
Article https://doi.org/10.1038/s41467-023-42627-2

Using drivers and transmission pathways to
identify SARS-like coronavirus spillover risk
hotspots

Renata L. Muylaert 1 , David A. Wilkinson2, Tigga Kingston 3,
Paolo D’Odorico 4, Maria Cristina Rulli 5, Nikolas Galli 5, Reju Sam John6,
Phillip Alviola7 & David T. S. Hayman 1

The emergence of SARS-like coronaviruses is a multi-stage process from
wildlife reservoirs to people. Here we characterizemultiple drivers—landscape
change, host distribution, and human exposure—associated with the risk of
spillover of zoonotic SARS-like coronaviruses to help inform surveillance and
mitigation activities.Weconsider direct and indirect transmissionpathways by
modeling four scenarios with livestock and mammalian wildlife as potential
and known reservoirs before examining how access to healthcare varies within
clusters and scenarios. We found 19 clusters with differing risk factor con-
tributions within a single country (N = 9) or transboundary (N = 10). High-risk
areas weremainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas
far fromhealthcare reveal healthcare access inequalities, especially Scenario 3,
which includes wild mammals and not livestock as secondary hosts. China
(N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can
help stakeholders in land use planning, integrating healthcare implementation
and One Health actions.

The process of infectious disease emergence from animals begins with
the cross-species transmission (spillover) of a microbe (e.g. virus,
bacterium, fungus, protozoa) to a new animal host in which it is
pathogenic1–3. Identifying areas of higher spillover probability is an
important strategy for pandemic prevention and has largely focussed
on estimating host distributions4,5 and modeling frameworks for add-
ing proxies for disease risk and spread in the face of limited data4–6.
Yet, successful emergence events are complex multi-stage processes
with many possible pathways leading from the original wildlife reser-
voir to sustained transmission in people7. The probability of any of
these pathways occurring and resulting in infection emergence varies
temporally and spatially, so cross-scale mapping of the multiple,
diverse drivers of disease emergence is needed to better allow

decision-makers to know where to focus surveillance and mitigation
strategies8.

Human infectious diseases almost all came from other species3.
COVID-19, Ebola virus disease, Mpox, HIV/AIDS, and Zika virus disease
are recent examples, whereas those like measles arose after the Neo-
lithic Agricultural Revolution9. Zoonotic disease emergence has
accelerated in recent decades, likely as a result of diverse interacting
drivers such as accelerated land use change10, humanencroachment of
natural habitats, increasing and changing contacts among and
between wildlife and domestic animals, and has been mostly linked to
mammals and birds11. Bats are among the natural hosts of viruses in the
coronavirus (family Coronaviridae) subgenus Sarbecovirus (severe
acute respiratory syndrome (SARS)-related coronaviruses), which
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includes SARS-CoV-1 and SARS-CoV-2, the cause of SARS and COVID-
1912,13. Bat hosts of sarbecoviruses are broadly distributed but the
highest diversity is in Southeast Asia5. Human infection with Sarbe-
covirus frombatsmay bemore frequent than reported from traditional
surveillance14 and likely includes secondary hosts15,16. Viral infection
prevalence contributes to the risk of spillover2 and can be influenced
by biological factors such as birthing cycles17,18 and external stimuli
such ashuman changes to landuse19, though these influencesmay vary
by host, virus, or location20,21.

The One Health approach acknowledges the interconnection of
human, animal, and environmental health, aiming to address health
challenges and prevent them holistically22. Large-scale risk assess-
ments in which areas with similar risk profiles are identified provide
invaluable information to inform One Health actions12,23 and can be
rapid, while the development of local, detailed, and intricate spillover
and outbreak risk assessments are costly and can take a long time24,25.
Since detailed and validated data for recent reports on outbreak risk
reduction are lacking for most regions of the globe (e.g. the Sendai
framework26), a broad evaluation targeting Sarbecovirus emergence
can be advantageous to discuss diverse contexts across the region
where most natural hosts of sarbecoviruses occur. Human encroach-
ment has led to decreased distances between bat roosts and human
settlements27, so part of the relevant hazard for inferring spillover risk
can be spatially quantified from remotely sensed proxies for socio-
ecological risk factors.

Here, we identify where putative drivers for emergence risk
overlap, focusing on the biological possibility of the emergence of a
Sarbecovirus. Our goal is to aid mitigation and surveillance activities
throughout South, East, and Southeast Asia through a One Health
approach by identifying both where efforts should focus and which
risk factors should be prioritized based on where outstanding values
overlap the most (hotspots of spillover potential) and based on
healthcare access. Specifically, we asked: Where are the hotspots of
spillover risk that capture a range of hypothesized transmission sce-
narios representing different pathways for the emergence of a novel
SARS-like coronavirus? Can we identify spatially cohesive clusters of
hypothesized risk drivers that, when combined, increase the risk of
zoonotic spillover23,28? How does access to healthcare for high-risk
areas vary according to transmission scenarios?

We predicted that there would be co-occurring hotspots formost
risk drivers converging in biodiverse regions with bat hosts in regions
with the greatest pressure from anthropogenic land use change,
regardless of country boundaries. The four scenarios evaluated
represent different nested transmission pathways for sarbecoviruses
in bats to infect people. We assume that the risk of emerging new
SARS-like outbreaks is associated with social, biological, and environ-
mental components, and because there are unobserved dynamics for
emerging viruses29, we evaluated four nested spillover pathway sce-
narios based on landscape change and potential hosts30. Scenario 1
represents a direct transmission fromknownbat Sarbecovirus hosts to
people. This transmission would be facilitated by the landscape con-
dition, human population, and known bat hosts. Although investiga-
tions suggest that direct transmission of sarbecoviruses from bats to
humans may be possible31, it has yet to be better documented14,32,33.
Rather, the involvement of an intermediary or bridging host appears
more likely34, perhaps because this allows for recombination and viral
evolution and/or leads to greater exposure to human populations.
Consequently, we developed Scenarios 2–4 to represent indirect
pathways that build on Scenario 1 (Fig. 1). In Scenario 2, we consider
indirect transmission by adding livestock as intermediate hosts, and in
Scenario 3, we consider indirect transmission by addingwildmammals
as intermediate hosts. Finally, in Scenario 4, we consider indirect
transmission, including both these indirect pathways, so this final
scenario comprises landscape conditions, human population, known
bat hosts, mammalian livestock, and wild mammals (Fig. 1). We

expected clusters to occur across the country borders and differing
pathways to alter risk hotspot distributions.

Results
Characterization of risk driver hotspots
The study region comprises a 25796-pixel grid for the terrestrial area
evaluated. Univariate hotspot areas differ in magnitude (Fig. 1) and
extent. Most hotspots concentrate at latitudes between 20° and 40°.
The univariate hotspots with the largest spatial extent are those
obtained for agricultural and harvest land, followed by high-integrity
forests and areas with high deforestation potential. Notably, hotspot
patterns were insensitive to an increase in the critical threshold value
for defining a hotspot, showing marked patterns both at 95% and the
99% percentiles (Supplementary Fig. 1), though coldspots decreased
(Supplementary Fig. 2). The majority of the included region com-
prises coldspots for primary bat hosts. Drivers with the greatest
extent of coldspots were livestock (pigs and cattle), followed by
known bat hosts. The largest extent of intermediate areas was for
built-up land, which presented no cold spots due to the ubiquitous
nature of human occupation in terrestrial areas. The largest differ-
ences in results for all Bovidae livestock versus cattle-only hotspots
(see Methods) are in central China, parts of the north (Hebei, Shanxi,
and Henan) China, and central India (Supplementary Fig. 3). The
complete overlap of hotspots considering all ten univariate hotspots
at one grid cell never occurred.

Scenarios
Regardless of the scenario, the largest hotspot overlaps occur in cen-
tral and southeast China, south and northwestern India, and Java.
Differences between Scenario 1 with direct transmission from known
Sarbecovirus bat hosts to people and Scenario 4 with indirect trans-
mission via livestock and wild mammals are largest in central China
(Fig. 2). The largest differences between each scenario and Scenario 1
(the scenario with the fewest covariates) concentrated in central and
southern China. Scenario 3, with wildlife but no livestock intermediate
hosts, had the least differences in relation to Scenario 1. Similar to
Scenario 1, Scenario 2 showsmost hotspot convergences in central and
south China. For Scenario 4 (indirect transmission—all mammals), the
most important PCA axes show a clear ‘natural axis’ and an anthro-
pogenic axis, where the pig production layer is intermediate to the
influence of both axes (Supplementary Fig. 4). Both main axes explain
58.7% of the total variation (PC1 = 33.5%, PC2 = 24.8%). Maximum
overlap for non-human potential primary and secondary hosts occur-
red acrossChina andVietnam.While strong commonalities remain, the
differences between scenarios highlight how the involvement or not of
domestic or other wildlife hosts alters the risk profile.

Hotspot co-occurrence in clusters
We identified spatially cohesive clusters, including all hypothesized
risk drivers (Fig. 3). We used a multivariate hierarchical partitioning
algorithm to infer clusters of similar values in the region. To find the
optimal number of clusters, we inspected the total within-cluster
sum of squares variation from iterations of up to 40 clusters, in
addition to inspecting the optimal number of clusters given by the
max-p algorithm. The optimal number ofmultivariate spatial clusters
is nine when 10% of the human population is used as a minimum
bound variable and 19 for 5% of the human population. There is an
incremental benefit reduction in iterations with more clusters from
nineteen groups (Supplementary Fig. 5). Moreover, because the
clusters from the cut-off value of 5% are nested within the 10%
clusters (Supplementary Fig. 6), we discuss the 19 clusters in themain
text. The detected clusters were commonly transboundary (Table 1),
located across a maximum of six countries and a median of 2 coun-
tries. Besides 10 transboundary clusters, nine clusters are restricted
to a single country: 6 in China, 2 in India, and 1 in Indonesia (Java).

Article https://doi.org/10.1038/s41467-023-42627-2

Nature Communications |         (2023) 14:6854 2



Fig. 2 | Emergent risk scores for scenarios containing co-occurring drivers
associated with landscape change and zoonotic pathogen emergence. Land-
scape, human population, and known bat Sarbecovirus hosts are included in all
models and are the sole drivers in Scenario 1, representing direct bat-to-human

transmission. To incorporate indirect transmission through secondary hosts,
mammalian livestock are included in Scenario 2, wild mammals in Scenario 3, and
bothmammalian livestock andwildmammals in Scenario 4. The internal white area
in China represents no data values for Lake Qinghai.

Fig. 1 | Hotspots of potential factors contributing to the emergence of SARS-
like coronaviruses. A Spatial distribution of hotspots based on putative drivers of
risk of Sarbecovirus emergence was evaluated in four scenarios. B List of variables
per scenario marked as black dots and proportion (%) of areas classified as

hotspots, intermediate or coldspots across the study region, including wildlife,
landscape change, livestock, and exposure in humans. This classification used a
critical threshold value at the 0.95 percentile to define hotspots and coldspots.
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Fig. 3 | Distribution of clusters of risk factors associated with potentially new
emerging SARS-like coronaviruses. The values include all potential mamma-
lian hosts, land use change, and human exposure density distributions

(Scenario 4). Areas located in the red zone represent hotspots, yellow zones are
intermediate areas, and coldspots are in blue at a 95% alpha error level. Amap with
country (black lines) labels is shown in Supplementary Fig. 8.
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The top-ranking clusters in terms of hotspots were all located in a
single country (China or Indonesia): Beijing (cluster 19), Java (cluster
17), and Sichuan and Yuzhong District, Chongqing (cluster 16). The
clusters with the highest scores were among the smaller clusters in
geographical extent. Inner-West China (cluster 1), South Lhasa and
Arunachal Pradesh (cluster 15), and Philippines, East Timor, andWest
Papua (cluster 9) had the highest scores for coldspots. Areas with the
highest scores for the Intermediate class were Assam, West Burma
block, Steppe, and Sri Lanka (cluster 2), followed by Southwest
Indochina (cluster 11) and North India (cluster 14). Clusters with the
all Bovidae livestock version are in Supplementary Fig. 7, and they
were very similar to the cattle-only versions from the main text,
except for the Beijing area and the division of the two larger clusters
in India, West India, and East India.

Potential outbreak detection and spread
When we match the risk factor spatial information with healthcare
access measured as travel time35, the largest differences between
combinations of quantiles of the two covariates are in the lowest and
highest quantiles of both variables (Fig. 4a, Supplementary Movie 1).
We calculated the areas with high-risk values that are far or close to
healthcare for all scenarios (Supplementary Fig. 9) within the spatial
clusters from the skater analysis. From the entire study region, areas
closer to healthcare that had high hotspot overlap (areas in yellow in
Fig. 4) covered an area ranging from 11.96% in Scenario 1 to 20.28% in
Scenario 2, 14.66% in Scenario 3 and 13.67% in Scenario 4. Areas far
from healthcare that have high hotspot overlap (in red Fig. 4) were
much rarer and varied according to scenarios, always covering less
than 1%of the studied region, ranging from0.1% inScenario 1 to0.30 in
Scenario 2, 0.91% in Scenario 3—with significantly higher travel times to
healthcare (Fig. 4b, p <0.05)—and 0.22% in Scenario 4 (Supplementary
Table 1, Fig. 4b). The relationship between travel time to healthcare
and human population counts (Supplementary Fig. 10) shows that
areas far from healthcare tend to have lower population counts (our
proxy for exposure), but the relationship is non-linear.

Discussion
Urgent actions are needed to decrease disease emergence risk36,37.
Using amacroscale approach,we assessed the distribution of locations
with a greater risk of experiencing Sarbecovirus spillover events using
landscape conditions and exposure of potential hosts (wildlife,
domestic, human). Landscape conditions coupled with predictions of
the distribution of known hosts and proxies for potential hosts and
processes linked tohuman exposure to novel viruses canbeapowerful
tool for sample prioritization when limited viral spillover information
is available, such as for sarbecoviruses14.

The overlap of risk factor hotspots represents pressure points on
natural ecosystems that have been extensively altered in terms of
agriculture, deforestation, and livestock production. In some cases,
these clusters still have high values for forest quality and known bat
Sarbecovirus host diversity (for instance, cluster 5—central China, and
cluster 17—Java, Indonesia). Areas, where outstanding values of dif-
ferent risk factors converge can pose a severe risk to disease emer-
gence and biological conservation. In Sichuan, China—cluster 16—
values of livestock production are extremely high, and largely exten-
sive farming takes place concomitantly with the presence of hotspots
for mammal diversity (including higher values for known bat hosts)
and very high deforestation risk. Unfortunately, deforestation rates
and increasing demand for livestock are evident in our top-rated
clusters4, within biodiversity-rich areas, with high forest loss risk and a
very large human population (e.g. in the cases of Beijing—cluster 19
and Java—cluster 17).

The similarity of hotspots at 95% and 99% percentiles suggests
that our analysis was robust to uncertainties in the definition of hot-
spots.However, cold spots significantly decreased at 99%, losing space
to intermediate areas. In terms of influence on risk scores, since we
focus on hotspots, the increase in intermediate areas did not influence
our risk metric. However, it is important to add this sort of sensitivity
analysis, especially in regional studies applying this type of assessment
or when prioritization is clearly dependent on hotspot conditions. We
assume that intermediate areas in proximity to hotspots and where
socio-ecological transitions, such as those related to the livestock

Table 1 | Identification of spatial clusters and the number of variables for which the median were coldspots, intermediate, or
hotspots (n = 190)

Cluster ID Countries Number of countries Coldspot Intermediate Hotspot

1 Bhutan, China, India, Nepal 4 9 1 0

2 Bangladesh, Bhutan, China, India, Sri Lanka, Myanmar 6 0 8 2

3 Brunei, Indonesia, Lao PDR, Myanmar, Malaysia, Thailand 6 3 4 3

4 India 1 4 3 3

5 China 1 0 5 5

6 China 1 6 3 1

7 China, Cambodia, Lao PDR, Myanmar, Thailand, Vietnam 6 0 5 5

8 India 1 2 3 5

9 Philippines, Indonesia, East Timor 3 7 2 1

10 China 1 5 0 5

11 Cambodia, Lao PDR, Philippines, Thailand, Vietnam 5 0 6 4

12 China 1 5 4 1

13 Bangladesh, Bhutan, India, Nepal 4 4 2 4

14 Bhutan, China, India, Nepal 4 1 6 3

15 Bhutan, China, India, Myanmar, Nepal 5 8 1 1

16 China 1 2 2 6

17 Indonesia 1 1 2 7

18 Bangladesh, India 2 2 4 4

19 China 1 1 1 8

Total 60 62 68

The top three values for each hotspot, intermediate, and coldspot are in boldface.
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revolution, are at the greatest risk of transitioning to hotspots4. Even
without a complete transition to hotspots, clusters with mostly inter-
mediate values for stressors have had zoonotic spillovers of cor-
onaviruses in the past15,32,33, notably those in central China cluster 2 and
on their edges with cluster 7 (north Lao PDR, north Vietnam, south
China). Further, there is an overlap of several identified clusters with
areas that concentrate hosts of other viruseswith pandemicpotentials,
such as the Nipah virus38. The intermediate and high-risk areas within
clusters need a multidimensional approach to mitigation that com-
bines targeted surveillance of human populations, and other animals
and environment monitoring, taking a One Health approach39. In
addition to surveillance and biosecurity (discussed below), these
approaches emphasize nature-based mitigation strategies, looking at
the socio-economic drivers that shape local landscape conditions. Our
analyses also show that risk factor clusters are commonly multi-
national. Action plans are likely complex tasks to implement, there-
fore, transboundary, coordinated action between nations that share
territorial limits is paramount if the configuration of hotspots is taken
into account when managing, protecting, and restoring land to miti-
gate disease emergence risk.

Remote areas with greater travel times to healthcare that have
little spatial overlap with risk factor hotspots (blue, Fig. 4) may
represent conditionally safer areas. In those areas, the priority should
be assessing and reducing other disaster and disease risks. In areas of
high potential assessed risk (khaki, orange, and red, Fig. 4), actions
should be focused on the drivers of spillover. Recent literature sug-
gests three broad, cost-effective actions to minimize pandemic risk:
better surveillance of pathogen spillover, better management of
wildlife trade, and substantial reduction of deforestation (i.e., primary
prevention)37. Landscape planning should have priority, as these can
have other co-benefits40,41 and can include preventive measures to
reduce levels of contact between people and potential wild and
domestic animal hosts. Biosecurity measures and surveillance and
integrated wildlife monitoring42 are also key where multi-component
risk levels are higher43. Syndromic, virological, serological, and beha-
vioral risk surveillance of people with regular proximity to known

reservoir or potential amplifier hosts43 can be of great value in these
hotspots, but the ultimate prevention should be in primary
prevention44. Beyond viral monitoring and discovery, prevention can
be achievedby reducingdeforestation,managing livestockproduction
and wildlife trade, and increasing sustainable management of agri-
cultural areas37.

Surveillance effort correlateswith detecting infections, andwhere
human populations intersect with wildlife, risk increases45,46. In addi-
tion, evidence from Brazil also suggests zoonotic risk increases with
remoteness (along with increased wild mammal species richness) and
decreases in areas with greater native forest cover47. Our results sug-
gest high-risk areas are often (11–20%) associated with faster travel
times to healthcare, compared to remote areas (<1%) (yellow and red
respectively, Fig. 4). Theproblemposedby remote sites for emergence
mitigation is that while spillover probability and initial ease of spread
may be lower, so too is detection probability45 because of the distance
to healthcare. This may allow localized, remote outbreaks to establish
and spread in human populations before detection48–50. Our findings
can be helpful in allocating efforts for surveillance, sustainability, and
conservation actions and long-term plans for ecological intervention,
including in areas with high emergent risk scores. Importantly, addi-
tional layers of prioritization could be added to implement mitigation
actions onhotspots, for instance, where climate change vulnerability is
also high, such as in Java51. Also, regions of China are outstandingly
connected due to high mobility5253, which highlights the need to
reduce pressures arising from multiple hotspots.

Scenario 2 (indirect transmission through livestock) had the
highest number of regions with high-risk areas close to healthcare
(yellow, Fig. 4). These areas are extensive across the study region in all
scenarios and should be prioritized for temporal screening for viruses
in livestock, the understanding of known hosts, and investments in
improving public health responses to spread. High-risk areas far from
healthcare (red) represent small regions of our study area (<1%) in all
scenarios, where Scenario 1 had the fewest and Scenario 3 had the
highest areas. Theseare areaswith higher possibilities for spillover that
would alsobe likely to goundetectedduring the early stages of human-

Fig. 4 | Bivariate map showing the risk scores from hotspot data and access to
healthcare. A. Black lines divide the limits for the 19 clusters identified by the
multivariate spatial cluster analysis; Scenario 4 is represented in themap.B. Time to
reachhealthcare in areaswherehigh emergent risk co-occurred far fromhealthcare
for each of the four scenarios. Average values are in red, with p-values showing
which pairwise comparisons differ from the null expectation of no difference in

Wilcoxon’s test. Landscape, human population, and known bat Sarbecovirus hosts
are included in all models and are the sole drivers in Scenario 1, representing direct
bat-to-human transmission. To incorporate indirect transmission through sec-
ondary hosts, mammalian livestock are included in Scenario 2, wild mammals in
Scenario 3, and both mammalian livestock and wild mammals in Scenario 4.
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to-human transmission and spread. In those regions, urgent action to
prevent contact, reduce deforestation, and enhance biodiversity pro-
tection should take place, as well as improvements in healthcare
access. Human populations that are more vulnerable to risks could be
targets for equitable distribution of promising solutions, such as pan-
coronavirus vaccines54.

Our findings are a snapshot of macroscale spatial trends that can
be used for prioritizing more detailed analysis depending on the
context and policy priorities. The United Nations Development Pro-
gram (UNDP) recommends the creation of ‘Maps of Hope’ for main-
taining essential life support areas55, but the relationship between
biodiversity loss, fragmentation, and zoonotic disease is seldom con-
sidered in the designation of such areas.We advocate for a One Health
approach in which the risks of pathogen emergence are explicitly
integrated into initiatives addressing habitat management, restora-
tion, and protection55, and have demonstrated that this risk can be
mapped at large scales with insights into variability in the distribution
of key drivers22.

We acknowledge the complexity of pathogen responses to land
use modification56 and the important limitations of our findings. The
datasets used here are all static yet global and accessible. The static
nature of the datasets is one limitation in our assessment, as riskmight
vary temporally due to changes not apparent in static data. Hotspots
may change in response to changes in economic and agricultural
policies at national and subnational levels, international agreements
such as Agenda 2030, and climate change adaptation57. There are also
several empirical data limitations. For instance, although the data
sources for the health facilities are generally accurate35, omission
errors can occur. Hospitals and clinics may close over time and while
new ones are built, so it is important to take these limitations into
consideration in local contexts, especially when access to healthcare is
not possible using motorized vehicles. Regarding host data, cryptic
diversity in bats58 and uneven sampling occur for sarbecoviruses and
their bat hosts5, creating uncertainty regarding host-pathogen inter-
actions that is difficult to account for. Ecological analyses at finer
spatial and temporal scales than those used here can elucidate cas-
cading events that result in zoonotic spillover. For example, Hendra
virus spillover from bats to horses in Australia seems to be driven by
interactions between climatic change altering the flowering phenology
of important nectar sources, exacerbating food shortages resulting
from native habitat loss and degradation, and nutritional stress in bats
that may increase Hendra virus shedding19. Native resource declines
have concurrently promoted the urbanization of many bat popula-
tions, increasing the human–bat interface and potential for spillover
events to horses, which can act as intermediary hosts or even poten-
tially direct to humans59. Our analyses may capture the macroscale
processes but not these local events.

Similarly, while knowing that the top-priority traded mammals60

are correlated with total mammalian diversity, local analyses should
evaluate how factors that cannot be easily mapped or tracked deviate
from the large-scale trend, such as animal trade and hunting, which is
currently not feasible using amacroscale approach. Our workflow can,
however, be easily coupled with detailed local data for spillover ‘bar-
riers’ and host characteristics to bring insights and customize action
plans, such as data on reservoir density, pathogen prevalence, patho-
gen shedding, and data on spillover recipients, such as susceptibility
and infection61. This is especially important when macroscale and
subnational level risk assessments are neither complete nor validated
for most nations62.

To date, the role of domestic intermediate hosts for sarbecov-
iruses is unclear, with numerous species able to be infected by SARS-
CoV-263. Here we include cattle and all Bovidae livestock evaluations,
leading to similar overall results for clusters but with some univariate
hotspots less intense, especially in central India and south China, while
making them more intense around Beijing, highlighting how

uncertainties around host susceptibility and potential pathways leads
to uncertainty regarding risk. The emergence of a novel coronavirus
and re-emergence of a known Sarbecovirus through spillback is also
possible63 and may change risk profiles. Other factors that play a large
role in outbreak response, such as conflict64 and other societal chal-
lenges associated with health and the environment, might also be
considered in local contexts.

The use of remote sensing layers can bring insights for land use
planning when considering complex processes such as disease emer-
gence. This process may benefit not only the understanding of risks
but also local actions informed by broad patterns6. Recent models
suggest that the implementation of smaller-scale land-use planning
strategies guided by macro-scale patterns may help to reduce the
overall burden from emerging infectious diseases65, while also taking
into account biodiversity conservation. This could be evaluated from
multiple perspectives, including in the context of other planetary
boundaries and how zoonotic disease risk sits within it66, considering
we have already passed the 1° warmer planet threshold67.

In conclusion, we found evidence that hotspots of multiple con-
ditions that contribute to the risk of emerging Sarbecovirus are com-
monly transboundary, but areas scoring the highest values of risk
occurred in China and Indonesia. We also identify that most high-risk
areas are not far fromhealthcare for each transmission scenario, but in
all scenarios, there are several that are far from healthcare, especially
Scenario 3 which includes wild mammals as secondary intermediate
hosts. This work contributes to strengthening evidence of spatial
clusters of multiple risk factors for disease emergence. We use a
reproducible workflow based on hotspot analysis from broad-scale
data that is accessible through open software and maps for easy
interpretation. This can enable agencies to discuss and engage in new
land-use planning actions by including stakeholders (academia, gov-
ernment, local communities, and non-governmental organizations)
under a One Health perspective. The need to reduce inequalities in
access to healthcare68 without promoting encroachment into natural
areas is a challenge. Efforts should focus on comprehensive land use
planning, including the placement of healthcare facilities and other
infrastructure69. Biodiversity provides essential ecosystem services, so
primary prevention of spillover can benefit sustainability at multiple
scales, sustaining life on earth andhumanhealth. Our findings can help
stakeholders when evaluating multiscale policies, land use planning,
and considering integrating community health programs into uni-
versal healthcare implementation70 at transboundary, national, or
subnational levels.

Methods
We use South, East, and Southeast Asia (including western New Gui-
nea) as our study region, where most Sarbecovirus hosts are
concentrated5,14 and where many unknown sarbecoviruses are esti-
mated to exist28. We define our study region as the terrestrial area of
the following countries: Bangladesh, Bhutan, Brunei, Cambodia, China,
India, Indonesia, Lao PDR, Malaysia, Myanmar, Nepal, Philippines,
Singapore, Sri Lanka, Thailand, Timor-East, and Vietnam.

Characterization of univariate risk indicator hotspots
We identified spatial clusters of components of risk. We assume our
inferred risk arises not from individual factors having outstanding high
values (hotspots), but instead, it arises when they are combined,
facilitating conditions for viral spillover. In that sense, our inference of
risk is an emergent property of the system (emergent risk). We adop-
ted a broad-scale risk estimation framework (https://mcr2030.undrr.
org/quick-risk-estimation-tool) focusing on the potential for sarbe-
coviruses to emerge. The ten broad risk factors were five landscape-
level conditions and five biological layers, according to four scenarios
(see data sources and further descriptions and justification of these in
Supplementary Table 2). The analysis is naive about the influence of
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individual drivers on the risk of spillover in the sense that all factors
were weighted equally in our scenario evaluations. We selected the
following ten factors for land use change and landscape conditions:
Intensity of (1) built-up land, (2)mining and energy, (3) agricultural and
harvest land, (4) forest quality, and (5) local forest loss risk. As a
measure of human or animal exposure, we used wildlife, comprising
(6) known bat hosts and (7) all otherwildmammals), (8) livestock (pigs
and cattle), and (9) human populations. We use (10) the average of
known sarbecovirus bat hosts as our primary host layer5,14,71,72. In all
scenarios we also include human population counts because this
increases the risk of contact and therefore transmission73. We included
built-up areas, energy and mining, and agriculture and crop harvest
landscape changes in all scenarios because these have been linked to
increased coronavirus shedding in bats putatively due to stress and
human contact rates28,74. We similarly used forest quality and risk of
cover loss because emerging infectious disease risk is elevated in
forested tropical regions experiencing land-use changes and where
wildlife biodiversity (mammal species richness) is high4,7,75,76. We then
used different potential secondary (aka intermediate) hosts to
understand different interactions and transmission pathways, where
we included pigs (Scenario 2, Scenario 4) because while SARS-CoV-2
transmission is unlikely77, coronaviruses cause a variety of diseases in
pigs78, including infections-related to bat coronavirus34. We also
included cattle (Scenario 2, Scenario 4), as coronaviruses caused
infection79 and disease in cattle80, and coinfection can lead to recom-
bination events81. We have also included other bovid livestock (Sce-
nario 2, Scenario 4) because there are several regions in Southeast Asia
where carabao (Bubalus bubalis) and other Bovidae livestock aremore
common than cattle (Bos taurus), so we provide results for all Bovidae
livestock instead of cattle-only in the Supplementary materials. We
also included wildmammals as potential secondary (aka intermediate)
hosts,minus the knownbat hosts (Scenario 3, Scenario 4), because EID
risk is elevated in forested tropical regions experiencing land-use
changes and where wildlife biodiversity (mammal species richness) is
high. SARS-CoV-2 has also been detected in wildlife (spillback
events)63,75.

To avoid collinearity, we only selected variables with product-
moment correlation coefficient (r) values < ±0.7 (Supplementary
Fig. 11). The study region was divided into a spatial grid composed of
0.25 decimal degrees-sized tiles (~27 km). All variables were resampled
to match this resolution. For data layers that were counted from sha-
pefiles (othermammal species numbers),we appliedmedianvalues for
resampling.We ran aunivariate hotspot analysis basedonGetis-ordG*i
values82 considering each factor individually at 95% and 99% cut-off for
critical values using rgeoda 0.0.983. First, we created a list considering
all data and then the 5 * 5 neighboring cells around these for the closest
neighborhood (n = 25). Then, we ran a local G analysis on every pixel,
assuming a two-sided alternative hypothesis at the 95% and 99% per-
centiles to check hotspot sensitivity to critical values. High-positive
values indicate hotspot regions, and low negative values indicate
coldspots. Pixels located in-between the alternative hotspot or cold-
spot hypothesis values are referred to as intermediate regions, where
the value may reflect a random spatial process, i.e., no spatial clus-
tering detected.

Scenarios
Detected hotspots for all landscape condition components were used
in combination with biological components in the scenario analyses.
Scenario 1 considers direct transmission from bats to humans, where
the biological risk is composed of the average number of bat species in
which sarbecoviruses have been reported as the known primary hosts.
For Scenario 2, we then considered the components of Scenario 1 in
combination with potential intermediate hosts using: pig counts, cat-
tle-only, or all Bovidae livestock counts. Scenario 3 considered bat
hosts and the number of other wild mammal species present. For

Scenario 3, we used the wild mammal layer (minus known bat hosts)
and knownbathosts as the potential intermediate (wildmammals) and
source (knownbat) hosts.We considered using a tradedmammal layer
instead of an all wild mammal layer in Scenario 3 because of evidence
the first COVID-19 cases identified were linked to the Huanan Seafood
Wholesale Market in Wuhan16. An available high-priority traded mam-
mal layer, in which species were classified as traded by the Interna-
tional Union for the Conservation of Nature (IUCN)60, however, is
highly correlated (r = 0.864) with the wild mammal layer. Because of
this correlation, in addition to high uncertainty regarding trade, we
kept only the mammal layer and bat hosts layer in Scenario 3. A fourth
scenario, Scenario 4, included all of the previousmammalian layers, be
it wild or livestock, so combined all ten risk factors.

Hotspot convergence in clusters
We evaluated the spatial clustering among hotspots, including all ten
selected drivers (Scenario 4, five landscape descriptors, and five
potential host components). We opted for doing a single cluster ana-
lysis because we cannot weigh the importance of the single variables
for influencing an ultimate spillover event. The variables comprised
here describe landscape conditions, human population, cattle, pig, bat
hosts, and all other wild mammals. We assume areas that contain the
most hotspots or that may be on the verge of becoming hotspots
(intermediate areas) for the components evaluated are at higher risk of
emerging new sarbecoviruses. A multivariate spatial cluster analysis
was applied to Getis-ord G*i values82 for every variable after the uni-
variate hotspot analysis using rgeoda 0.0.983. We used themultivariate
skater (Spatial ‘K’luster Analysis by Tree Edge Removal) hierarchical
partitioning algorithm84 to infer contiguous clusters of similar values in
the region based on the optimal pruning of a minimum spanning tree.
Spatial clusters represent emergent, cohesive risk combinations dis-
tributed in space. Contiguity was assessed by a queen weights matrix
after transforming pixels to geographical coordinates. Distance func-
tions were set to Euclidean. We evaluated the k number of clusters
from 1 to 40. To find the optimal number of clusters, we evaluated the
total within-cluster sum of squares variation, visually inspecting the
point of inflection in the curve towards stabilization. As the reduction
in increment was very smooth as clusters were added, we present the
number of clusters for skater informed by the max-p algorithm. We
used max-p to find the solution for the optimal number of spatially-
defined clusters setting as a bounding variable (a variable that allows
for a minimum value summed for each cluster) the human population
amounts to 5% and 10%. The algorithm was computed at 99 interac-
tions with 123456789 as a random seed.

To interpret the variation of hotspots between clusters, we
counted the number of variables for which the median of the dis-
tribution is a hotspot (i.e., fallingwithin thehotspot interval at 95%Gi*).
We then discuss the clusters based on the number of drivers that are
already hotspots and themedian values that fall in intermediate zones,
so possibly closer to becoming hotspots and coldspots for each clus-
ter. Finally, to understand the overall variation (and among clusters),
we provide a principal component analysis (PCA) biplot through Sce-
nario 4 to discuss major axes of variation between an optimal number
of clusters. We ran the hotspot analyses with cattle-only and with the
summed values for all Bovidae livestock (presented in the Supple-
mental Material). All geographical coordinates were warped to the
World Mercator (EPSG: 3395) andWorld Geodetic System 1984 datum
before spatial analysis.

Emergent risk and its relationship with access to healthcare
After identifying the hotspots within the scenarios, we match their
proximity to detection by matching the emergent risk score (i.e.,
number of hotspots) for every pixel with the level ofmotorized access
to healthcare (hospitals and clinics)35. Access to healthcare measured
as travel time was considered as both a proxy for connectivity and an
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indicator of the likelihood of detection following infection spillover
and spread. We use the word proximity to refer to the times when
someone needs to reach a hospital or clinic: where far or distant areas
mean it takes a longer time to reach them.We built bivariatemaps and
three-by-three quantile (N = 9) combinations considering the intensity
of hotspots from their overlay and the values for access to healthcare,
all rescaled from zero to one. We compared travel time in high-risk
areas among scenarios using Wilcoxon’s test. China has the largest
number of pixels with healthcare facilities in the world, followed by
other countries considered in our analysis, such as India, Indonesia,
Thailand, and Malaysia. We assume that the travel time to healthcare
dataset is adequately accurate for our study region since source data
from Google Maps and Open Street Map data sources have robust
quality controls35.Moredetails onhealthcare facility data coverage and
accuracy in our study region are provided in Supplementary Tables 2
and 3. All analyses were done in QGIS 3.10.785, R 4.1.386, and bash87.

Data availability
The data processed in this study have been deposited in FigShare.

Code availability
The code for the analyses can be found in GitHub and Zenodo.
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