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Abstract: Harmful algal blooms (HABs) are a serious threat to ecosystems and human health.
The accurate prediction of HABs is crucial for their proactive preparation and management. While
mechanism-based numerical modeling, such as the Environmental Fluid Dynamics Code (EFDC),
has been widely used in the past, the recent development of machine learning technology with
data-based processing capabilities has opened up new possibilities for HABs prediction. In this study,
we developed and evaluated two types of machine learning-based models for HABs prediction:
Gradient Boosting models (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM models.
We used Bayesian optimization techniques for hyperparameter tuning, and applied bagging and
stacking ensemble techniques to obtain the final prediction results. The final prediction result was
derived by applying the optimal hyperparameter and bagging and stacking ensemble techniques,
and the applicability of prediction to HABs was evaluated. When predicting HABs with an ensemble
technique, it is judged that the overall prediction performance can be improved by complementing the
advantages of each model and averaging errors such as overfitting of individual models. Our study
highlights the potential of machine learning-based models for HABs prediction and emphasizes the
need to incorporate the latest technology into this important field.

Keywords: harmful algal blooms; Gradient Boosting; attention-based CNN-LSTM; Bayesian opti-
mization; ensemble techniques

Key Contribution: We developed the Gradient Boosting (XGBoost; LightGBM; CatBoost) series and
the attention-based CNN-LSTM model for HABs prediction.

1. Introduction

Various artificial environmental changes caused by continuous human activities, such
as the Four Major Rivers Restoration Project and global climate change, are changing
the aquatic environment and increasing the frequency of harmful algal blooms (HABs).
Recently, in the Republic of Korea, the problem of water source management has been
raised due to the occurrence of HABs in the water source section every summer, and many
damages, such as the death of aquatic organisms, are occurring. As a result, the need to
preemptively predict and respond to HABs is emerging. Economic losses from HABs over
the past 30 years have been estimated at USD121 million. The occurrence, duration, and
frequency of HABs are increasing, posing a serious threat to aquatic ecosystems.

The National Institute of Environmental Research (NIER) integrated the water qual-
ity forecasting system and the algae warning system in 2020 as a system for managing
HABs and provides HABs forecast information to HABs management institutions and the
general public so that they can be managed preemptively through HABs forecasting. It
is very important to improve the accuracy of HABs prediction by upgrading the HABs
prediction technology.
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Various studies are being conducted to predict HABs as a method for quickly preparing
a policy management plan before or when HABs are expected to occur. Previous studies
have focused on improving HABs monitoring technology and raising awareness, and
mechanism-based numerical modeling such as the Environmental Fluid Dynamics Code
(EFDC) has been considered as an alternative to understanding and mitigating the effects
of HABs. Recently, machine learning technology with large data processing capability
has been attracting attention, and it is used in various fields such as voice recognition,
image analysis, and biological mechanisms. Among various time-series machine learning
algorithms, Gradient Boosting and deep learning technologies are being advanced and
applied to various topics. Artificial intelligence (AI) methods make significant contributions
to the control of a system, determining the decisions to be made about the system, future
strategies, and increasing efficiency [1].

Gradient Boosting is generally known to have a higher prediction performance than
random forest. Since an ensemble model is constructed using multiple decision trees, it
shows high prediction performance. Since the decision tree learns the model by predicting
the residual error of the previous decision tree, it has an effect of preventing overfitting. Rep-
resentatively, there are eXtreme Gradient Boosting (XGBoost) [2], Light Gradient Boosting
Machine (LightGBM) [3], and Categorical Boosting (CatBoost) [4].

XGBoost, LightGBM, and CatBoost are all machine learning libraries based on the
Gradient Boosting algorithm. XGBoost was developed in 2014 and gained popularity as
it performed well on large datasets and won many data science competitions. Since then,
it has been developed by adding various functions such as GPU learning and distributed
learning through version updates. LightGBM, developed by Microsoft in 2017, has faster
speed and lower memory usage than XGBoost and is designed to ensure high speed in large
data while ensuring high accuracy even in small data samples. CatBoost was developed
by Yahoo in 2017, has strengths in handling categorical variables, and is an optimized
algorithm that automatically applies regularization to prevent overfitting and enables fast
learning on both CPU and GPU.

Research on deep learning technology began with the RNN (Recurrent Neural Net-
work) model [5], which was structured to calculate the current output value by considering
the previous input value. The LSTM (Long Short-Term Memory) model [6] and the GRU
(Gated Recurrent Unit) model [7] have also been published. The GRU model, which has a
simpler structure than LSTM and is an improved model using a gate to update the state of
a memory cell, was introduced to solve the problem that the length of the input sequence
and the output sequence are different. The Seq2Seq (Sequence-to-Sequence) model [8]
uses two RNN models, an encoder and a decoder, respectively, and was introduced to
solve this problem. To overcome the limitations of the RNN model, which uses all informa-
tion in the input sequence equally, the attention mechanism was developed by Bahdanau
et al. [9], a method of extracting information by focusing only on the necessary part of the
input sequence and calculating the output value. The transformer model, which further
develops the attention mechanism into a multi-head attention form, was introduced by
Vaswani et al. [10]. The Temporal Convolutional Network (TCN) model, which combines a
1D-CNN (Convolutional Neural Network) with models such as RNN, LSTM, and GRU,
was proposed by Oord et al. [11]. It is a model applied to time-series data prediction using a
multi-head attention-based transformer model. Lim et al. [12] proposed a Temporal Fusion
Transformer (TFT) model.

Recent research studies on predicting HABs using Gradient Boosting and deep learn-
ing techniques have become increasingly prevalent, particularly in the context of time-series
data analysis. HABs data, along with various weather and water-quality variables that
impact HABs, exhibit a time-series distribution. Kim et al. [13] improved the performance
of machine learning models for the early warning of HABs using an adaptive synthetic
sampling method. In a study utilizing the Gradient Boosting technique, García et al. [14]
employed gradient-boosted regression trees to predict cynotoxin levels. There is also on-
going research employing deep learning techniques, such as the LSTM method, which
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is particularly effective for time-series analysis and has been widely used for predicting
algae (Hill et al. [15]; Liang et al. [16]; Zheng et al. [17]). Li et al. [18] have enhanced HABs
prediction by combining ARIMA and LSTM techniques.

Previous studies utilized a single algorithm for HABs prediction. However, in this
study, we aimed to combine the Gradient Boosting and deep learning techniques using
ensemble methods. Specifically, we developed models using the Gradient Boosting series
(XGBoost, LightGBM, CatBoost) and the deep learning series (attention-based CNN-LSTM
model) for HABs prediction. Combining diverse models and refining predictions through
ensemble techniques can reduce the uncertainty associated with prediction outcomes.
Therefore, we sought to combine Gradient Boosting techniques with deep learning. We
integrated Gradient Boosting techniques using stacking ensemble methods and combined
stacking ensemble techniques with deep learning using bagging methods. The final pre-
diction results were generated from these developed models using bagging and stacking
ensemble techniques, and their applicability to HABs was assessed.

2. Results and Discussion
2.1. Data Selection and Preparation

Water quality, current, and meteorological data from the Nakdong River weir section
were used to predict HABs. The water quality data consisted of water temperature (WT)
(◦C), pH, dissolved oxygen (DO) (mg/L), total nitrogen (T-N) (mg/L), total phosphorus
(T-P) (mg/L), and HABs cell counts (cells/mL). The water quality and tide data from the
weir section for training were collected from 2014 to 2022 and were directly observed by
the National Institute of Environmental Research of the Ministry of Environment. They are
open to the public at the Water Environment Information System (http://weis.nier.go.kr/
(accessed on 6 March 2023)). For meteorological data, precipitation (PCP) (mm) data from
the Daegu General Weather Station, which are disclosed by the Korea Meteorological
Administration, were used.

Since the HABs cell count values ranged from 0 to 1,000,000 cells/mL, they were
replaced with log values for the purpose of learning. The log value of the HABs cell count
was used as the target, and the prediction result was converted back into the original
number of cells. The data that had the highest correlation with Logcyano were water
temperature, and the variables that had positive correlations were the month, pH, and T-P
(Figure 1).
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To preprocess the data, the transform function from scikit-learn’s MinMaxScaler library
was used for normalization. In the case of the deep learning model, the data were converted
to Tensor data using the Variable function. The preprocessed data is structured as described
in Appendix A, consisting of sequences, targets, and goals, and learning and prediction are
performed accordingly.

2.2. Ensemble Model Development and Prediction

Ensemble learning is a technique that combines predictions from multiple models to
obtain more reliable and generalizable predictions. The idea is to average the individual
real numbers from different models to reduce the risk of overfitting while maintaining
strong predictive performance. Ensemble learning methods include bagging and stacking,
which utilize boosting algorithms such as XGBoost, LightGBM, and CatBoost to build
models in parallel using random subsets of data (alternative sampling) and aggregate
predictions from all models. In this study, as shown in Figure 2, an ensemble model using
the Gradient Boosting technique for hyperparameter tuning and prediction results was
developed, and the code was configured to derive prediction results.
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Hyperparameters of tree-based models, which commonly need to be optimized, in-
clude the maximum depth of the tree (max_depth), the number of trees in ensemble learning
(n_estimators), and the value of the learning rate (in boosting), as shown in Table 1. Many
researchers use GridSearchCV, which was developed by Pedregosa et al. [19] and is in-
cluded in the scikit-learn8.0 version library, to perform hyperparameter tuning. However,
there is a disadvantage that hyperparameter tuning using GridSearchCV takes a long time.
Models such as XGBoost, LightGBM, and CatBoost with a large number of hyperparam-
eters require a lot of execution time when tuning using GridSearchCV. Nayak et al. [20]
analyzed that hyperparameters were effectively tuned by applying the Bayesian optimiza-
tion technique to the CatBoost model, and Su et al. [21] applied Bayesian optimization
to more effectively select hyperparameters in the XGBoost model. Therefore, this study
is based on Bayesian optimization, which is a method of quickly and effectively finding
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the optimal input value that generates the maximum or minimum function return value
for a function whose objective function expression is not properly known, through as few
trials as possible. HyperOpt was used for optimization. HyperOpt performs optimization
according to the following procedure:

(1) Randomly sample hyperparameters and observe performance results.
(2) Based on the observed values, the surrogate model estimates the optimal function and

confidence interval (=result error deviation = means the uncertainty of the estimation
function).

(3) Based on the estimated optimal function, the acquisition function calculates the next
hyperparameter to be observed and passes it to the surrogate model.

(4) Optimization is performed in the order of updating the surrogate model again based
on the observed values by performing the hyperparameters passed from the acquisi-
tion function.

By repeating steps 2 to 4, it is possible to improve the uncertainty of the alternative
model and gradually estimate an accurate optimal function. HyperOpt is an optimization
technique in which Bayesian probability improves the posterior probability based on new
data. When new data are input, the optimal function is predicted and the posterior model
is improved to create an optimal function model. The maximum number of evaluations
(max_evals) was set to 50 times, and the final tuned-hyperparameter results are shown in
Table 2.

Table 1. Search range of hyperparameters for developed machine learning models.

Hyperparameters XGBoost LightGBM CatBoost

reg_alpha 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 0.1, 1,
5, 10, 100

-
reg_lambda -

colsample_bytree 0.5~1.0 (0.1) -
min_child_weight 250~350 (10) -

eta 0.1~0.3 (0.1) -
l2_leaf_reg - 3~8 (1)

border_count - 32~255 (10)
colsample_bylevel - 0.3~0.8 (0.1)

bagging_temperature - 0~10
min_data_in_leaf - 1, 5, 10, 20, 30

max_depth 10~25 (1) 3~9 (1)
subsample 0.7~0.9 (0.1) 0.5~1.0

learning_rate 0.01~0.05 (0.005)
n_estimators 1000~10,000 (10)
eval_metric Root Mean Square Error

Table 2. Results of hyperparameters for developed machine learning models.

Hyperparameters XGBoost LightGBM CatBoost

reg_alpha 0 4 -
reg_lambda 7 8 -

colsample_bytree 0.9 1.0 -
min_child_weight 5 1 -

eta 0.1 0.1 -
l2_leaf_reg - - 5.0

border_count - - 80
colsample_bylevel - - 0.7

bagging_temperature - - 5.8858097
min_data_in_leaf - - 2

max_depth 4 12 3
subsample 0.7 0.8 0.720713

learning_rate 0.05 0.045 0.025
n_estimators 428 574 7600
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To predict harmful algal blooms (HABs), we generated five bootstrap samples for
each XGBoost, LightGBM, and CatBoost model by changing the seed to 0, 1, 2, 3, 4, and 5
using the tuned hyperparameters for each model. The resulting predictions are shown in
Figure 3a–c, and the post-processed results using the bagging ensemble method and the
stacking ensemble method are shown in Figure 3d,e, respectively. The data used for tuning
the hyperparameters were observed from 1 January 2014 to 31 December 2021, and the
ensemble prediction period was observed from 1 January 2022 to 31 December 2022.
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Prediction accuracy was evaluated using R2, MAE, and RMSE (Equations (1)–(3)).
For XGBoost, the R2 was 0.92, the MAE was 0.2, and the RMSE was 0.4. For LightGBM,
the R2 was 0.93, the MAE was 0.1, and the RMSE was 0.4. For CatBoost, the R2 was 0.89,
the MAE was 0.2, and the RMSE was 0.5. All three models produced highly accurate
prediction results for HABs. When the bagging ensemble technique was applied to the
results of the three models, the R2 was 0.92, the MAE was 0.2, and the RMSE was 0.4.
When the stacking ensemble technique was applied, the R2 was 0.93, the MAE was 0.1, and
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the RMSE was 0.4. The error size was relatively high for CatBoost around June, and the
bagging ensemble technique resulted in a smaller overall error deviation than the stacking
ensemble technique.

Although relatively poor prediction results were obtained for CatBoost compared to
the other models, the accuracy of the prediction results can vary depending on various
factors such as time, location, input data composition, and model. To reduce the uncer-
tainty of the prediction result, we suggest using multiple models with different seeds and
performing post-processing with the bagging and stacking ensemble techniques.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (1)

MAE =
∑n

i=1|yi − ŷi|
n

(2)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(3)

where, yi is the observation value, ŷi is the prediction value, yi is the mean of observation
value, and n is the number of samples.

In addition to the Gradient Boosting-based prediction model, the results predicted
by the deep learning method were also used as an ensemble technique. Although CNN
techniques are mainly used for processing images or video data in deep learning, one-
dimensional CNN can also be used for time-series analysis because the convolution kernel
can be used as a way to automatically extract data features that are not visible in the time
direction. Therefore, a sequence was defined as an image, and a network for learning
and prediction using the LSTM technique was adopted by extracting the features of the
sequence. A network combining Bahdanau attention-based one-dimensional CNN and
LSTM was structured as shown in Figure 4 and described as follows:

(1) Water quality and algae data are weekly data, so daily data such as temperature
are converted to weekly data to ensure that all the data have the same resolution.
Here, data preprocessing techniques such as normalization were used to enhance the
predictive power of the model. The same preprocessing techniques were applied to
XGBoost, LightGBM, and CatBoost.

(2) As shown in Figure 4, when the preprocessed data are first input into a 1D CNN of
(2, 1) kernel size, the dimension of the sequence is reduced according to the kernel
size, and the sequence of the reduced dimension is learned as an input value to LSTM
for prediction. The constructed sequence input data at the present (t) are passed
through the CNN layer and then input into the Bahdanau attention-based LSTM layer.
The number of cyanobacteria cells one week from the present (t + 1) is set as the target
for learning.

(3) The hyperparameters of the attention-based CNN-LSTM deep learning model, such
as hidden size, num layers, dropout rate, and learning rate, were tuned using the data
from 2014 to 2021, and the tuned result was applied to learn the bird prediction model
using the data from 2022.

(4) The process of step (3) was repeated until the verification result was good, and the
hyperparameters and weights when the verification result was good were saved. Here,
the algae prediction model with stored weights was used to predict future blue-green
algae. The model was trained and verified using the same method as described above.

The hyperparameters of the attention-based CNN-LSTM deep learning model were
tuned using the same method as the Gradient Boosting technique, and the results are shown
in Table 3. ReLU was used for activation, and Adam was adopted as the optimization
technique. The attention-based CNN-LSTM model showed an R2 of 0.92, MAE of 0.2, and
RMSE of 0.4. When the results of the Gradient Boosting (XGBoost, LightGBM, CatBoost)
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series models and the attention-based CNN-LSTM result were presented as the final
predicted value—post-processed with the result of Figure 3d and the bagging ensemble
technique—R2 was 0.93, MAE was 0.1, and RMSE was 0.4 (Figure 5). It can be seen
that the uncertainty of individual models for HABs prediction is reduced when the final
prediction results are presented with Gradient Boosting (XGBoost, LightGBM, CatBoost)
series prediction results and deep learning attention-based CNN-LSTM prediction results
as a bagging ensemble technique, leading to an improved prediction accuracy (Table 4).
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Table 4. Results of different models.

Model R2 MAE RMSE

XGBoost 0.92 0.2 0.4
LightGBM 0.93 0.1 0.4
CatBoost 0.89 0.2 0.5

Bagging ensemble 0.92 0.2 0.4
Stacking ensemble 0.93 0.1 0.4

Attention-based CNN-LSTM 0.92 0.2 0.4
Final Ensemble 0.93 0.1 0.4

Gradient Boosting models (XGBoost, LightGBM, CatBoost) are models that demon-
strate strong prediction performance for various datasets, and have high accuracy and fast
learning speed. Attention-based CNN-LSTM models are applicable to both image and time-
series data, and are able to learn both temporal and spatial patterns. Therefore, by using an
attention-based CNN-LSTM model and a Gradient Boosting model (XGBoost, LightGBM,
CatBoost) as an ensemble technique for learning and predicting HABs, it is expected that
the strengths of each model can complement each other, resulting in an improved predic-
tion performance. Based on the prediction results from various perspectives, it is judged
that HABs prediction can be performed by utilizing the strengths of each model, such
as recognizing overfitting problems that may occur in specific situations. The algorithm
developed in this study can be downloaded from the link in the supplementary materials.

3. Conclusions

In this study, an algorithm that can predict HABs was developed using an ensemble
technique of Gradient Boosting (XGBoost, LightGBM, CatBoost)-based prediction models
and deep learning attention-based CNN-LSTM models. The major findings of this study
are listed below:

(1) Water temperature was found to have the greatest correlation with HABs, and positive
correlations were shown in month, pH, and T-P, according to the correlation analysis
between the learning data. Since the deviation of the data values for HABs was large,
log values were substituted, and data preprocessing was applied with MinMaxScaler
normalization.

(2) XGBoost, LightGBM, CatBoost models, and attention-based CNN-LSTM models
were developed, and optimal hyperparameter results were presented by tuning
hyperparameters with Bayesian optimization techniques using observation data from
2014 to 2021.

(3) By applying the hyperparameters derived from the Bayesian optimization technique
to predict HABs in 2022, the error of the bagged ensemble prediction result of the
Gradient Boosting (XGBoost, LightGBM, CatBoost) model was 0.92 for R2, 0.2 for
MAE, and 0.4 for RMSE, and the error of the stacking ensemble prediction result was
0.93 for R2, 0.1 for MAE, and 0.3 for RMSE. Even when predicting with individual
methods, the worst results were 0.89 for R2, 0.2 for MAE, and 0.5 for RMSE. Therefore,
it is judged that the overall prediction performance can be improved by offsetting
errors such as those.

(4) Not much data have been accumulated for HABs observation even though it has been
performed on a weekly basis since 2014. Therefore, it was initially expected that the
accuracy of prediction would be low if data-based forecasting techniques were used.
However, this study shows that a fairly high prediction accuracy can be achieved
by applying the ensemble technique. If future data are accumulated and advanced
algorithms are developed, the basis for predicting HABs in advance and utilizing
them for policy purposes will be laid.
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4. Materials and Methods
4.1. Study Area

The Nakdong River is the longest river in Korea and one of the four representative
rivers. In 2009, the ‘Four Major Rivers Restoration Project’, a large-scale river maintenance
project, was launched with the purpose of preventing flood damage, securing water re-
sources, and improving water quality. As a result of this project, eight multi-function
weirs were constructed along the Nakdong River: Sangju Weir, Nakdan Weir, Gumi Weir,
Chilgok Weir, Gangjeong Goryeong Weir, Dalseong Weir, Hapcheon-Changnyeong Weir,
and Changnyeong-Haman Weir. Among them, the algae warning system is operated at
the national level for Changnyeong Haman Weir branch due to the presence of a water
purification plant used for drinking water (see Figure 6).
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The Nakdong River has a gentle slope and many bends, resulting in a slow flow rate
and an increase in water temperature every summer. This increase in temperature causes
a significant amount of damage from blue-green algae in the downstream area. Since the
water system of the Nakdong River directly collects river water and uses it as a water
supply source, there is great concern about drinking water quality due to the occurrence of
algae blooms.

4.2. Gradient Boosting (XGBoost, LightGBM, CatBoost) Method

Gradient Boosting (XGBoost, LightGBM, CatBoost) is a highly reliable technique that
is being studied by many researchers in various fields. Dong et al. [22] used the XGBoost
model to predict short-term daily rainfall using numerical meteorological forecast data, and
Farzinpour et al. [23] applied three hybrid models consisting of boosting-based ensemble
learning methods (XGBoost, CatBoost, and LightGBM) for shear strength prediction of
squat RC walls, showing high accuracy.

The existing random forest is a prediction method based on decision trees, and each
decision tree uses randomly selected variables to partition data and create a predictive
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model. In contrast, XGBoost, LightGBM, and CatBoost are algorithms based on the Gradient
Boosting method. The Gradient Boosting algorithm is a method of improving a predictive
model by sequentially adding a series of decision trees and reflecting the residual error
of the previous model in the next model. Each decision tree is built by predicting the
difference (residual error) between the predicted value and the actual value of the previous
model, and it continues to improve the predictive model by reflecting information that the
previous model did not predict.

The advantages and disadvantages of XGBoost, LightGBM, and CatBoost are as
follows: XGBoost shows high prediction performance for high-dimensional data and
sparse data, and works effectively with fast operation speed, scalability, and large data. In
addition, it provides various loss functions and flexible cross-validation functions. However,
it may have low performance with high memory usage and imbalanced data. LightGBM
exhibits fast speed and efficient memory usage, and has excellent processing power for
large amounts of data. In addition, it shows high prediction performance for various
types of data (categorical variables, numerical variables, and sparse data). However, it can
perform poorly on high-dimensional data and lacks the ability to handle it automatically.
CatBoost shows great performance in handling categorical variables and provides its own
cross-validation function to avoid overfitting problems. In addition, it shows excellent
performance in handling outliers or missing values in the data. However, model training is
slow, and performance can be poor on high-dimensional data.

4.3. Deep Learning (Attention-Based CNN-LSTM) Method

CNN and LSTM are known to be excellent models for processing image and sequence
data, respectively. Combining the two models provides the following benefits. It can
process image and sequence data simultaneously. CNN shows excellent performance for
2D data such as images, but has limited processing power for sequence data. LSTM, on
the other hand, shows excellent performance for sequence data but has limited processing
power for 2D data such as images. Therefore, combining CNN and LSTM can process both
image and sequence data, which is effective when dealing with various types of data.

LSTM can improve accuracy by learning the features of sequences extracted by CNN.
Prediction can be performed by inputting the sequence as an image value, extracting the
feature of the sequence with CNN, and inputting the extracted sequence to LSTM. LSTM
can be used to consider temporal relationships. LSTM is an algorithm that compensates for
the disadvantages of RNN and has the ability to remember past information. Since CNN
cannot consider temporal relationships, a model combining CNN and LSTM can perform
predictions considering temporal information. Therefore, a model combining CNN and
LSTM shows excellent performance in processing image and sequence data, can process
various types of data, and can improve prediction accuracy.

Research combining CNN and LSTM is being promoted for the following reasons.
Garcia-Moreno et al. [24] used a 1D CNN-LSTM to classify left and right-hand motor
imagery EEG, and the algorithm achieved an average accuracy of 87% on the test set.
Xu et al. [25] used a 1D CNN-LSTM network to classify MI-EEG data on a five-class
epileptic seizure recognition task. Altunay and Albayrak [26] applied CNN-based, LSTM-
based, and hybrid CNN-LSTM methods to industrial IoT networks and compared the
results. The hybrid CNN-LSTM model could lead to an improved performance of Intrusion
Detection Systems. Liang et al. [27] proposed a novel hybrid model with ICEEMDAN and
LSTM-CNN-CBAM to forecast gold price. Ahmed et al. [28] proposed an ensemble utilizing
the combined predictive performance of three different architectures (1D-CNN-LSTM-GRU
model). Zhang et al. [29] predicted the external temperature of an energy pile based on
spatial–temporal features using a CNN-LSTM model. Hu and Zhang [30] evaluated rock
mechanical parameters using a CNN-LSTM machine learning model.

In this study, attention was combined with the CNN-LSTM model to focus on impor-
tant parts by learning weights for each time point in the input sequence. The attention
technique was developed by Bahdanau et al. [9]. Bahdanau Attention is one of the attention
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mechanisms first proposed in the field of Neural Machine Translation (NMT). Since it
is an encoder–decoder structure that compresses all input sequence information into a
fixed-size vector and processes it, the longer the input sequence, the more likely problems
will occur. To solve this problem, Bahdanau proposed a mechanism to generate an output
using all viewpoint information of the input sequence. The characteristics of Bahdanau
Attention are as follows: (1) It generates an output using information from all points in the
input sequence, learns the attention weight while generating the output, and identifies the
influence of each point in the input sequence on the output. (2) It also concentrates on a
certain part of the input sequence to learn what to do, which allows the model to focus on
important parts of the input sequence.

4.4. Ensemble Prediction Method

Among the various ensemble learning methods, bagging was used to build multi-
ple weak estimators in parallel and combine their results for output [31]. The ensemble
approach is widely used in various fields for making predictions because it is simple to
implement. Ensemble techniques are methods proposed to demonstrate better prediction
performance than a single model by combining multiple prediction models. When predic-
tion is performed using the ensemble technique, overfitting can be prevented by increasing
generalization performance and offsetting prediction errors while combining predictions
of various models because the same type of base model or different types of base models
can be used. A single model may perform poorly in certain situations, but an ensemble
model can address this issue by synthesizing the predictions of multiple models, thereby
increasing prediction accuracy through the introduction of diversity in decision-making.

Trizoglou et al. [32] presented that an ensemble model of the Extreme Gradient Boost-
ing (XGBoost) framework was successfully developed and critically compared with a
Long Short-Term Memory (LSTM) deep learning neural network. The performance of the
proposed technique was evaluated as good that XGBoost outperformed LSTM in predictive
accuracy while requiring smaller training times and showcasing a lower sensitivity to noise
that existed in the SCADA database. Zhang et al. [33] proposed a technique for estimating
chlorophyll-a from hyperspectral images, and ensemble techniques such as random forest
(RF), Gradient Boosting decision tree (GBDT), Extreme Gradient Boosting (XGBoost), Light
Gradient Boosting machine (LightGBM), and Categorical Features and Gradient Boosting
(CatBoost) have been applied.

However, the ensemble technique increases the complexity of the model and may
increase computational cost when applied to large datasets because various models are
performed, but it was adopted in this study because it was judged to have more advantages.
Various ensemble techniques have been proposed, such as voting, which is effective for
classification; boosting, which is a method of learning by adding weights to incorrectly
predicted data; and stacking, which creates a new model by combining several models.
Bagging and stacking techniques were selected as ensemble techniques in this study because
these methods are known to be effective in regression problems. Additionally, the final
prediction result based on the bagging technique was proposed to average the prediction
results of the Gradient Boosting series and the attention-based CNN-LSTM model, which
is a deep learning series.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins15100608/s1, Developed sources code : XGBoost, LightGBM, CatBoost, Bagging
ensemble, Stacking ensemble, Attention-based CNN-LSTM, Final Ensemble.
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original draft, data curation. J.K.: Methodology, resources, visualization, software. K.K.: Project
administration, validation, writing—review and editing. All authors have read and agreed to the
published version of the manuscript.
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Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Data Preprocessing, Training, and Predicting Procedure

The diagram below serves as an example of the overall data structure and data
processing for the learning algorithm. The sequences used for input during training and
for prediction are depicted as shown below. Using the Train data from the database,
Train sequences and Targets are constructed, and the entire Train data are then used for
training. Ultimately, the Goal, represented by the Prediction sequence, is used to make
predictions. In this study, the Target and Goal have been set as HABs. Given the wide
range of HABs, which can vary from 0 to 1,000,000 cells/mL, logarithmic transformation
using Log10 was applied to facilitate effective learning. Additionally, data preprocessing
involved normalization using the MinMax scalar library and conversion of the data into
Tensor format using the Variable library.
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