might influence performance [3], thus leading to a higher risk of traffic
violations and car crashes.

Self-reported questionnaires are widely used to measure stress due to behavioral
patterns [3]; however, electrophysiological measurements, such as electrocardiographic
(ECG) signals and electrodermal activity (EDA), allow the real-time detection of stress by
detecting changes in heart rate (HR) and skin conductance (SC) reflecting the sympathetic
system responses to stress [4,5]. On that basis, Deng et al. showed that a combination of
EDA features was the most representative to detect stress [6]. Additionally, Healey and
Picard found higher correlations between stress and EDA features than heart rate variability
(HRV) metrics, at least in a car driving simulator scenario [7].

Research evidence on electrophysiological mechanisms and driving simulators also
outlined the road users’ ability to detect hazardous traffic situations, preventing potential
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crashes. This ability, defined as hazard perception, manifests itself at the somatic level
even before the subject becomes fully aware of the imminent danger [8], influencing
driver decision making in risky contexts with crucial impacts on road safety [9]. In addition,
experiments showed that experienced drivers might develop a more intense EDA compared
to novices when in danger [10,11], thus proving that driving experience can improve the
hazard perception mechanism [12].

Although HRV and EDA features are traditionally obtained by applying surface
electrodes on the chest (for ECG recording) and on the volar surface of hands or fingers (for
SC measurement), to date, wearable devices with embedded sensors have become widely
used to collect physiological signals thanks to their ease of use and wearability. Specifically,
detecting HRV and EDA features while driving with a minimally invasive wearable device
could ease the evaluation and quantification of stress and risk perception levels in drivers
within various and demanding driving scenarios and finally their ability to face hazardous
events while driving [13,14]. Despite these advantages, wearable devices may be more
sensitive to motion artifacts, such as those induced by steering the wheel or gearing up or
down, and less reliable than traditional measurement systems [15].

Empatica E4 system (Empatica, Milan, Italy) is a wrist-worn medical-grade device
specifically designed for research purposes and mainly used to collect HRV and EDA
features through its photoplethysmographic (PPG) sensors and skin electrodes.

A consistent number of studies focused on assessing the reliability of the E4 sensors to
measure HRV and EDA features: there was a preliminary study focused on the validation of
the E4 PPG sensor to detect atrial fibrillation [16]; more recent studies tested the reliability
of the E4 wristband compared to a gold standard configuration to measure EDA driven by
emotional stimuli [17] or in research settings that involved dyadic states [18]; Menghini
et al. tested the E4 wristband accuracy and reliability in measuring HRV and EDA features
over a few stress-inducing scenarios [19]; at last, Stuyck focused on the validation of E4
performances in estimating HRV in a lab-based context. All these studies agreed that the
E4 wristband showed modest reliability in measuring the HRV metrics [19,20], and it often
failed to gather accurate data for the EDA features estimation [18,19].

Specifically regarding driving environments and stress detection, a recent study evalu-
ated the performances of both Empatica E4 and Faros 360 (Bittium, Oulu, Finland) wearable
medical devices, but no comparison nor agreement between the two tested devices and a
gold standard system was provided. Moreover, the direct comparison was performed only
on HRV time-domain parameters [21].

Thus, to date, no studies investigated the reliability of Empatica E4 to collect stress
measures based on both HRV and EDA metrics in demand-increasing driving scenar-
ios. Given this, the final aim of the present study was to evaluate the accuracy of the
E4 wristband device to provide reliable stress metrics in stress-inducing conditions and
growing-risk driving scenarios. Moreover, our study focused also on increasing the E4
signal quality, namely introducing robust semi-automatic algorithms for the PPG-derived
HRV signal reconstruction and EDA analysis.

2. Materials and Methods
2.1. Participants

Seventeen healthy volunteers between 25 and 41 years of age were recruited, and
each participant provided consent to take part in the experimental procedure. Signals
from three participants were discarded for technical problems, two of them due to the
Empatica 4 device, one to the gold standard system. Thus, the final sample included
14 participants (five male, nine female; mean age = 33 years, SD = 5.5).

2.2. Recording Devices

The tested device was the Empatica E4 wristband (Figure 1), which is a wireless
medical-graded wristband able to acquire physiological signals. It includes four sensors:
(i) a PPG sensor (LED operation wavelengths: green, with 2 LEDs, and red, with 2 LEDs;
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2 photodiodes units, with a total 14 mm2 sensitive area) recording variations in the blood
volume pulse (BVP) with a sampling frequency of 64 Hz; (ii) two silver-coated stainless
steel electrodes with a diameter of 8 mm that record the EDA from the wrist volar surface
with a sampling frequency of 4 Hz, a resolution of 900 pS, and an operating range of
0.01 µS–100 µS; (iii) a MEMS-type three-axis accelerometer with a sampling frequency of
32 Hz and with a default range of ±2 g; (iv) an optical frame thermopile to record the skin
temperature at 4 Hz.
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Participants were asked to wear the E4 wristband on the wrist of their non-dominant
hand. Specifically, this choice was made to be consistent with the literature [19,21], provided
that there is no difference in using the left or right hand to collect the signals. In fact, during
driving scenarios, the steering wheel has to be held with both hands, while the other
conditions are potentially motion-free.

The reference system, referred to as the gold standard in the present study, was
composed of the following: (i) the eego™mylab amplifier (ANTneuro, Hengelo, The
Netherlands), a medical grade device that allows signal collection with an up to 16 kHz
sample frequency; (ii) auxiliary and passive sensors (Sensebox XS-271, eemagine Medical
Imaging Solutions, Berlin, Germany), connected to the amplifier by means of an adapter,
used for collecting the ECG and EDA signals with a sampling frequency of 500 Hz.

The ECG signal was recorded through Ag/AgCl electrodes sized 24 mm in diameter
(H124SG, Cardinal Health 200, Waukegan, IL, USA). The ECG electrodes of the reference
system were placed on the participant’s chest according to the Lead II configuration:
specifically, the negative electrode was placed on the right shoulder, the positive electrode
was placed on the left abdomen, and the ground electrode was placed on the right leg.

The gold standard EDA signal was recorded either on the fingers of the non-dominant
hand or on the shoulder using Ag/AgCl electrodes. Provided that a slight difference of
fingers and shoulder EDA signals was expected and previous studies recommended fingers
as the best location for gold standard EDA recordings, the shoulder was also chosen to
be an alternative and less noisy acquisition site for driving scenarios. Moreover, some
evidence on the strong correlation between the shoulder and fingers EDA signals was
reported in [22].

2.3. Procedure

Once at the laboratory, participants were informed about the research and, after
consent was given, the experimenter positioned the sensors as previously described. Since
the EDA signal could not be acquired simultaneously from the two locations, participants
were randomly assigned to one of two different groups so to have an equal number of
participants that recorded the EDA signal at first on the fingers and then on the shoulder
or vice versa. The E4 wristband device was the first device to be placed, thus allowing
its sensors to adapt to the participants’ skin; meanwhile, the ECG and EDA electrodes
were positioned.
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2.4. Experimental Conditions

The experimental protocol included six different conditions, which are defined as follows:

• Baseline: Participants were asked to sit and relax for 3 min in front of a black computer
screen, keeping their hands on their legs or the armrests and their eyes closed. The
researcher also recommended to the participant not to speak and to stay still as much
as possible.

• Emotional stimuli, divided into Video Clip and Scream:

# Video Clip: Ad hoc videos eliciting strong emotions (i.e., the fear) and based
on a validated database [23] were selected and administered to the participants.
Specifically, three scenes, each belonging to a different movie and with a length of
4 min, were edited into a single video clip with a total length of about 12 min.

# Scream: A sudden emotional event composed of a scream accompanied by the
image of a frightening face was added at the end of the video clip. Specifically,
this condition started a few seconds before the occurrence of the stimulus and
lasted about 2 to 3 min. A short break was scheduled after this section to allow the
researcher to change the position of the EDA sensors according to the participant’s
randomization group.

• Driving videos: The last stage of the experimental protocol consisted of three driving
simulations of increasing arousal and potential movement artifacts. The participant
was given a steering wheel, a pedalboard, and a gear shifter and was asked to watch
the driving videos and follow the main road while simulating the typical gestures of
driving (i.e., steering, accelerating, braking, and shifting gears when an acoustic signal
was heard). The driving videos had an overall duration of 10 min and 30 s (i.e., 3 min
and 30 s per driving video), which were divided as follows:

# No-Risk Driving: The driving scenario depicted a mountain landscape with no
potential hazards or risks;

# Low-Risk Driving: It was composed of an accurate selection of several shorter
clips extracted from the hazard perception video clips, a British state-of-the-art
test for assessing drivers’ skills in risk detection and driving behavior [24];

# High-Risk Driving: This last scenario reproduced potentially dangerous driving
simulations, where the drivers’ lack of attention could be harmful.

2.5. Data Processing

Raw data collected from the eego™mylab amplifier were exported through the soft-
ware eego™ (version 1.9.2), while data recorded through the E4 device were saved via the
Empatica Connect website into .csv files. All data processing was performed in MATLAB
(R2022b, The MathWorks, Inc., Natick, MA, USA).

2.6. Acceleration Magnitude Signal

Since the E4 device uses a 3-axis accelerometer and provides acceleration data along
three orthogonal axes, the acceleration magnitude was computed. Then, this new signal
was scaled between ±2 g and filtered with a Butterworth high-pass filter, whose cut-off
frequency was set at 0.1 Hz to remove the zero-phase gravitational component.

2.7. HRV Analysis

Provided that the duration of each experimental condition was short in time (i.e., from
2 to 4 min), the HRV signal is hereafter to be intended as a short-term HRV signal. A
quantitative analysis of the heart rate variability was carried out on the inter-beat interval
(IBI) time series. IBIs were computed from the RR intervals of the ECG signal and from
the foot points of the BVP signal, respectively. The Pan–Tompkins algorithm [25] was used
to automatically detect the R peaks of the ECG signal, while a further visual inspection
allowed correcting the ectopic and wrongly detected peaks manually. Regarding BVP,
before considering its foot points, the signal was cleaned of the motion artifacts through a
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third-order Butterworth bandpass filter with subject-specific cut-off frequencies defined
according to a fully automated algorithm described below.

At first, the IBI series provided by the E4 device were exploited to detect the BVP
artifact-free segments, which were defined as those sequences where the device recorded
in real time the IBIs for at least 10 consecutive intervals. For each artifact-free segment, the
power spectral density (PSD) estimates of the acceleration module and BVP signals were
obtained through the periodogram method [26]. Both PSDs were scaled with respect to
their maximum value. Then, the acceleration PSD was subtracted from the BVP analogue;
thus, the fundamental frequencies of each artifact-free segment could be extracted from
the aggregate PSD and saved only if they were in the 0.5–3 Hz physiological range. The
cut-off frequencies of the subject-specific bandpass filter were defined as the minimum and
maximum values of the physiological fundamental frequencies, minus or plus an arbitrary
safety margin of 0.1 Hz.

The foot points were extracted from the filtered BVP signal through the findpeaks
MATLAB (R2022b, The MathWorks, Inc.) function. The wrongly detected peaks were cor-
rected with an interactive user interface, and the continuous IBI sequence was reconstructed
for each section of the experimental protocol.

The artifacts detection algorithm proposed by Berntson et al. [27] was applied to both
the ECG- and BVP-derived IBIs. Specifically, this algorithm implemented an automatic
approach to detect IBIs artifacts, leveraging on the distribution of consecutive heart periods
differences. In fact, as suggested by the authors, the beat-to-beat differences generated by
artifacts are larger compared to the normal heart period variability; hence, huge differences
between consecutive IBIs were used to detect artifacts and classify them into missing
beats (i.e., the IBI is approximately twice as large as usual) or extra-beats (i.e., the IBI is
approximately half the standard width).

Once the Berntson algorithm was applied, a final visual inspection was performed on
the detected artifacts by means of a custom-made user interface to handle false positives
or not detected artifacts. Hence, artifacts were replaced with interpolated values from the
cleaned IBI series.

Both the ECG- and BVP-derived IBIs were resampled at 4 Hz by means of a piecewise
cubic interpolation (i.e., pchip MATLAB function), and the Lomb–Scargle periodogram [28,29]
was used to estimate their PSDs.

For each experimental condition, according to what was stated in the literature [30],
the most relevant time and frequency domain parameters were obtained. On that basis,
the average IBI length (Mean IBI, in ms), the standard deviation of IBI time series (SDNN,
in ms), and the root mean square of the successive IBIs differences (RMSSD, in ms) were
computed in the time domain. In the frequency domain, the normalized spectral con-
tents at low frequencies (LF Spectrum, 0.04–0.15 Hz) and high frequencies (HF Spectrum,
0.15–0.4 Hz) were computed. The very low frequency (VLF) spectral content was not
accounted for since, to date, no evidence of the mechanisms underlying the development
of VLF components was found [31].

2.8. EDA Analysis

To finalize the quantitative analysis on the EDA signals acquired with both the stan-
dard electrodes and the E4, some preprocessing was required. At first, both EDA signals
were smoothed according to [32] with a moving average filter across a 1-second win-
dow, while a z-score normalization allowed standardizing the dataset and increasing the
performances of the signal decomposition algorithm, as suggested by [33].

The convex optimization algorithm cvxEDA [33] was applied to decompose the raw
EDA signals into their tonic and phasic components. Specifically, the cvxEDA parameters
were set to be homogeneous among every subject, and their values were chosen according
to what was reported by [34]. Then, both the E4 and the gold standard EDA signals were
split into smaller sections in agreement with the experimental conditions.
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Afterwards, an artifact detection algorithm based on the stationary Haar wavelet
transform was applied to each EDA section acquired from both measurement systems.
Namely, in line with previous studies [35], the wavelet transform coefficients were used to
detect those artifact-related parts of the EDA signals, whose evolution was characterized
by abrupt changes due to contact losses between the person’s skin and the electrodes or
the E4 device, respectively. On that basis, the first-level wavelet detail coefficients were
computed from the raw EDA signals and analyzed to detect local outliers, which were
defined as those coefficients that were three times greater than the average value across
a 1000 s window. The intervals with consecutive outliers were highlighted as potentially
artifact related, but only those intervals where the raw EDA was not monotonous were
classified as real artifacts. Finally, as suggested in the literature [36], a visual inspection of
the artifact-related intervals was performed via a custom-made user interface to accept or
reject the artifact detection algorithm suggestions.

At last, the EDA time and frequency domain parameters for both the measurement sys-
tems and for each of the experimental conditions were computed. To this purpose, the tonic
and phasic components of the artifact-related intervals from the EDA signals were not con-
sidered at all. In the time domain, the following set of parameters was obtained [36]:
(i) the average value of the z-score normalized tonic component (Mean EDA Tonic);
(ii) the frequency of non-specific peaks (NS.EDRs, in #/s); (iii) the normalized area under
the curve (NormAUC, in s). Conversely, in the frequency domain, the normalized spec-
tral content in very low frequency (VLF Spectrum, 0–0.045 Hz) and low frequency (LF
Spectrum, 0.045–0.15 Hz) were computed [37].

As for the EDA validation, each experimental condition was classified into Shoulder
and Finger, according to the recording sites of the gold standard EDA signal.

2.9. Statistical Analyses

All the statistical analyses were carried out in MATLAB (R2022b, The MathWorks,
Inc.) and SPSS (Version 21, IBM, Corp., Armonk, NY, USA).

At first, since the E4 device recorded IBI data whenever ideal BVP curves were detected,
the performance of the wristband device to gather IBI data from the raw BVP signal was
evaluated. In particular, a performance metric (in %) was defined as the ratio between
the number of beats natively detected from E4 over the total beats detected from the gold
standard system. Then, the quality of the reconstructed BVP-derived IBI series was assessed
for each condition by comparing the mean number of detected IBIs with the gold standard
analogous and by computing the average and standard deviation of the Detection Rate (i.e.,
defined as in Equation (1)).

Detection Rate = 1 −
∣∣# beatsE4 − # beatsgs

∣∣
#beatsgs

% (1)

Moreover, the average and standard deviation of the Artifact Rate (i.e., defined as the
ratio between the amount of detected artifacts and the total number of detected beats) was
computed for both the gold standard and E4 IBI series.

As for the EDA quality, instead, the capability of the measurement systems to record
EDA phasic activity was investigated for each condition by computing the amount of
times the EDA signal was non-responsive in a participant with respect to the total number
of participants.

Secondly, the Spearman correlation coefficient (ρ) was computed for each condition
and for each HRV and EDA parameter with the aim of assessing the monotonic association
between the gold standard and E4 metrics. Spearman’s ρ was selected over the Pearson cor-
relation coefficient since data were rarely normally distributed. According to the ρ values,
the correlation was defined as high (>0.9), moderate (0.7–0.9), or low (<0.7). Although the
classic Cohen (1988)’s ranking could have been used for this purpose [38], the alternative
ranking was preferred since it has already been used in a related study (i.e., see [19]). In
addition, a more stringent correlation ranking can partially cope with the small sample size.
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Further, a Bland–Altman [39] analysis was carried out for each EDA and HRV parame-
ter among all the experimental conditions. The Bland–Altman charts were built by plotting
the differences between the E4 and gold standard parameters against their averages. More-
over, the mean bias (i.e., the mean difference) and the 95% limits of agreement (LOAs), both
expressed in their original units of measure, were appended to the charts. Then, the mean
bias accuracy was assessed by testing the bias significance at 95% confidence (i.e., with
respect to the null hypothesis of a zero mean difference). Although a normal distribution
of the differences was rarely achieved, this should not have a meaningful impact on the
reliability of the limits of agreement, according to [39]. Finally, whenever the spread of the
differences showed a clear trend with respect to the mean values, the statistical approach
proposed by [40] to transform the LOAs was applied.

At last, an absolute error defined as the absolute value of the difference between
the E4 and gold standard metric was computed for each participant, condition, and HRV
parameter. On that basis, the non-parametric repeated-measures Friedman test was per-
formed on every HRV parameter to assess whether the absolute error distributions were
different with statistical significance (i.e., 95% confidence) among the experimental con-
ditions (i.e., H1: alternative hypothesis). A pairwise comparison post hoc analysis was
eventually performed on those parameters where statistical significance was found. Again,
the non-parametric approach was chosen over the parametric analogous, since the absolute
errors data were barely distributed according to a normal distribution. Namely, 95% confi-
dence Shapiro–Wilk normality tests [41] were performed over the absolute errors for each
parameter and condition before carrying out the non-parametric Friedman tests. Due to
the poor correlation results of the EDA parameters, no further statistical tests were carried
out on the EDA signals.

3. Results
3.1. Signals Quality

The average native performance of the E4 device to capture IBI data, hence without
processing, was about 52.3% (SD = 14.2%). Table 1, instead, resumes the post-processed E4
IBI signal quality compared to the gold standard for each condition.

Table 1. Assessment of the E4 IBI signal quality, leveraging on the Detection Rate and the Artifact
Rate. Abbreviations: NR: No Risk; LR: Low Risk; HR: High Risk.

Condition
Mean Number of Detected IBIs Mean Detection

Rate (%) (SD)
Mean Artifact Rate (%) (SD)

Standard E4 Standard E4

Baseline 166 165 99.80% (0.34%) 0.84% (2.38%) 0.64% (0.88%)
Video Clip 378 378 99.58% (0.60%) 0.31% (1.07%) 0.85% (1.58%)

Scream 135 132 98.03% (1.89%) 0.09% (0.22%) 1.07% (2.64%)
NR Driving 203 201 99.18% (2.00%) 0.15% (0.56%) 1.38% (1.85%)
LR Driving 192 192 99.32% (0.83%) 0.42% (1.31%) 3.16% (2.28%)
HR Driving 174 174 98.51% (1.53%) 0.54% (1.08%) 2.9% (2.82%)

For each condition, an almost exact correspondence between the E4 and gold standard
median numbers of detected IBIs was observed. Additionally, the Detection Rate average
values were extremely close to 100%, and their standard deviation was negligible for
all conditions except two. Indeed, the Scream and High-Risk Driving conditions were
characterized by a slightly lower average Detection Rate compared to the other conditions.
Concerning the Artifact Rate, a systematic increase in the average and standard deviation
values was identified for each condition when switching from the gold standard to the E4
measurement system. Therefore, the E4 device was more prone to include artifacts into the
IBI series that needed to be automatically or manually detected and fixed.

Table 2 shows the relative amount of times the measurement systems failed to capture
the EDA phasic activity, thus leading to non-responsiveness, for each condition.
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Table 2. Non-responsiveness of the measurement systems to EDA phasic activity for each experimental
condition. Abbreviations: GS = Gold Standard; NR = No Risk; LR = Low Risk; HR = High Risk.

System Baseline Video Clip Scream NR Driving LR Driving HR Driving

Shoulder GS 50% 43% 21% 43% 43% 57%
Fingers GS 29% 0% 7% 43% 43% 29%
E4 36% 14% 7% 43% 14% 14%

The gold standard EDA signals recorded at the shoulder showed overall lower quality
than the ones at the fingers, as expected. However, provided that the quality drop was too
high, especially in Baseline, Video Clip, and Scream, only the EDA signals from the fingers
gold standard system were considered for further statistical analyses.

3.2. Correlation Analyses

The Spearman’s ρ values for each condition and HRV parameters are reported in
Figure 2.
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Figure 2. Spearman’s correlation analysis of HRV parameters over six different experimental condi-
tions between the gold standard and E4 measurement systems. p-values for the Spearman correlation
analysis are reported in brackets.

Overall, Mean IBI showed the highest correlation values for each condition, while
for the other parameters, a higher correlation variability among different conditions was
observed. Specifically, SDNN exhibited the highest correlation in Baseline, while there
were lower but yet moderate correlations in the other five conditions, with High-Risk
Driving reporting the worst correlation value for SDNN. RMSSD, instead, showed moderate
ρ values in Baseline and Video Clip and low correlation in No-Risk Driving, while no
correlation at all was found in the remaining conditions. LF Spectrum reported moderate
correlations in Baseline and Screams and low correlations elsewhere. Finally, HF Spectrum
showed the best (i.e., moderate) in No-Risk Driving, while low correlations occurred
in all other conditions except for Scream, where no correlation at all was found. To
sum up, moderate to high correlations for all parameters were estimated in Baseline,
moderate correlations were estimated in Video Clip and No-Risk Driving, and lower levels
of correlation were estimated in the other conditions.

Figure 3 reports Spearman’s ρ correlation coefficients for Fingers EDA parameters.
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Almost none of the experimental conditions or the metrics show satisfactory correla-
tion results. Moderate correlation values were reported for Mean EDA Tonic in Low-Risk
Driving, while low correlations were reported for NS.EDRs in Scream and for NormAUC
in Baseline.

3.3. Bland–Altman Analyses

The Bland–Altman plots for the most representative HRV parameters (i.e., Mean IBI,
RMSSD, and LF Spectrum) and experimental conditions (i.e., Baseline, Video Clip, and No
Risk Driving) are reported in Figure 4, while the numerical values for biases, confidence
intervals, and LOAs are reported in Table 3.
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No-Risk Driving. The solid red lines indicate the biases, while the dashed red lines stand for the
upper and lower confidence interval for the bias values. The dashed black lines represent the upper
and lower LOAs. Abbreviations: NR = No Risk.
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Table 3. Bland–Altman analyses values for the HRV and EDA parameters reported in Figures 3 and 4.
Bold types stand for statistical significance according to the aforementioned criterion and the current
p-value. Upper and lower LOAs are reported as bias ± SD. Abbreviations: CI = Confidence Interval.

Condition Bias Bias CI 95% p-Value
(Bias) Upper LOA Lower LOA

Mean IBI
Baseline 1.70 1.53 0.03 6.89 −3.49
Video Clip 1.07 3.16 0.48 11.80 −9.66
NR Driving 0.52 3.15 0.73 11.23 −10.19

RMSSD
Baseline −1.07 4.19 0.59 13.14 −15.29
Video Clip 3.18 8.88 0.45 33.34 −26.97
NR Driving 8.19 6.92 0.02 31.67 −15.28

HRV LF Spectrum
Baseline 5.42 5.03 0.04 22.49 −11.65
Video Clip 1.29 5.85 0.64 21.15 −18.58
NR Driving −0.79 4.56 0.71 14.68 −16.25

Mean EDA Tonic
Baseline 0.15 0.70 0.64 2.54 −2.23
Video Clip −0.58 0.26 <0.001 0.30 −1.46
NR Driving 0.72 0.98 0.12 2.80 −1.35

In line with the correlation results, Mean IBI reported the lowest relative differences be-
tween the two measuring methods, although a non-null, positive and statistically meaning-
ful systematic bias was observed in Baseline. RMSSD, instead, highlighted non-negligible
differences between the two measuring methods as compared to the full scale, especially in
Baseline and No-Risk Driving, and the E4 device systematically overestimated RMSSD in
the No-Risk Driving condition. Finally, differences between the two measurement systems
for the LF Spectrum parameter were limited, especially for Video Clip and Baseline, even
though the latter condition reported a positive systematic bias with statistical significance.

Figure 5 reports the Bland–Altman plots for the Mean EDA Tonic parameter in Baseline,
Video Clip, and No-Risk Driving.
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Figure 5. Bland–Altman plots for Mean EDA Tonic in Baseline, Video Clip and No-Risk Driving.
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confidence interval for the bias values. The dashed black lines represent the upper and lower LOAs.

The aforementioned Bland–Altman analysis highlighted the presence of a systematic
underestimation of Mean EDA Tonic in Video Clip, and, in general, the limits of agreement
were too wide compared to the full scale, showing an almost total disagreement between
the two measurement systems, especially in Baseline and No-Risk Driving. Table 3 reports
numerical values of the EDA Bland–Altman analysis for biases, confidence intervals, and
LOAs. On a side note, the Bland–Altman plots and statistics for each condition and each
EDA and HRV parameter are available as Supplementary Materials [42].
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Given the poor results of the EDA parameters in every experimental condition, no
further statistical analyses were performed to assess the measurement error inter-condition
dependence of the E4-derived EDA signal.

3.4. Friedman Test

The outcomes of the Friedman test for each parameter are reported in Table 4.

Table 4. Non-parametric repeated measures Friedman test results for HRV parameters. Bold types
highlight statistical significance.

HRV Parameter Chi-Squared Significance Decision

Mean IBI 18.163 0.003 Reject H0
RMSSD 21.306 0.001 Reject H0
SDNN 25.918 <0.001 Reject H0
LF Spectrum 4.898 0.428 Mantain H0
HF Spectrum 10.449 0.063 Mantain H0

The results of the test showed statistically significant differences between conditions for
Mean IBI, RMSSD, and SDNN, while no statistically significant differences were highlighted
for LF Spectrum and HF Spectrum. On that basis, a pairwise comparison post hoc analysis
was performed on the statistically meaningful parameters. Mean IBI highlighted statistically
significant differences between Video Clip and Scream (p-value = 0.004) and, namely,
Scream was characterized by a higher median value than Video Clip. As for RMSSD,
the median metrics were higher in High-Risk Driving than in Baseline (p-value = 0.004)
and in Video Clip (p-value = 0.037). Concerning SDNN, the median absolute error was
lower in Baseline than in High-Risk Driving (p-value < 0.001), it was higher in Scream
than in Baseline (p-value = 0.026), it was lower in Baseline than in Low-Risk Driving
(p-value = 0.006), and it was lower in Video Clip than in High-Risk Driving (p-value = 0.018).
The absolute errors (scaled with respect to the parameters full scale, in %) boxplots for each
HRV parameter are reported in Figure 6.
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Figure 6. Boxplots reporting the absolute errors distribution for each HRV parameter. Square brackets
plus an asterisk indicate statistical significance (p < 0.05), according to the pairwise comparison
post hoc analysis. The full scale is defined with reference to the Bland–Altman plots for the HRV
parameters (Figure 3). Red cross stands for an outlier. Abbreviations: NR = No Risk; LR = Low Risk;
HR = High Risk.

4. Discussion

The present study aimed at evaluating the performances of a medical-grade wrist-
worn device—the Empatica E4 wristband—to estimate the most relevant stress-related
parameters in fear-eliciting and growing risk-driving scenarios. The research study tested
the reliability, agreement and correlation of the HRV and EDA metrics collected from the
E4 device and gold standard measurement system. The E4 signals were processed with
semi-automatic algorithms to increase their quality and usability.

4.1. Heart Rate Variability

The semi-automatic algorithm that is responsible for the reconstruction of the E4
BVP signal considerably improved the continuity of the E4 IBI time series, providing a
high detection rate for all conditions. Conversely, although the IBI series reconstruction
was successful, the HRV parameters correlation was higher in those conditions where no
major motion was expected, like in Baseline, Video Clip or No Risk Driving conditions,
rather than in Scream, Low- and High-Risk Driving, as proved by the overall correlation
coefficients. This was due to how intrinsically the E4 BVP reconstruction algorithm worked
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since the filtering process leveraged on continuous and long enough IBI sequences. Thus,
the longer these sequences, the higher the quality of the reconstructed E4 IBI series. More-
over, provided that the detection of the diastolic BVP foot points was performed on a
conditioned and reconstructed version of the BVP signal, we are deeply aware that the BVP
reconstruction algorithm we implemented undoubtedly induced interval approximation
errors [43]. Despite these concerns, our primal purpose for this study was to try to use
100% of the recorded signal and to not exclude any portion of the raw BVP signals.

Mean IBI reported the highest correlation over each condition. This result agreed with
the outcomes of the other E4 device validation studies [19,20], thus confirming that the
Mean IBI estimation provided by E4 is reliable and in agreement with the gold standard
measurement system, even in case of high-risk simulated driving conditions (i.e., in the
presence of motion artifacts). Although a positive and significant bias was observed from
the Bland–Altman analysis on the Baseline condition, its absolute value is unquestionably
negligible as compared to the Mean IBI full scale. A negligible reduction in the reliability
for Mean IBI occurred in Scream, but this was probably caused by the shorter observation
length of the IBI series in this specific condition as compared to the others.

Also, SDNN reported moderate to high correlation values for each condition. However,
according to the Bland–Altman analysis for SDNN (i.e., see Supplementary Material [42]), a
non-negligible and statistically meaningful positive offset was introduced by the E4 device,
both in Low-Risk and High-Risk Driving, which was likely due to the intrinsically higher
signal-to-noise ratio of a wearable device [15], especially in dynamic scenarios, and also to
the randomness increase caused by the peak approximation error [43]. In addition, some
dependence on the experimental condition for the absolute error was found, mainly among
those conditions where the motion frequency was considerably different, like between
Baseline and Scream, Low-Risk and High-Risk Driving (i.e., the absolute error is lower
in Baseline, as expected), or between Video Clip and Scream. As a result, the E4-derived
SDNN parameter is reliable and in agreement with the gold standard system in conditions
with limited motions, while SDNN estimation should be used with caution in case of abrupt
and frequent motions (i.e., in high-risk driving scenarios).

As for RMSSD, low to moderate correlation coefficients were found for each condition,
hence lower than the SDNN analogous, and this was probably due to its higher sensitivity
to the HRV variability. Within different conditions, RMSSD correlation was highly variable,
reaching moderate levels in Baseline and Video Clip and low levels in No-Risk Driving.
Then, no correlation at all occurred in Low- and High-Risk Driving, and this was mainly
due to the high motion frequency within the condition itself, which increased the artifacts-
induced intrinsic variability of the E4-derived IBI sequence. A lack of agreement for RMSSD
between the two measurement systems, especially in Scream, No-Risk, Low-Risk and High-
Risk Driving conditions, was supported by the Bland–Altman results, where a positive,
non-negligible and significant bias was reported. Whereas the RMSSD overestimation in
No-Risk, Low-Risk and High-Risk driving was induced by the constant motions linked
to the intense driving tasks, in Scream, this was probably caused by the abrupt motion of
the subject elicited by the frightening face and the audio stimulus, which likely developed
artifacts in the IBI sequence. To sum up, the moderate reliability of the E4 device for the
RMSSD parameter was reported only in the case of motion-free experimental conditions.

Although compared to other studies with similar experimental conditions [19], the
mean artifact rates for E4 were significantly lower, the moderate to low correlation val-
ues of the E4-derived frequency domain parameters were mainly affected by the arti-
fact correction procedure. Indeed, removing artifactual IBIs and then re-interpolating
the missing values could have induced mismatches between the frequency domain out-
puts of the two measurement systems [43]. On that basis, experimental conditions with
non-negligible movements (i.e., Low- and High-Risk Driving) were affected more than
others. As for the Bland–Altman analyses, LF Spectrum showed an overall better agree-
ment than HF Spectrum in each condition: specifically, the best agreement occurred in
Baseline rather than in Video Clip or No-Risk Driving, although a systematic and sig-
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nificant positive bias was reported only for Baseline. The HF Spectrum parameter (see
Supplementary Material [42]), instead, was underestimated with statistical significance
in Baseline, while it was overestimated in Scream and in the driving conditions. This
was likely caused by the variability increase for the E4 device due to BVP peak detection
approximation error, which led to an unexpected increase in the spectral content in the
high frequency band. Finally, it should be noticed that no significant difference in terms of
absolute error distribution was reported for the frequency domain parameters. At last, the
present validation analysis highlighted that the E4 frequency domain parameters should
be used cautiously when dealing with dynamic driving scenarios.

4.2. Electrodermal Activity

Unfortunately, as in [17,19], no relevant correlation was reported for the EDA parame-
ters independently of the experimental condition. This could be due to different reasons:
firstly, EDA activity collected through wrist-worn devices has been shown in the past to be
potentially unreliable [18]. Secondly, quite often, the gold standard EDA signal appeared
as non-responsive, lacking in phasic activity, and corrupted by artifacts. Moreover, the
Bland–Altman analysis on the Mean EDA tonic parameter critically highlighted no agree-
ment between measurements of the fingers gold standard system and the E4 device, which
was likely due to the different skin conductances at the wrist and the fingers caused by
the non-negligible difference in sweat glands concentration. However, we cannot exclude
that further studies could contradict our results and provide evidence for the use of the E4
device for EDA acquisitions in driving scenarios.

4.3. Limitations

The aforementioned results should be interpreted in the light of limitations. At first, the
small sample size due to some technical problems in the signal acquisition phase certainly
limited the powerfulness of the statistical analyses as compared to other related studies in
the literature where the sample size was higher [18,19,21]. Second, the BVP reconstruction
algorithm introduced non-negligible interval approximation errors in detecting the diastolic
points to build the IBI time series, thus lowering the reliability of some HRV metrics. In
addition, the poor reliability of both the gold standard system and the E4 device to collect
a fully responsive EDA signal critically affected the EDA parameters validation. Finally,
slight inconsistencies on the duration of the experimental conditions could have influenced
the HRV parameters’ final outputs from both measurement systems.

5. Conclusions

According to the discussed results for HRV, the Empatica E4 device was extremely
reliable in estimating Mean IBI in all the experimental conditions, including the driving
scenarios. A good reliability was also found for the SDNN estimation, while the RMSSD
parameter was hardly computed in the case of non-negligible motions of the participant.
As for the HRV frequency parameters, these should be interpreted with extreme care. Con-
versely, the EDA validation proved that the tested device cannot be assessed as reliable for
detecting EDA and estimating its time and frequency domain parameters, thus confirming
many other statements from the literature [17–19], and the need to collect EDA with other
wearable devices. On these bases, further studies need to be conducted to enhance the
quality of HRV and EDA signals, considering an improvement of the processing algorithms.
Specifically, a more accurate algorithm for BVP peak detection should be implemented, thus
limiting the randomness increase in the IBI series and the peak detection approximation
errors. At the very last, it is worth exploring further usage scenarios where greater HRV
and EDA variations are expected, such as conditions in which the user has a direct control
over the scene or is more immersed and engaged, e.g., using immersive virtual reality or a
real driving simulator with physical feedback and the possibility of safely testing driving
scenarios at various levels of demand (i.e., traffic intensity or different weather conditions).
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