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Low-count PET is an efficient way to reduce radiation exposure and acquisition time, but the 

reconstructed images often suffer from low signal-to-noise ratio (SNR), thus affecting diagnosis 

and other downstream tasks. Recent advances in deep learning have shown great potential in 

improving low-count PET image quality, but acquiring a large, centralized, and diverse dataset 

from multiple institutions for training a robust model is difficult due to privacy and security 

concerns of patient data. Moreover, low-count PET data at different institutions may have different 

data distribution, thus requiring personalized models. While previous federated learning (FL) 

algorithms enable multi-institution collaborative training without the need of aggregating local 

data, addressing the large domain shift in the application of multi-institutional low-count PET 

denoising remains a challenge and is still highly under-explored. In this work, we propose 

FedFTN, a personalized federated learning strategy that addresses these challenges. FedFTN uses 

a local deep feature transformation network (FTN) to modulate the feature outputs of a globally 

shared denoising network, enabling personalized low-count PET denoising for each institution. 

During the federated learning process, only the denoising network’s weights are communicated 

and aggregated, while the FTN remains at the local institutions for feature transformation. We 

evaluated our method using a large-scale dataset of multi-institutional low-count PET imaging 

data from three medical centers located across three continents, and showed that FedFTN provides 

high-quality low-count PET images, outperforming previous baseline FL reconstruction methods 

across all low-count levels at all three institutions.
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1. Introduction

Positron Emission Tomography (PET) is a commonly used functional imaging modality 

with wide applications in oncology, cardiology, neurology, and biomedical research. To 

reconstruct high-quality PET, the patient is injected with a customized dose of radioactive 

tracer which inevitably introduces radiation exposure to both patients and healthcare 

providers. Adhere to the principle of As Low As Reasonably Achievable (ALARA), 

minimizing the radiation dose is of great interest to patients (Strauss and Kaste, 2006), 

particularly for PET applications where serial scans are commonly required. However, 

reducing the injection dose in PET would result in increased image noise, poor signal-to-

noise ratio (SNR) and image artifacts, which would jeopardize the downstream clinical 

tasks.

To generate high-quality PET from low-count PET, deep learning-based low-count PET 

imaging methods have been extensively explored (Xiang et al., 2017; Wang et al., 2018; 

Lu et al., 2019; Kaplan and Zhu, 2019; Hu et al., 2021; Gong et al., 2021b; Zhou et 

al., 2020b; Ouyang et al., 2019; Chen et al., 2019; Liu et al., 2020, 2021; Song et al., 

2021; Liu et al., 2021; Gong et al., 2021a), which have demonstrated superior performance 

than conventional methods (Dutta et al., 2013; Maggioni et al., 2013; Mejia et al., 2016). 

While deep learning-based methods achieve promising performance, they often rely on 

training using diverse and large-scale paired low-count and full-count datasets that are 
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often prohibitively expensive and difficult to collect. Even though we can alleviate this 

issue through building a centralized large-scale dataset by transferring all institutional data, 

the concerns of medical data privacy and security, the difficulty of building data transfer 

and warehouse protocol, and the laborious process make it challenging to implement this 

solution in practice (Rieke et al., 2020; Roski et al., 2014).

Federated learning (FL) has recently emerged as a solution to address data privacy concerns 

in training deep models. This approach enables different local clients to collaboratively learn 

using their own data and computing resources, without sharing any private data. A client-

to-cloud platform is established where the cloud server periodically communicates with 

local clients to collect local models. These models are then aggregated to generate a global 

model that is redistributed to the local clients for further local updates. Unlike traditional 

methods where local data is required to be directly transferred for global training, FL only 

involves the exchange of model parameters or gradients. As a result, FL can potentially 

solve the data privacy concerns for training a global model. In the context of low-count 

PET imaging, the different institutions may have different low-count protocols, different 

PET systems from different vendors, different reconstructions, and different post-processing 

protocols, thus can lead to significant data heterogeneity and domain shifts. Unfortunately, it 

is challenging to generalize a global model trained from the classical FL algorithm, such as 

FedAvg (McMahan et al., 2017), to different institutions due to different data distributions at 

each local site. Thus, personalized federated learning is desirable to address this issue.

Previous works have attempted to address the domain shift issues, but mainly focus on 

image classification (Li et al., 2021; Arivazhagan et al., 2019; Collins et al., 2021; Fallah 

et al., 2020; Shamsian et al., 2021). In the application of accelerated MR reconstruction 

using FL, Guo et al. (2021) first proposed to address the domain shift issue by iteratively 

aligning the latent feature of UNet (Ronneberger et al., 2015) between target and other client 

sites. However, their cross-site strategy requires the target client to share both the latent 

feature and the network parameter with other client sites in each communication round, 

which could result in additional data privacy concerns (Lyu et al., 2022; Huang et al., 2021). 

Similarly, Feng et al. (2023) proposed a UNet with a globally shared encoder for generalized 

representation learning and a client-specific decoder for domain-specific reconstruction, 

but the network architecture is limited to UNet or its variants. While achieving promising 

performance for the MR reconstruction task, the network architecture is limited to UNet 

or its variants due to the constraint in their FL algorithm designs. Additionally, instead of 

using simple encoder-decoder structures for improving image quality, state-of-the-art deep 

learning-based image restoration networks often deploy advanced designs, such as original 

resolution restoration (Zhang et al., 2018; Zhou et al., 2021b), recurrent restoration (Zhou 

and Zhou, 2020; Zhou et al., 2023a), and multi-stage restoration (Zamir et al., 2021; Zhou 

et al., 2022a). Moreover, all the previous works are limited to 2D MRI reconstruction while 

PET requires 3D processing. In the application of low-count PET denoising using FL, Zhou 

et al. (2023b) proposed the first FL study for low-count PET reconstruction. However, 

their study was performed only on simulation experiments with heterogeneous low-count 

data generated from one scanner at one site. In addition, their generation of personalized 

models relied on local fine-tuning after global training from FedAvg(McMahan et al., 

2017), which may not be optimal. Therefore, the development of 3D personalized federated 
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learning framework and conducting studies with real-world multi-institutional low-count 

PET imaging data is desirable.

To address these challenges, we propose a personalized federated learning method based 

on deep feature transformation networks (FedFTN) and perform studies on real-world 

multi-institutional low-count PET data collected from three medical institutions across three 

continents, with multiple low-count levels contained at each institution. The general idea is 

to use a Feature Transformation Network (FTN) to modulate the features in the denoising 

network. During federated training, the FTNs are kept local, while only the denoising 

networks’ parameters at different institutions are shared and aggregated at the central server. 

The FTNs are only trained locally to modulate the features from the denoising network, 

thus enabling personalized PET denoising at each institution. The input to the FTN is the 

low-count level for individual patients, thus also allowing using a single unified model 

for multiple low-count levels’ denoising at each institution. In addition, we propose a 

Global Weight Constraint (GWC) loss which helps stabilize the local weight updates of 

the denoising network during the federated reconstruction learning. Our experimental result 

on the real-world multi-institutional low-count PET datasets demonstrates that our FedFTN 

can generate superior low-count PET denoising results as compared to previous federated 

reconstruction learning methods, as well as locally trained models.

2. Related Work

Low-count PET Denoising.

Previous studies on low-count PET denoising can be divided into two categories: 

conventional post-processing methods (Dutta et al., 2013; Maggioni et al., 2013; Mejia 

et al., 2016) and deep learning-based methods (Xiang et al., 2017; Wang et al., 2018; Lu et 

al., 2019; Kaplan and Zhu, 2019; Hu et al., 2021; Gong et al., 2021b; Zhou et al., 2020b; 

Ouyang et al., 2019; Chen et al., 2019; Liu et al., 2020, 2021; Song et al., 2021). Although 

conventional methods like Gaussian filtering are standard post-processing techniques for 

PET reconstruction, they tend to oversmooth the image and have difficulty preserving 

local structures under low-count conditions with amplified noise. On the other hand, deep 

learning-based denoising methods have been extensively explored for low-count PET and 

have demonstrated promising results. For example, Kaplan and Zhu (2019) proposed to 

use a 2D Generative Adversarial Network (GAN) with UNet as a generator to predict 

full-count PET images from low-count PET images. Wang et al. (2018) proposed the use 

of a 3D conditional GAN to directly translate 3D low-count PET images to full-count PET 

images. Similarly, Gong et al. (2021b) also proposed to use a 3D Wasserstein GAN to 

stabilize GAN training and to improve the low-count PET denoising performance. Based 

on previous GAN designs, Ouyang et al. (2019) further proposed to reinforce the denoising 

performance by incorporating patient-specific information. In parallel to using only the 

low-count PET images as network input, low-count PET denoising facilitated by other 

imaging modalities has also been explored. For example, Xiang et al. (2017) developed 

an auto-context CNN using both low-count PET images and T1 MR images as inputs 

for full-count PET generation. Similarly, Chen et al. (2019) proposed to input low-count 

PET images along with multi-contrast MR images into a UNet for ultra-low-count PET 
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denoising. There were also recent developments on unifying the low-count PET denoising 

model for multiple low-count levels (Xie et al., 2023). In addition to these previous studies 

on static low-count PET, methods have also been developed for simultaneous motion 

correction and low-count PET reconstruction (Zhou et al., 2021a, 2020a, 2023c), and have 

demonstrated further improved reconstruction quality. Even though deep learning-based 

methods have shown great promise in improving low-count PET images, these methods 

have so far been studied only within single institutions, where a single low-count protocol, 

identical PET system, and reconstruction protocol are assumed. Investigation on how to 

train generalizable reconstruction models using multi-institutional low-count data with 

non-identical distribution while addressing data privacy issues is of great significance and 

remains relatively unexplored.

Federated Learning for Reconstruction.

FL with a decentralized learning framework enables multiple local institutions to collaborate 

in training shared models while maintaining their local data privacy (Li et al., 2020). 

However, traditional FL algorithms, such as FedAvg (McMahan et al., 2017), do not 

adequately address the domain shift issue, which arises due to differences in data 

distribution across clients despite allowing collaborative training without sharing data. 

To overcome this limitation, recent studies have proposed personalized federated learning 

strategies in medical image reconstruction tasks. For example, Guo et al. (2021) proposed 

federated learning with cross-site modeling (FLCM) to address domain shift issues in 2D 

MR reconstruction by iteratively aligning the latent feature distribution between clients. 

However, FLCM’s requirement for frequent communication between clients and latent 

vectors increases the communication cost and risk of potential privacy leakage. On the 

other hand, Feng et al. (2023) proposed using a client-specific decoder in a UNet to reduce 

domain shift while only uploading and aggregating the encoder’s parameters. To further 

enable flexible MRI accelerated imaging operator across sites and improve generalizability, 

Elmas et al. (2023) proposed FedGIMP that aims to generate site-specific MRI prior which 

uses a mapper network to produce site-specific latents for the generative network given a 

site index. A similar strategy has been also adapted to multi-contrast MRI synthesis (Dalmaz 

et al., 2022). Although these methods show promising performance, they have only been 

tested on 2D MRI reconstruction tasks, and many rely on specific network architecture, e.g. 

UNet or Auto-encoder, with latent representation for domain alignment and personalization. 

They may not generalize well to applications requiring other network architectures, such 

as cascade/recurrent/multistage network designs (Zhou and Zhou, 2020; Zhou et al., 2021b, 

2022b,a), for better reconstruction quality. For CT reconstruction using FL, strategies have 

also been developed to adapt to different CT distributions from different sparse-view CT 

(SVCT) protocols. For example, with simulated multi-institutional 2D CT data, Yang et al. 

(2022) proposed to extend the PDF framework (Xia et al., 2021) into a hypernet-based FL 

framework, where the normalization parameter generator sub-networks were kept locally to 

adapt to different SVCT distributions. For low-count PET denoising, Zhou et al. (2023b) 

proposed the first FL study for low-count PET imaging. However, their study was limited 

to simulation experiments with heterogeneous low-count data generated from one scanner 

at one site. Furthermore, their approach of generating personalized models relied on local 

fine-tuning after global training from FedAvg(McMahan et al., 2017), which may not be 
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optimal. Therefore, there is a need to develop a 3D personalized federated learning approach 

and conduct studies with real-world multi-institutional low-count PET data.

3. Methods

Our method included a Feature Transformation Network (FTN)-modulated denoising 

network (Figure 1) and a customized personalized federated learning framework (Figure 

2) for it. Details were elaborated in the following sections.

3.1. Feature Transformation Network

The Feature Transformation Network (FTN) aimed to modulate the global-sharing denoising 

network to generate personalized denoised images that are specific to the local site and the 

target low-count level within the site.

As illustrated in Figure 1, given the extracted intermediate features from the convolution 

blocks of the global-sharing denoising network, the features were inputted into the FTNs 

for personalized adaptation. Specifically, given a feature input F = f1, f2, …, fC  with 

fn ∈ ℝH × W × D denoting the individual feature channel, we flattened the feature via global 

average pooling, generating vector v ∈ ℝC with its z-th element:

vz = 1
H × W × D ∑

i

H
∑

j

W
∑

k

D
fz i, j, k , (1)

where vector v embedded the global information of the input feature. Then, v was fed into a 

fully connected layer with weights of wR ∈ ℝC × C and generated vR = wRv.

In parallel, given the low-count levels d ∈ ℝ1 at the local site, we deployed three consecutive 

fully connected layers with weights of w1 ∈ ℝ
C
2 × 1, w2 ∈ ℝC × C

2 , and w3 ∈ ℝC × C, which 

generated transformation guiding vector:

vd = w3η w2η w1d , (2)

where η is the ReLU activation function. Then, vR and vd were fused via:

vfuse = σ vd vR + vd, (3)

where σ is the Sigmoid function. Then, we used another fully connected layer with weights 

of wfuse ∈ ℝC × C to generate the transformation vector:

v̂ = wfusevfuse (4)

Finally, the transformation vector was applied to the input feature map using channel-wise 

multiplication:

Fout = f1v̂1, f2v̂2, …, fCv̂C (5)
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Please note the FTNs were deployed at all feature resolution levels in the denoising network 

(Figure 1), thus allowing progressive feature transformation for personalized denoising.

3.2. FTN-based Personalized Federated Learning

The general pipeline of the FTN-based personalized federated learning is shown in Figure 

2. We denoted D1, D2, …, DN as the low-count PET datasets from N different institutions. 

Each institutional dataset Dn contained pairs of full-count and low-count PET 3D images, 

where each local dataset has three different low-count level settings. Within each institution, 

an FTN-modulated denoising network can be trained using the local data with two loss 

components, including a restoration loss ℒrecon and a global weight constraint (GWC) loss 

ℒgwc. The first loss can be formulated as:

ℒre = ∑
(x, y, d) ∈ Dn

Gn x, d ∣ θRn, θFTNn − y 2
2, (6)

where Gn is the FTN-modulated denoising network at the nth institution, and was 

parameterized by θRn and θFTNn. θRn is the denoising network’s parameters, and θFTNn is the 

FTN’s parameters. x, y, and d are the training pair of the low-count image, full-count 

image, and low-count level from Dn. We assume there were Q global training epochs 

(communication between cloud server & local institutions), and P  local training epochs at 

each institution. During the first two global epochs, the iterative optimization of the local 

network’s parameter only used the reconstruction loss and can be written as:

{θRn
p + 1, θFTNn

p + 1 } {θRn
p , θFTNn

p } − α∇ℒrecon (7)

where α is the learning rate. At the end of each global training epoch, the global-sharing 

denoising network’s parameters θRn at each institution can be uploaded to a cloud server for 

weight aggregation. The cloud server updated the parameters of the global-sharing denoising 

network by:

θRA
q = 1

N ∑
n = 1

N
θRn

q
(8)

where q denotes the qth global epoch. After two global epochs of warm-up, we further added 

a GWC loss to stabilize the weights update during the local training in the following global 

epochs. The GWC loss is formulated as:

ℒgwc = ∥ θRn − θRA ∥2
2

(9)
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where the current denoising network’s weight θRn was constrained to be in proximal to 

the aggregated weight θRA. Starting from the 3rd global epoch, the training loss was the 

combination of the reconstruction loss and the global weight constraint loss, thus can be 

written as:

ℒcomb = ℒre + λℒgwc (10)

where λ is the weight of GWC loss and we set it to 0.001. Then, the iterative optimization of 

the local network’s parameter can be formulated as:

{θRn
p + 1, θFTNn

p + 1 } {θRn
p , θFTNn

p } − α∇ℒcomb (11)

After Q rounds of communication between local institutions and the cloud server, we 

can obtain collaboratively-trained FTN-modulated denoising networks with personalized 

parameters {θRA
Q , θFTN1

Q }, {θRA
Q , θFTN2

Q }, …, {θRA
Q , θFTNN

Q }. The algorithm is summarized in Algorithm 

1.

3.3. Multi-institutional low-count PET Data

We collected multi-institutional low-count PET data from three different medical centers 

in USA, Switzerland, and China for our study. The first dataset was collected at Yale 

New Haven Hospital, New Haven, USA. 200 subjects were included in this dataset. The 

subjects were injected with a 18F-FDG tracer and the whole-body protocol with continuous-

bed motion scanning was used. All data were acquired using a Siemens Biograph mCT 

PET/CT system. The average dose across all patients is 256.3±16.2MBq. We used uniform 

down-sampling of the PET list-mode data with down-sampling ratios of 5%, 10%, and 

20% to generate low-count PET data at three different low-count levels. For both the low-

count and full-count images, they were reconstructed using the ordered-subsets expectation 

maximization (OSEM) algorithm with 2 iterations and 21 subsets, provided by the vendor. 

A post-reconstruction Gaussian filter with 5mm full width at half maximum (FWHM) was 

used. The voxel size of the reconstructed image was 2.04×2.04×2.03mm3. The image size 

was 400 × 400 in the transverse plane and varied in the axial direction depending on patient 

height. The 200 subjects were split into 100 subjects for training, 10 subjects for validation, 
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and 90 subjects for evaluation. The second dataset was collected at the Department of 

Nuclear Medicine, University of Bern, Bern, Switzerland (Xue et al., 2021). 209 subjects 

with 18F-FDG tracer were included in this dataset. All data were acquired using a Siemens 

Biograph Vision Quadra whole-body PET/CT system. The average dose across all patients 

is 264.1 ± 18.2MBq. Here, low-count PET data at 2%, 5%, and 10% low-count levels 

were generated by down-sampling of the PET list-mode data. For both the low-count and 

full-count images, they were reconstructed using the OSEM algorithm with 6 iterations and 

5 subsets, provided by the vendor. A post-reconstruction Gaussian filter with 5mm FWHM 

was used. The voxel size of the reconstructed image was 1.65×1.65×1.65mm3. The image 

size was 440 × 440 × 644. The 209 subjects were split into 109 subjects for training, 10 

subjects for validation, and 90 subjects for evaluation. The third dataset was collected at the 

Ruijin Hospital, Shanghai, China (Xue et al., 2021). 204 subjects with 18F-FDG tracer were 

included in this dataset. All data were acquired using a United Imaging uExplorer total-body 

PET/CT system. The average dose across all patients is 260.1 ± 12.2MBq Here, low-count 

PET data at 2%, 5%, and 10% low-count levels were generated by down-sampling of the 

PET list-mode data. For both the low-count and full-count images, they were reconstructed 

using the OSEM algorithm with 4 iterations and 20 subsets, provided by the vendor. A 

post-reconstruction Gaussian filter with 5mm FWHM was used. The voxel size of the 

reconstructed image was 1.66×1.66×2.88mm3. The image size was 360 × 360 × 674. The 

204 subjects were split into 104 subjects for training, 10 subjects for validation, and 90 

subjects for evaluation.

3.4. Evaluation Metrics and Baselines Comparisons

We evaluated the low-count denoised results using Peak Signal-to-Noise Ratio (PSNR) 

and Normalized Mean Square Error (NMSE) computed against full-count reconstruction 

ground truth. For baseline comparisons, we first compared our results against previous 

federated reconstruction algorithms, including Federated Averaging (FedAvg, McMahan et 

al. (2017)), Federated Learning with Proximal Term (FedProx, Li et al. (2020)), Federated 

Learning with Local Batch Normalization (FedBN, Li et al. (2021)), Specificity-Preserving 

Federated Learning (FedSP, Feng et al. (2023)), and Personalized Federated Learning with 

Hypernetwork (FedHyper, Shamsian et al. (2021)). For a fair comparison, all the methods 

used an identical reconstruction/denoising network, as shown in Figure 1. We also compared 

our FedFTN against two types of locally trained models, including local single models and 

local unified models. For each local single model, an FTN-modulated denoising network 

was trained using one single low-count level data at one specific institution. On the other 

hand, the local unified models are also based on FTN-modulated denoising networks, but all 

three low-count levels’ data at a specific institution are used as training data. Furthermore, 

we also performed ablative studies on federated transfer learning (Zhou et al., 2023b), where 

FedFTN are further fine-tuned using local data for site adaption.

3.5. Implementation Details

We implemented our method in Pytorch and performed experiments using an NVIDIA 

Quadro RTX 8000 GPU with 48GB memory. The Adam solver was used to optimize our 

models with lr = 1 × 10−4, β1 = 0.9, and β2 = 0.999. We used a batch size of 3 and trained 
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all models for 300 global epochs. The number of the local epoch was set to 3. To prevent 

overfitting at each local site, we also implemented ‘on-the-fly’ data augmentation. During 

training, we performed 64 × 64 × 64 random cropping, and then randomly flipped the 

cropped volumes along the x, y, and z-axis. During the site adaptation with fine tuning 

on local data, we used a reduced learning rate of 2e − 5 and trained the FedFTN models 

using the local dataset for 10 epochs, and the batch size was also set to 3 with ‘on-the-fly’ 

data augmentation. Our method’s training takes about 160 hours to complete. For baseline 

methods, FedHyper takes about 172 hours, and the rest baselines also take about 160 hours.

4. Experimental Results

Figure 3 shows qualitative comparisons of low-count PET denoised images using locally 

trained denoising models and our FedFTN method. The lowest low-count level denoised 

results from each institution were visualized for comparison. As we can see, since only less 

than 5% count was used, the original images (1st row) suffer from high noise and image 

artifacts. While the locally trained models can reduce the noise and recover the general 

structure, the detail recovery was still not ideal. For example, the 5% low-count denoised 

image from the locally trained model at Institution #1 created additional artifacts at the 

intersection between the liver and kidney. The 2% low-count denoised images from the 

locally trained models at Institution #2 and Institution #3 suffered from heavy blurring on 

important regions, such as the hypermetabolic lesions in the zoomed boxes. The quantitative 

comparisons were summarized in Table 1. We reported quantitative results for all available 

low-count levels for the three institutions. Similar to the observation from the visualizations, 

all the original PET images suffered from low SNR, resulting in low PSNR and NMSE 

values. Taking Institution #1 as an example, we can see the locally trained unified model, 

i.e. the FTN-modulated Denoising Network, was able to improve the PSNR from 20.46 to 

26.02 for the 5% low-count PET. Please note that the local unified model is the network 

shown in Figure 1 that is trained locally with the local site’s low-count level as an additional 

input. Using the FedFTN, we can further improve the PSNR from 26.02 to 27.24 with 

statistical significance. Similar observations on improvement over the locally trained models 

can be found for other low-count levels at Institution #1 and other institutions. The average 

inference time for testing data of institution #1, institution #2, and institution #3 were 8.08 ± 

2.83 s, 11.32 ± 1.05 s, and 10.04 ± 1.09 s, respectively.

Figure 4 presented qualitative comparisons of low-count PET denoised images using 

different federated methods. For each institution, we showed one patient example for each 

low-count level, and all low-count levels are visualized. At Institution #1, all three low-count 

levels’ denoised images suffered from low SNR, with the noise level increasing as the dose 

level decreases. While previous FL methods can improve the image quality by suppressing 

the noise, the detail recovery was still suboptimal. For instance, for the 5% low-count level, 

the bone marrows in the spine were heavily blurred by the previous methods, whereas 

FedFTN showed much sharper spine, demonstrating the best consistency with the ground 

truth full-count reconstruction. Additionally, for the 10% low-count level, a strong false 

positive signal was visible in the spine from the original low-count reconstruction, and 

previous methods failed to suppress it, which may lead to misdiagnosis. In contrast, using 

FedFTN, we can suppress this false positive signal and provided a high-quality image that 
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best matches the ground truth. At Institution #2, for the 2% low-count level, a false positive 

of cardiac defect was visible from the original low-count reconstruction. While previous 

methods can suppress the noise, this false positive defect signal cannot be fully removed, 

particularly for FedSP. In contrast, FedFTN demonstrated significantly better performance 

in false positive defect removal and the most consistent cardiac shape as compared to 

the ground truth. Similarly, for the 5% low-count level, FedFTN better recovered the 

signal of the aorta wall than previous methods. We observe similar results in the patient 

examples from Institution #3, where FedFTN can provide better image quality as compared 

to previous methods. The corresponding quantitative comparisons were summarized in Table 

2. As mentioned previously, the original low-count reconstructions from all three institutions 

suffered from poor image quality, where the PSNR values were all lower than 21.00 at the 

lowest low-count levels for all three institutions. By deploying previous federate learning 

methods, as compared to the locally trained models (Figure 3 and Table 1), we can see 

that these previous FL methods can already improve the low-count image quality across 

all institutions at all low-count levels. For example, FedSP was able to increase the PSNR 

from 26.02 to 26.69 for the 5% low-count reconstruction at Institution #1, from 25.42 

to 25.80 for the 2% low-count reconstruction at Institution #2, and from 26.02 to 26.44 

for the 2% low-count reconstruction at Institution #3. In the second last row, we showed 

that our FedFTN can significantly outperform these previous FL baselines, and achieved 

state-of-the-art performance across all the low-count levels at all three institutions. For 

example, as compared to the FedHyper with the best performance among previous FL 

reconstruction algorithms, our FedFTN can further improve the PSNR from 26.88 to 27.24 

for the 5% low-count reconstruction at Institution #1, from 25.85 to 26.12 for the 2% 

low-count reconstruction at Institution #2, and from 26.44 to 26.89 for the 2% low-count 

reconstruction at Institution #3.

Similar to the process of FTL (Zhou et al., 2023b), we further performed Site Adaptation 

(SA) through local fine-tuning for our FedFTN. The quantitative results were reported in 

the last row in Table 2. We can observe further improved image quality metrics of FedFTN 

through SA for all low-count levels at all three institutions. In addition, we also found the 

denoising results from FedFTN with SA still significantly outperformed all previous FL 

baseline methods, in terms of both PSNR and NMSE. Visual comparisons of low-count 

denoising before and after SA of FedFTN are shown in Figure 5. We can see SA improves 

the image quality by further suppressing the false positive signal and improving the image 

resolution across different low-count levels at Institution #1.

We conducted ablative studies on the Global Weight Constraint (GWC) loss that was used 

in our FedFTN framework to stabilize the training process. The results were summarized in 

Table 3, which included the image quality analysis for all low-count levels across all three 

institutions. Adding the GWC component consistently improved image quality compared 

to using FedFTN without GWC. For instance, at Institution #1, the PSNR for the 5% PET 

imaging increased from 27.11 to 27.24, from 28.82 to 28.96 for the 10% PET imaging, and 

from 30.71 to 30.82 for the 20% PET imaging. Figure 7 provided visual comparisons from 

multiple institutions. We observed that adding GWC helps stabilize the FedFTN training 

process and helps maintain the subtle true positive signals within the kidneys, as seen in 

the denoised images from Institutions #1 and #2. Similarly, adding GWC results in better 
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resolution recovery for clustered thin anatomic structures, such as ribs, as demonstrated 

in the Institution #3 comparison. While the quantitative and qualitative improvements are 

incremental, as shown in Figure 6, we can observe that FedFTN with GWC can provide 

faster and more stable training loss convergence, as compared to the one without GWC, 

demonstrating the GWC’s benefits during FL training.

5. Discussion

In this work, we developed a novel personalized federated learning approach, called 

FedFTN, for multi-institutional low-count PET denoising. Specifically, we proposed to use 

a deep Feature Transformation Network (FTN) that is kept at the local institutions and takes 

the low-count level as input, to transform the intermediate feature outputs from the globally 

shared denoising network. There are several key advantages of this design. First of all, with 

different FTNs modulating the denoising network features at different local sites, we can 

personalize the denoising network, adapting to different low-count PET data with different 

distributions caused by differences in scanners, pre-/post-processing protocols, etc. Second, 

unlike previous personalized FL modules for image classification (Li et al., 2021), MRI 

synthesis (Elmas et al., 2023), and 2D SVCT reconstruction (Yang et al., 2022) that use 

mapper sub-network directly generate scalars for feature map channel-wise multiplication 

and addition, our FTN first squeezes the feature map into a latent representation and fuse 

with the site and subject-specific latent vector before re-excitation. In Table 2, we found our 

FedFTN can provide better reconstruction performance than FedBN (Li et al., 2021) which 

also uses a locally kept module but generates normalization parameters for direct feature 

map affine transformation. Third, each institution often has multiple low-count protocols, 

thus requiring the denoising network to be able to adapt to inputs with different low-count 

levels. Instead of blindly inputting the original low-count reconstruction into the network 

without the knowledge of the low-count level, the FTN-modulated denoising network takes 

the information of the low-count level as additional input, thus enabling dose-level-aware 

denoising. Please also note that because individual FTN network is kept locally at each 

institution, the institution can define its own low-count levels. The sites do not need to share 

the exact same set of levels and no information about the low-count level is shared between 

institutions. Even though it is possible that better performance could be achieved if different 

sites share identical and matched low counts, having identical low counts across different 

sites based on different scanners, different injection protocols, and different processing/

reconstruction protocols, may not be easily realizable in real-world FL scenarios. Lastly, 

we also proposed a Global Weight Constraint (GWC) loss that regularizes the denoising 

network parameters not to have strong deviation over the aggregated parameter during the 

training at local sites, helping stabilize the federated learning process, and thus improving 

the final personalized denoising performance at each site.

We collected large-scale real-world low-count PET data from three different institutions 

in the U.S.A., Europe, and China, to validate our method. From our experimental results, 

we demonstrated the feasibility of using our FedFTN for collaborative training without 

sharing data, while enabling personalized low-count PET denoising at different institutions. 

First, as we can observe from Table 1 and Figure 3, even though training a denoising 

model from scratch using local data with limited diversity can generate reasonable 
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denoising performance and potentially avoid domain shift issues, our FedFTN can provide 

significantly better denoising results. For example, as shown in the last row of Table 1, our 

FedFTN demonstrated superior PSNR and NMSE values as compared to the locally trained 

models across all the low-count levels at all the institutions. This is mainly due to the fact 

that the FedFTN utilizes all the institutional data with a wider spectrum of data diversity for 

collaborative learning while using the FTN modulation to mitigate the domain shift issues. 

Second, as we can see from Table 2 and Figure 4, our method generating personalized 

FTN-modulated denoising networks for individual institutions can consistently outperform 

previous FL reconstruction methods that either only produce one global model (FedAvg) 

or deploy personalize FL strategies (FedSP and FedHyper). Using an identical backbone 

reconstruction/denoising network, our FedFTN achieved the best image quality over all the 

previous FL baselines, in terms of both PSNR and NMSE with statistical significance, as 

reported in the second last row of Table 2. Further finetuning the personalized denoising 

models from FedFTN with local data slightly boosted the performance. In addition, we 

found that adding the Global Weight Constraint (GWC) loss helped stabilize the FedFTN 

and improved the image quality at all low-count levels at all institutions, as demonstrated in 

Figure 7 and Table 3.

The presented work also has limitations with several potential improvements that are the 

subjects of our future studies. First, our study only considered three institutions and all 

with 18F-FDG tracer. While there are other PET tracers that could be used for specific 

applications, 18F-FDG is still the most commonly used PET tracer in clinical practice and 

thus is the primary focus of our study. Furthermore, our FedFTN framework can be flexibly 

adjusted to different numbers of institutions, and potentially adapted to multi-tracer PET 

scenarios. Specifically, we could incorporate the tracer type, as well as other dose and 

patient information, as additional inputs to the FTN, which would also allow the FTN to 

transform the features in the denoising network depending on the input tracer type. In fact, 

we believe that including more diverse tracer types with expanded training data with more 

diverse data representation would potentially further improve our performance. In this work, 

we have already shown that we can use FTN to adapt and unify those different low-count 

distributions. However, we believe expanding to include multi-tracer multi-institutional data 

is an important future direction to validate any conclusion. Second, we only evaluated 

the overall image quality based on image quality metrics, i.e. PSNR/NMSE/SSIM, which 

use full-count PET as ground truth. The difference between our FL method and locally 

trained baselines is in the order of 1–2 dB PSNR which implies a significant image quality 

improvement with our FL strategy as compared to the local training strategy, which can 

be observed from Table 1 and Figure 3. While the image quality metrics improvements 

from our FedFTN as compared to the prior SOTA FL methods is in smaller magnitude, 

the image quality improvements are reflected on more detailed regions, as shown in 

Figure 4. We believe this kind of improvement could potentially lead to more accurate 

disease quantification, e.g. lesion radiomic, cardiac function, etc. However, how will such 

improvement over the prior SOTA FL method be reflected in clinically relevant tasks is 

an important direction for our following clinical investigation. Given PET has extensive 

clinical applications in oncology, cardiology, and neurology, our future work also includes 

evaluations of how the denoised image impacts the downstream tasks, such as the impacts 
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on staging and therapy response, and human experts’ evaluations on these clinical tasks. 

Lastly, for a fair comparison and to demonstrate the idea, we performed all our experiments 

using a simple UNet as the backbone denoising network. However, our method could be 

adapted with more advanced restoration network structures. For instance, we could use more 

advanced network designs, such as cascade-based, transformer-based, and multistage-based 

reconstruction networks (Zhou et al., 2021b, 2022b; Zhou and Zhou, 2020; Zhou et al., 

2022a; Shan et al., 2019), in our FedFTN. Specifically, we can use FTN to transform and 

modulate the intermediate features in these networks, thus enabling personalized FL with 

these networks. Deploying these networks in our FedFTN could potentially further improve 

our performance and will also be an important direction for our future studies.

6. Conclusion

Our work proposes an innovative personalized federated learning method, named FedFTN, 

for multi-institutional low-count PET denoising. Our method utilizes a deep feature 

transformation network to generate a personalized low-count PET denoising model for 

each institution by modulating a globally shared denoising network. During the federated 

learning process, the FTN remains at the local institutions and is used to transform 

intermediate feature outputs from the shared denoising network, thus enabling personalized 

FL denoising. We utilized a large-scale dataset of multi-institutional low-count PET data 

from three medical centers located across three continents to validate our method. Our 

experimental results showed that the FedFTN provides high-quality low-count PET denoised 

images, outperforming previous baseline FL methods across all low-count levels at all three 

institutions. We believe our proposed methods could potentially be adapted to other deep 

learning-based medical imaging challenges where collaborative training without data sharing 

is needed to improve the medical image quality.
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1. We propose a novel personalized federated learning framework for low-

count PET denoising, called FedFTN. FedFTN uses a local deep feature 

transformation network (FTN) to modulate the feature outputs of a globally 

shared denoising/reconstruction network, enabling training without sharing 

data and personalized low-count PET denoising for participating institutions.

2. We collected large-scale multi-institutional low-dose PET data across USA, 

China, and Europe for our experiment. We conducted the first real-world 

study on federated learning for low-count PET imaging.

3. We demonstrated that FedFTN provides high-quality low-count PET, 

outperforming previous baseline FL reconstruction methods across all low-

count levels at all three institutions with different scanners and patient 

populations.
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Fig. 1. 
The architecture of our Feature Transformation Network (FTN)-modulated Denoising 

Network. Without loss of generality, we deploy a U-Net as our denoising network. The 

FTNs are appended to the feature outputs at all U-Net resolution levels to transform the 

features at all levels.
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Fig. 2. 
Personalized federated learning based on feature transformation network (FedFTN). Each 

institution contains one FTN-modulated denoising network (Figure 1). At each global 

iteration, each FTN-modulated denoising network at each institution is first trained locally 

for a fixed number of epochs. During model aggregation, the FTNs are kept local and only 

the denoising networks’ parameters are uploaded to the central cloud server for parameter 

averaging. The algorithm is summarized in Algorithm 1.
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Fig. 3. 
Visual comparison of the low-count denoised images from locally trained models and from 

our FedFTN. The local single model means FTN-modulated denoising networks trained 

at one specific low-count level at the specific institution. The local unified model means 

FTN-modulated denoising networks trained with all three low-count levels within each 

institution. The PET images with the lowest count levels at each institution are visualized 

here.
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Fig. 4. 
Qualitative comparison of low-count denoising with different federated learning methods. 

Each institution contains three-different low-count levels. The original low-count 

reconstruction and the full-count ground truths are shown in the first row and last row, 

respectively. The image quality metrics of each image are indicated at the bottom of the 

images.
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Fig. 5. 
Visual comparison of low-count PET denoised images from FedFTN before and after Site 

Adaptation (via) local fine-tuning. The three low-count levels at the Institution #1 are shown 

here.
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Fig. 6. 
Institution #1’s training curves of FedFTN with and without the GWC components.
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Fig. 7. 
Visual comparison of low-count denoised images from FedFTN with and without the Global 

Weight Constraint (GWC) loss. The PET data with the lowest dose levels at each institution 

are visualized here.
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Table 3.

Ablation study on GlobalWeight Constraint (GWC) loss. Quantitative comparisons of FedFTN with and 

without GWC loss during training are shown here.

Institution #1 5% 10% 20%

FedFTN w/o GWC 27.11/.0262/.978 28.82/.0178/.982 30.71/.0117/.990

FedFTN w GWC 27.24/.0254/.979 28.96/.0172/.983 30.82/.0113/.990

Institution #2 2% 5% 10%

FedFTN w/o GWC 25.91/.0194/.979 27.59/.0137/.988 28.82/.0103/.989

FedFTN w GWC 26.12/.0185/.980 27.80/.0130/.989 29.03/.0098/.991

Institution #3 2% 5% 10%

FedFTN w/o GWC 26.83/.0323/.980 28.87/.0223/.988 30.14/.0179/.991

FedFTN w GWC 26.83/.0319/.980 28.91/.0219/.990 30.23/.0176/.992
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