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Abstract

Intensive longitudinal designs are increasingly popular, as are dynamic structural equation models 

(DSEM) to accommodate unique features of these designs. Many helpful resources on DSEM 

exist, though they focus on continuous outcomes while categorical outcomes are omitted, briefly 

mentioned, or considered as a straightforward extension. This viewpoint regarding categorical 

outcomes is not unwarranted for technical audiences, but there are non-trivial nuances in model 

building and interpretation with categorical outcomes that are not necessarily straightforward 

for empirical researchers. Furthermore, categorical outcomes are common given that binary 

behavioral indicators or Likert responses are frequently solicited as low-burden variables to 

discourage participant non-response. This tutorial paper is therefore dedicated to providing an 

accessible treatment of DSEM in Mplus exclusively for categorical outcomes. We cover the 

general probit model whereby the raw categorical responses are assumed to come from an 

underlying normal process. We cover probit DSEM and expound why existing treatments have 

considered categorical outcomes as a straightforward extension of the continuous case. Data 

from a motivating ecological momentary assessment study with a binary outcome are used to 

demonstrate an unconditional model, a model with disaggregated covariates, and a model for data 

with a time trend. We provide annotated Mplus code for these models and discuss interpretation 

of the results. We then discuss model specification and interpretation in the case of an ordinal 

outcome and provide an example to highlight differences between ordinal and binary outcomes. 

We conclude with a discussion of caveats and extensions.
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Research designs like experience sampling (Scollon et al., 2003), ambulatory assessment 

(Fahrenberg et al., 2007), daily diaries (Bolger et al., 2003), and ecological momentary 

assessment (Smyth & Stone, 2003) have sharply increased in popularity as smartphone and 

wearable technology have permitted data to be collected more intensively, more frequently, 
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more naturally, and less invasively (Conner & Barrett, 2012; Hamaker & Wichers, 2017; 

Mehl & Conner, 2012; Nelson & Allen, 2018; Trull & Ebner-Priemer, 2014). Data collection 

with mobile or wearable devices reduces participant burden while also increasing ecological 

validity because responses are collected in real time rather than recalled after the fact (De 

Haan-Rietdijk et al., 2017). This higher ecological validity, ease of data collection, and 

reduced participant burden has resulted in intensive longitudinal designs becoming more 

commonplace in behavioral and health sciences, especially when studying affect, mood, 

interpersonal behaviors, or psychophysiology (Moskowitz & Young, 2006).

Intensive longitudinal designs produce dense datasets with many observations per person 

(roughly defined as data with 20 or more measurement occasions per person; Collins, 2006; 

Walls & Schafer, 2006), especially compared to traditional panel designs where each person 

is measured intermittently over a relatively longer timespan (e.g., Curran et al., 2010). 

Dense, frequently collected data facilitates research questions concerning within-person 

variability and how processes unfold moment to moment, which is opposed to the emphasis 

in panel data on between-person processes and mean changes across development (e.g., 

Ram & Gerstorf, 2009; Wang et al., 2012). Changes in data structure and corresponding 

changes in the types of questions researchers pose has led to rapid development of novel 

methodological approaches and software for intensive longitudinal data (e.g., Asparouhov et 

al., 2018; Driver et al., 2017; Hamaker et al., 2018; Ou et al., 2018).

As these models have increased in popularity, several didactic resources have been written to 

assist researchers embarking on these types of analyses (Asparouhov et al., 2018; Li et al., 

2022; McNeish & Hamaker, 2020; Sadikaj et al., 2021; Zhou et al., 2021). These resources 

cover much ground given that intensive longitudinal models have many nuances with which 

researchers must familiarize themselves such as Bayesian estimation, new assumptions, 

and different parameters that may be included to capture conceptual differences in densely 

collected data. Even though many intensive longitudinal studies include outcomes that are 

binary behavioral items or single ordinal Likert items (e.g., Berli et al., 2021; DeMartini et 

al., 2022; Kiekens et al., 2020), discussions in existing didactic resources focus primarily 

on continuous outcomes. Categorical outcomes are either not mentioned (Li et al., 2022; 

McNeish & Hamaker, 2020), mentioned briefly in the discussion or limitations (Sadikaj et 

al., 2021, p. 38; Zhou et al., 2021, p. 243), or mentioned as straightforward extension of 

the continuous case (Asparouhov et al., 2018, p. 362–363; Asparouhov & Muthén, 2019, p. 

135–136; Asparouhov & Muthén, 2020, p. 285–286).

We understand the viewpoint that – to more technical audiences – extensions to categorical 

outcomes may be considered relatively trivial statistically. For instance, as one option, 

researchers can assume that a normal distribution underlies the categorical variable such 

that the observed categorical responses are essentially a discretization of an unobserved 

continuous process. Then, one can apply the principles of a model for continuous outcomes 

to the underlying normal distribution instead of the raw categorical outcome.

Although this extension may be straightforward statistically, the corresponding changes in 

model fitting and interpretation when extending the model to categorical outcomes this 

way are not necessarily trivial for empirical researchers using these models to inform 
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their conclusions (e.g., how to interpret coefficients and covariate effects, how to center or 

standardize categorical variables, working with a latent normal distribution rather than an 

observed variable). Essentially, the practical aspects of extending the model to categorical 

variables are less intuitive than the statistical aspects. Anecdotally, we as authors were 

motivated by this exact issue when encountering intensive longitudinal data with categorical 

outcomes. The statistical foundations of extending the model to categorical outcomes were 

relatively straightforward (assuming some familiarity with probit regression). However, we 

had more difficulty with interpretation and connecting the results to the original research 

questions.

Therefore, the goal of this paper is to provide a didactic resource devoted solely to modeling 

categorical outcome variables for empirical researchers whose experiences may match our 

own. Specifically, we discuss how to fit dynamic structural equation models (DSEMs) 

for intensive longitudinal data with categorical outcomes in Mplus and provide software 

code and guidance on interpreting the results. To outline the structure of this paper, we 

first provide an overview of the foundations of intensive longitudinal data and the DSEM 

approach as implemented in Mplus to model moment-to-moment dynamics. This overview 

focuses on the simpler case of continuous outcomes. We then provide an overview of probit 

modeling for categorical data. This approach is used within Mplus to accommodate binary 

and ordinal outcomes and is central to proper interpretation of coefficients and centering, 

even though psychologists are not always familiar with concepts related to probit models 

(e.g., Bürkner & Vuorre, 2019; Liddell & Kruschke, 2018). We highlight the connection 

between the probit and continuous models to motivate why the technical literature considers 

this extension statistically straightforward. We follow with a description of a motivating 

dataset from an empirical intensive longitudinal study on people with binge eating disorder 

that has both binary and ordinal outcomes. Four example analyses and associated code are 

then provided using this dataset and potential differences in model misspecification and 

interpretation between models for binary and ordinal outcomes are discussed. We conclude 

with a discussion of extensions and limitations.

Intensive longitudinal data and DSEM

Intensive longitudinal data

In contrast to the relatively recent increase in popularity of intensive longitudinal data 

in behavioral sciences, fields like finance and climatology have an extensive history of 

modeling dense, frequently collected data. In these fields, this type of data is more 

commonly referred to as time-series data and a common theme of time-series models is 

to determine how the preceding state of the system affects the subsequent state (Hamaker 

et al., 2018). A common way to accomplish this goal – both in historic applications 

of time-series models and in more recent extensions in behavioral sciences – is through 

autoregressive models where the outcome variable is predicted from itself at one or more 

earlier time-points. Each respective previous time-point is referred to as a lag. For instance, a 

lag-1 model uses the immediately preceding time-point as a predictor, a lag-2 model uses the 

two immediately preceding time-points as predictors, etc. The effect of the prior state of the 

system on its current state is referred to as carryover, inertia, or autoregression.
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A common time-series model for continuous outcomes is the lag-1 autoregressive model, 

which can be written as

yt = α + ϕyt − 1 + et

(1)

where yt is the outcome at time t, α is the intercept of the time series, ϕ is an autoregression 

coefficient capturing the carryover effect from the first lag yt − 1, and et is the residual at time 

t which is normally distributed with a mean of 0 and constant variance σ2. Autoregressive 

models of the form in Eq. (1) make a stationarity assumption such that the mean, variance, 

and autocorrelations of the outcome do not systematically change over time. This implies 

that the time-series is mean-reverting (Stroe-Kunold et al., 2012), meaning that the outcome 

variable may be higher or lower than the mean momentarily, but the expected value of the 

time series is not a function of time (i.e., the outcome does not systematically increase or 

decrease over time).

Time-series models have historically been applied to data from a single entity like a stock or 

weather from a particular location (i.e., N = 1 models). However, a challenge of time-series 

models in behavioral sciences is that intensive longitudinal data are typically collected for 

multiple people such that N > 1. Time-series data with N > 1 can be supported with 

bottom-up or top-down approaches (Liu, 2017). Bottom-up approaches are more idiographic 

and models are first fit to each person’s data separately. Then, similarities between 

the dynamics of different people are sought either with automatic searches (e.g., group 

iterative multiple model estimation, GIMME; Gates & Molenaar, 2012) or by constraining 

parameters across people (Hamaker et al., 2003). Conversely, top-down approaches are more 

nomothetic and fit a model with the same functional form to all people but permit between-

person variability in the parameters. Different dynamics across people are accomplished 

with random effects such that the parameter is modeled as a distribution of values rather than 

a single value. In the common context where the distribution of the parameter is assumed to 

be normal, there is a fixed effect capturing the average parameter value across all people and 

a variance capturing the heterogeneity of the person-specific parameter values across people.

Top-down models have historically been fit in the mixed effect framework (e.g., Bolger & 

Laurenceau, 2013; Walls & Schafer, 2006), but mixed effect models possess weaknesses 

for intensive longitudinal data in some contexts (McNeish & Hamaker, 2020). First, mixed 

effect models can be challenging with unequal intervals between measurement occasions 

(which are an intentional feature of some research designs like ecological momentary 

assessment to prevent participants from anticipating the next measurement occasion or 

experience sampling). Second, person-mean centering is applied to disaggregate within-

person from between-person processes (e.g., Curran & Bauer, 2011; Hamaker & Grasman, 

2015) but centering in mixed effect models is based on observed person-means, which is 

known to be produce estimates that are susceptible to Nickell’s bias (Nickell, 1981) and 

Lüdtke’s bias (Lüdtke et al., 2008) with intensive longitudinal data. Nickell’s bias results 

in underestimated autoregressive effects with observed person-mean centering because the 

error term is not necessarily independent of the lagged predictor (i.e., endogeneity is 
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present). This bias is unaffected by the number of people but diminishes as the number 

of time points approaches infinity. Lüdtke’s bias notes that the observed person means are 

susceptible to measurement error, unreliability, and missing data; so, using the observed 

person-mean can lead to bias to the extent that the observed person mean does not reflect the 

true person mean. Third, standard mixed effect models assume that all variables are manifest 

and do not directly allow measurement models or invariance testing (e.g., Castro-Alvarez et 

al., 2022; McNeish et al., 2021; Vogelsmeier et al., 2022).

Dynamic structural equation models

To address some weaknesses of mixed effect models for intensive longitudinal data, the 

DSEM framework was recently introduced and incorporated into the Mplus software 

program (Asparouhov et al., 2017, 2018). Throughout this paper, we focus on application 

of DSEM in Mplus although the same models can be fit in general Bayesian software like 

Stan, JAGS, or Win-BUGS (Hamaker et al., 2023; Li et al., 2022). The brms R package 

(which interfaces with Stan to fit multivariate multilevel models) can also support many 

types of models in the DSEM framework, particularly with observed variables (Williams et 

al., 2020, p. 989; also see ten Brink et al., 2021 for an application of DSEM with the brms 

package).

DSEM integrates (a) time-series analysis to allow lagged relations for modeling 

autoregressive effects between densely collected repeated measures and Kalman filters for 

unequally spaced intervals between observations (b) multilevel modeling to accommodate 

repeated measures nested within multiple individuals and to allow individual differences 

in parameters with a top-down approach, and (c) structural equation modeling to permit 

multivariate models, latent variables, and full structural models that allow any between-

person variable (including latent variables) to be a predictor, mediator, or outcome. DSEM 

allows users to leverage aspects of these three approaches to meet the demands of the 

intended model. In other words, standard mixed effect models that can be fit in software like 

SAS PROC MIXED, SPSS MIXED, or the Ime4R package are a special case of the broader 

DSEM framework, meaning that the DSEM results will be the same when the additional 

features are not needed but that DSEM can extend beyond capabilities of standard mixed 

effect models (Savord et al., 2023).

In DSEM, a Kalman filter can help address issues related to unequal intervals between 

observed data that are present with traditional mixed effect models (Kim & Nelson, 1999). 

The Kalman filter originated in aerospace engineering and is based on hidden Markov 

models. When applied to time-series analysis, the general idea is that researchers specify 

the largest interval in which only one observation can occur. The Kalman filter makes 

predictions of the value within each interval based on previous values. For intervals with 

observed data, the predictions are updated with the observed information. For intervals 

without observed data (e.g., missing data, no response was solicited), the Kalman filter 

retains its prediction from the previous interval and continues to the next interval without 

updating. Kalman filters have been integrated in Mplus but typically must be manually 

programmed for models fit in general Bayesian software.
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With regard to centering, Nickell’s and Ludtke’s biases that emerge with observed centering 

in traditional mixed effect models can be avoided in DSEM by centering around latent 
means that can incorporate measurement error and unreliability into the measurement 

process (e.g., Asparouhov & Muthén, 2019). Latent centering has been found to be effective 

when the number of time-points per person is ten or more (Gistelinck et al., 2021). Issues 

in mixed effect models pertaining to multiple outcomes and latent variables can also 

be accommodated in DSEM by incorporating principles of structural equation modeling, 

which is inherently multivariate and naturally accommodates measurement models for latent 

variables.

Though many of the existing papers in the short history of the DSEM literature have focused 

on continuous outcomes, it is possible to incorporate categorical outcomes as well. When 

fitting categorical models in Mplus, a probit link is used rather than a logit link as is 

commonly used in logistic regression in behavioral sciences. The next section familiarizes 

readers with the concepts behind probit regression before we discuss extending DSEM to 

binary outcomes using a probit link.

Overview of probit models

Probit regression falls under the umbrella of the generalized linear model for modeling 

non-normal outcomes. Similar to other generalized linear models like logistic regression 

or Poisson regression, the relationship between predictors and the outcome is linear after 

applying a link function. In logistic regression, the coefficients are linear in the log-odds; 

in Poisson regression, the coefficients are linear in the natural log of the count. Probit 

models relate the predictors to the outcome linearly through the standard normal cumulative 
distribution function (denoted Φ( ⋅ )).

This sounds like a mouthful, but the concept is less daunting than the statistical verbiage 

used to describe it. To simplify the explanation with an example, imagine a model for 

a binary outcome y with a single continuous predictor x1. A probit model would be 

written as Pr y = 1 ∣ x1 = Φ β0 + β1x1 . Notice that the model still contains a linear regression 

equation, but it appears within the Φ ⋅  function. This equation would be translated as, “the 

probability that y equals 1, given the value of the predictor x1, is equal to the standard normal 

cumulative distribution function of a point defined by an intercept β0  plus the coefficient 

associated with x1 β1  times the value of x1 ”. In English, “standard normal cumulative 

distribution function” is the area under a Z-distribution to the left of a particular Z-score. 

Essentially, Φ ⋅  is shorthand for “area under a Z-distribution from −∞ to the number in 

parentheses”. β0, β1, and x1 determine the Z-score to appear in the parentheses, which is then 

converted to probability by taking the area under a Z-distribution to the left of the Z-score 

implied by β0, β1, and x1.

Imagine that β0 = − 1 and β1 = 1.5. The intercept coefficient β0 corresponds to 

the Z-score associated with the predicted probability that y = 1 when x1 = 0. To 

get the predicted probability from the probit coefficient of −1, we calculate the 

area of a Z-distribution from −∞ to −1. Statistically, this would be written as 

Φ β0 + β1x1 = Φ − 1 + 1.5 × 0 = Φ − 1 = 0.16. Thearea to the left of −1 on a Z-distribution 
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is about 0.16, which can be looked up in a Z table or calculated using a software utility like 

the NORM.S.DIST function in Excel or the pnorm function in R. The predicted probability 

that y = 1 when x1 = 0 would therefore be 0.16. This is shown visually in the left panel of 

Fig. 1.

The probit model is linear in the Z-score associated with the predicted probability: 

a 1-unit change in x1 leads to a β1-unit change in the Z-score associated with the 

predicted probability. The value of β1 in this example was 1.5, so the Z-score associated 

with the predicted probability of y increases by 1.5 units if x1 = 1 compared to when 

x1 = 0. As shown in the right panel of Fig. 1, the predicted probability would be 

Φ − 1 + 1.5 × 1 = Φ 0.50 = 0.69. The regression coefficients determine the Z-score in 

parentheses and the Φ ⋅  converts this Z-score to a predicted probability based on the area 

under the curve to the left of the Z-score.

Similar to logistic regression, probit regression is nonlinear when converted to the 

probability scale. For instance, in the previous paragraph we saw that the predicted 

probability that y = 1 when x1 = 0 was Φ − 1 = 0.16 and the predicted probability that 

y = 1 when x1 = 1 was Φ 0.50 = 0.69, a difference of 53 percentage points. If x1 were equal 

to 2, the Z-score associated with the predicted probability of y = 1 would increase by 

another 1.5 points (the value of β1), making the predicted probability Φ 2.0 = 0.98. The 

difference in predicted probabilities from x1 = 1 to x1 = 2 is only 29 percentage points. 

Because probabilities are bounded between 0 and 1, linear changes on the Z-score scale do 

not correspond to linear changes on the probability scale. Although the model is linear with 

respect to the Z-score on the probit scale, it is nonlinear on the probability scale.

As will become relevant later, probit models can also be parameterized to model the 

probability that the outcome is 0 instead of 1 by multiplying the right-hand side 

of the model equation by −1. That is, Pr y = 0 ∣ x1 = Φ −β0 − β1x1 . In this case, −β0

is often referred to as the threshold (usually denoted by τ0) such that the threshold 

corresponds to the Z-score associated with the predicted probability that y = 0 when 

x1 = 0. To use the same coefficients as the earlier example such that τ0 = − β0 = 1
and β1 = 1.5, we can calculate the predicted probability that y = 0 when x1 = 0 by 

Φ τ0 − β1x1 = Φ 1 − 1.5 × 0 = Φ 1 = 0.84. This is represented by the white space under the 

curve in the left panel of Fig. 1. Similarly, the predicted probability of y = 0 when x1 = 1
would be Φ τ0 − β1x1 = Φ 1 − 1.5 × 1 = Φ − 0.50 = 0.31. This is represented by the white 

space under the curve in the right panel of Fig. 1. These values complement the values above 

and merely show how to reparametrize the model to recover the probability that the outcome 

is 0 rather than 1.

Thresholds and intercepts are related but serve slightly different purposes. In the binary 

case where there are only two response categories, the difference is minimal. However, 

differences are more pronounced with three or more response categories, which we will 

discuss later in the section on ordinal outcomes.
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An alternative conceptualization of probit models

Another way to think about the probit model is to imagine that there is an underlying 

normal distribution that only manifests into categorical responses (Agresti, 2012). In this 

way, the underlying nature of the variable changes imperceptibly but the realized values 

of a categorical variable only change once some threshold has been passed. From this 

perspective, the underlying normal distribution is the true interest and the categorical 

responses are simply an imprecise reflection of the underlying normal distribution (Long, 

1997, p. 116). The normal distribution is not just a link for computing predicted probabilities 

but instead is assumed to be an unobserved process that manifests categorical responses. For 

example, if participants are asked if they smoked a cigarette, the observed information may 

be “Yes” or “No”, but one could imagine a continuous (but harder to measure) underlying 

process like “motivation to smoke” or “nicotine withdrawal” driving this decision and 

participants will choose to smoke once some threshold on the underlying process has been 

exceeded.

Reconsidering Fig. 1, this would mean that the data only provide information on 0s and 1s 

even though the real process is continuous. Any person whose normal distribution value lies 

to the left of the threshold (the vertical dashed line) in the grey area of Fig. 1 responds as 

a “1” and anyone whose normal distribution value lies to the right of the threshold in the 

white area of Fig. 1 responds as a “0”. We do not see the normal distribution values in the 

data, we only see the 0s and 1s. Therefore, the observed categorical responses are a rough 

ordinal approximation of the more articulate - but unobserved - normal distribution. Of 

course, this perspective may not apply universally because some outcomes truly are discrete 

processes. For instance, it may make less sense to consider the outcome of a coin flip as 

having an underlying normal process dictating the result. Nonetheless, this perspective is 

often appropriate in behavioral research where complex - but unobserved or difficult to 

measure- processes drive discretely measured behavior.

This perspective is consistent with how the probit model was developed in toxicology by 

Bliss (1935), who studied pest death (a binary variable) as a function of pesticide dose. The 

vital functioning of an insect is actually a continuous process and the amount of pesticide 

consumed by an insect continuously changes vital functioning (e.g., consuming some 

pesticide can have detrimental but non-lethal effects like diminished organ functioning). 

However, it is not feasible to precisely gauge insect vital functioning, so the effect of 

pesticide consumption on vital functioning is most easily observable as a dichotomous 

process (i.e., alive vs. dead) based on whether some threshold has been crossed (i.e., a lethal 

dose of pesticide).

The assumption that a normal process underlies the manifest categorical variable is why 

categorical models are often stated to be a straightforward extension of continuous models in 

the intensive longitudinal literature. This latent underlying normal process can be modeled 

instead of the manifest categorical data that were collected from participants, which permits 

the principles of continuous outcomes to be applied, even if the manifest data are not 

themselves continuous. In other words, the latent normal process is substituted for the 

manifest categorical variable to replace the difficult aspects of modeling categorical data 

with the more tractable principles of modeling continuous data. As we discuss in more 
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detail shortly, assuming an underlying normal process facilitates the statistical aspects of 

the model because the normal process - even if latent - may be easier mathematically and 

computationally than an observed categorical variable. However, this affects substantive 

considerations because the coefficients and conclusions will pertain to the abstract concept 

of the unobserved, underlying normal process rather than the observed categorical data.

Although probit and logistic regression models can often be applied to the same data with 

similar results, a benefit of the probit model with Bayesian estimation (which is used for 

DSEM in Mplus) is that using Φ ⋅  as the link function makes computation with a Gibbs 

sampler much simpler with normal priors compared to logistic regression (e.g., Agresti & 

Hitchcock, 2005; Albert & Chib, 1993). This can make estimation with Bayesian Markov 

Chain Monte Carlo (MCMC) fast and efficient, even with categorical outcomes (Asparouhov 

& Muthén, 2021). As a result, as of Mplus Version 8.8 released in April 2022, DSEM 

with categorical outcomes can only be fit with a probit link function. However, other more 

general software may permit users to use a logit (or other) link function if interpretations 

provided on other link functions are preferred.

Motivating data

The motivating data are an intensive longitudinal study supported by the National Institutes 

of Health’s Science of Behavior Change initiative (Eisenberg et al., 2018; Nielsen et 

al., 2018; Scherer et al., 2022). Complete details about data collection and the research 

design are reported on the study’s dedicated page on ClinicalTrials.gov.1 To summarize 

key characteristics, one of the study’s focal populations was people with binge eating 

disorder. The study therefore sampled 50 overweight/obese adults 27 ≤ BMI ≤ 45 kg/m2

who met DSM- 5 criteria for binge eating disorder. All 50 participants had access to a 

mobile intervention app each day during a 28-day observation period and were asked to 

engage with the app to learn and apply techniques useful for modifying health behavior. 

The number of steps taken (as measured by pedometers) was collected daily for these 

participants as a measure of health behavior as was whether the participant engaged with the 

mobile intervention app each day of the study (i.e., intervention adherence is time-varying). 

Each morning, questions about participants’ feelings related to binge eating behavior were 

solicited (e.g., “On a scale of 1 to 10, how motivated are you to avoid binge eating today?”), 

and at the end of the day, questions about participants’ temptation related to binge eating 

behavior were also solicited (e.g., “Tempting food made it difficult for me to not binge eat 

today”).

In the sections that follow, we provide example analyses using this data. The first three 

examples use binary intervention adherence as the outcome variable. We start with the 

simplest case of a model with no covariates to cover the foundational aspects of a time-series 

model with categorical outcomes. Then, we extend the model to include a time-varying 

covariate to assess whether binge eating avoidance affects adherence (both within-person 

or between-person). In the third example, we discuss a model for outcomes that have 

systematic trends over time. Lastly, we discuss a model an ordinal outcome (“temptation”) 

1https://www.clinicaltrials.gov/ct2/show/NCT03774433?term=marsch&draw=2&rank=3.
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based on a single Likert response that includes a time-varying covariate. Each example 

discusses the statistical model, the Mplus code, and interpretation.

Example 1: Unconditional probit DSEM for a binary outcome

We start with an example of an N > 1 multilevel autoregressive probit model for a binary 

outcome. In the motivating data, the daily measure of intervention adherence takes values 

of 0 (no adherence) or 1 (adherence) and is measured 28 times per person over the course 

of the study. There is very little missing data on Adherence (0.1%) because failure to 

participate in the study on a particular day is coded as a 0 for non-adherence rather than 

missing. The only two instances of missing data (out of 1400 possible observations) were 

due to technical difficulties with the mobile application that precluded participants from 

signing in. This variable will serve as the outcome such that the main interest is the moment-

to-moment dynamics of adherence to the intervention. As some exploratory data analysis, 

the mean proportion of days where participants adhered to the intervention was 0.77. There 

was notable variability across people and the range of treatment adherence across all 50 

people was 0.07 to 1.00 with an interquartile range of [0.64, 0.96] and a median of 0.89. 

Figure 2 shows trace plots of intervention adherence for four participants with adherence 

rates near the mean.

Model equation and path diagram

The naïve approach to writing out a multilevel autoregressive probit model for binary 

time-series data would be

Pr Adℎereti = 1 = Φ αi + ϕiAdℎeret − 1, i

(2)

where the probability of adhering to the intervention at time t t = 1, …, 28  for person 

i i = 1, …, 50  is equal to the standard normal cumulative distribution function (the Φ
operator) of a function defined by a standard lag-1 autoregressive model with a person-

specific intercept for person i αi  plus the autoregressive effect ϕi  of adherence for the same 

person from the previous day. When specifying the model this way, Φ a1  would correspond 

to the predicted probability that person i adheres at time t if they did not adhere at time 

t − 1 (i.e., Adℎeret − 1, i = 0). The predicted probability that person i adheres at time t if they 

did adhere at time t − 1 (i.e., Adℎeret − 1, i = 1) would then be Φ a1 + φi . As in typical probit 

models, the idea is that predicted probabilities of adherence are determined through a Z
distribution. Though straightforward conceptually, setting up the model with Adℎeret − 1, i

uncentered and in its raw binary form renders the parameter estimates susceptible to bias and 

can conflate within-person and between-person processes (Asparouhov & Muthén, 2019; 

Hamaker & Grasman, 2015). That is, the difference between momentarily adhering and 

habitually adhering would not be distinguishable and these both effects would be combined 

into single, blended estimate (Hoffman, 2019).

With continuous outcomes, this issue can be addressed by latent centering the lagged 

predictor such that the person-specific intercept would be subtracted from the lagged 
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predictor (i.e., Adℎeret − 1, i − αi; Yaremych et al., 2022). This would rescale the lagged 

predictor such that 0 would indicate that the lagged predictor is equal to the person’s mean, 

positive values would indicate the lagged predictor is above the person’s mean, and negative 

values would indicate the value is below the person’s mean. This helps to isolate the within-

person effect because the person mean is factored out, leaving only momentary deviations 

from the person’s typical behavior. It also treats the person mean as a latent variable to 

account for possible measurement error or unreliability in the observed data (e.g., Lüdtke 

et al., 2008). Although straightforward to apply for continuous variables, this approach is 

problematic for categorical variables because the latent person mean (as captured by αi) is on 

a different scale than the lagged predictor. That is, Adℎeret − 1, i is on raw scale and can only 

take values of 0 or 1 whereas αi is a parameter on a Z-scale given that it appears after the link 

function.

Instead, the model can be reparametrized by working with the unobserved normal 

process underlying the binary Adherence variable, which we refer to as y*. With this 

parameterization, values for Adherence would manifest depending on y* such that

Adℎereti =
1 if yti

* > 0
0 if yti

* ≤ 0

(3)

Using this connection, the multilevel autoregressive probit model - with the lagged predictor 

centered - could be written as,

Pr Adℎereti = 1 = Φ yti
*

yti
* = yti

* w + αi
yti

* w = ϕiyt − 1, i
* w + eti

(4a)

The difference between Eq. (2) and Eq. (4a) is that Eq. (4a) is modeling the underlying 

normal process of adherence y*  rather than directly modeling raw binary Adherence. The 

linear predictor in the argument of Φ ⋅  in Eq. (4a) therefore has four changes:

1. The underlying normal process y*  is decomposed into a latent person mean 

αi  that captures habitual behavior and a within-person component (yti
* w ) that 

captures momentary deviations from the latent person mean.

2. The lagged predictor (Adℎeret − 1, i) is replaced by yt − 1, i
* w . This allows the lagged 

predictor to be latent-centered such that yti
* w = yti

* − αi by rearranging the second 

expression in Eq. (4a) because the lagged predictor and the latent mean are now 

on the same scale.

3. ϕi becomes a person-specific tetrachoric autocorrelation (Asparouhov & Muthén, 

2019), which is a correlation in the underlying normal processes of two binary 

variables rather than a correlation between the raw binary variables themselves 

(e.g., a phi correlation).
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4. The linear predictor now has an error term, eti. For identifiability, a typical 

assumption for eti is that it follows a standard normal distribution such that 

eti ∼ N 0, 1 .

Equation (4a) is the within-person equation, which models moment-to-moment dynamics. 

Multilevel autoregressive models also have a between-person model for associations among 

variables that are constant over time (i.e., that are time-invariant). Every parameter with an i
subscript in the within-person model becomes an outcome in the between-person model. The 

between-person model associated with Eq. (4a) could be written as,

αi = − τ0 + u0i
ϕi = γ10 + u1i
u0i

u1i
∼ N 0

0 ,
σ00

σ10 σ11

(4b)

The first expression is a little unorthodox because Mplus uses a latent intercept α  but 

defines the fixed effect in terms of a threshold τ .2 The threshold parameterization is useful 

for outcomes with three or more categories (discussed in detail later), which makes the 

threshold parameterization more generalizable. However, it can sometimes be unintuitive 

with binary outcomes, so it is important to remember this distinction where interpreting 

Mplus output for a model with binary outcomes.

With this in mind, the person-specific intercept αi  is modeled by the opposite of the 

fixed effect for the threshold −τ0  to capture the average intercept across people, plus a 

person-specific random effect u0i  that captures the deviation of person i’s intercept from 

the average intercept. The second expression shows that the person-specific tetrachoric 

autocorrelation ϕi  is equal to a fixed effect γ10  that represents the average tetrachoric 

autocorrelation across all people plus a person-specific random effect for tetrachoric 

autocorrelation u1i  that captures the deviation of person i’s tetrachoric autocorrelation 

from the overall average tetrachoric autocorrelation. The last expression specifies the 

distributional assumptions for the random effects, which states that the person-specific 

intercepts and tetrachoric autocorrelations are distributed multivariate normal with a mean 

vector of 0 and a covariance matrix Σ. The σ00 term represents the variance of the 

person-specific intercepts, σ11 represents the variance of the person-specific tetrachoric 

autocorrelations, and σ10 represents the covariance between the random intercepts and 

random tetrachoric autocorrelations (e.g., to assess whether there is a systematic relationship 

between where person’s baseline probability of adhering and the strength of the person’s 

tetrachoric autocorrelation).

Equations (4a) and (4b) can be combined into one complete multilevel model such that,

2We thank Linda Muthén for clarifying and confirming this.
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Latent − Decomposition
Pr Adℎereti = 1 = Φ yti

*

yti
* = yti

* w + αi

Within − Person yti
* w = ϕiyt − 1, i

* w + eti

eti ∼ N 0, 1

Between − Person
αi = − τ0 + u0i

ϕi = γ10 + u1i

ui ∼ N 0, Σ

(5)

The first set of expressions clarifies that there is an assumed latent normal process yti
*

underlying the binary outcome Adhere and that this underlying process in made up 

of a within-person component (yti
* w ) capturing momentary states and a between-person 

component αi  capturing habitual traits. The second set of expressions shows the within-

person model for the momentary dynamics. The third set of expressions then show a 

top-down approach such that the average associations are explicitly modeled with fixed 

effects (captured by the τ and γ terms) and that there is between-person variability (captured 

by the Σ matrix) to allow heterogeneity in the parameter values across people.

A path diagram for the model in Eq. (5) is shown in Fig. 3. Rectangles indicate observed 

variables, circles represent latent variables, and triangles represent constants. The left panel 

shows the two aspects of the latent decomposition. First, a latent normal process is assumed 

to underlie the binary Adherence variable, which is shown by the wavy line between yti
*

and Adℎereti (following the convention from de Boeck & Wilson, 2004). Second, a latent 

decomposition is then performed to partition yti
* into within-person (yti

* w ) and between-person 

αi  components. The between-person component, αi, is the latent person mean of yti
* and 

captures the trait-level information about Adherence (technically, the underlying normal 

process that manifests as Adherence) and only has an i subscript because it is time-invariant. 

The within-person component is the deviation of yti
* from the latent person mean, which 

represents the state-level information about Adherence (again, technically the underlying 

normally process that manifests as Adherence).

The top panel of Fig. 3 shows the within-person model. The within-person component of 

the underlying normal process yti
* w  is autoregressed on itself at the previous timepoint yt − 1, i

* w . 

The intercept of yti
* w  is fixed to zero because, on average, yti

* is expected to be at the person 

mean (i.e., the expected value of yti
* − αi is zero). The autocorrelation path has a circle placed 

over it (following the notational convention from Curran & Bauer, 2007), which indicates 

that the path does not have a single value but instead is a latent variable with a distribution 

of values that vary across people. This latent variable - along with the latent person mean αi – 

then become outcomes in the between-person model (the bottom panel of Fig. 3), where they 

have an average value across all people (−τ0 and γ10), between-person variances (σ00 and σ11), 

and a between-person covariance σ10 .
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Mplus code

The annotated code for fitting the full model in Eq. (5) in Mplus is shown below. Latent 

centering through the unobserved normal process of the binary variable is the default 

approach in Mplus, so the code is more compact than the explanation above. Text appearing 

after an exclamation point (!) is a comment that describes what each line does but is not 

needed to successfully run the code. In describing this example, we also will overview the 

basic setup of a DSEM model in Mplus.

The VARIABLE statement specifies that Adherence is CATEGORICAL, the TINTERVAL 

option declares that we expect participants to be observed for each 1-unit interval of day (a 

Kalman filter is applied whenever no observation is observed to handle unequal intervals; if 

data were collected more or less frequently, the number in parentheses would change. This 

value is also sensitive to how time is coded.), the CLUSTER option specifies that repeated 

measures with the same id variable belong to the same person, the MISS ING option 

specifies that missing data are represented by a period, and the LAGGED option specifies 

that we want Mplus to create a lag-1 predictor for Adherence. In the ANALYSIS statement, 

we identify that the model has a two-level structure (day clustered in id) with random 

slopes using TYPE = TWOLEVEVEL RANDOM. DSEM analyses can only be estimated with 

Bayesian MCMC and we specify that the algorithm should run for a minimum of 5000 

iterations (maximum iterations can be changed by including a number in the BITERATIONS 

option outside of parentheses, the default is 50,000). More details on Bayesian estimation in 

Mplus are provided in the next section.

CATEGORICAL=adhere; !specify variables that are categorical;

TINTERVAL = day(1); !specify the largest increment of time that can have 

only one observation;

CLUSTER= id; !repeated measures are clustered within ID;

MISSING ARE .; !identify missing data code;

LAGGED= adhere(1); !create lag-1 predictor adherence;

ANALYSIS:

TYPE= TWOLEVEL RANDOM; !Two-Level Model with random effects;

ESTIMATOR=BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS= (5000); !Run at least 5000 iterations of the MCMC algorithm;

MODEL:

%WITHIN%

Phi|adhere ON adhere&1;

!Adherence yesterday is related to Adherence today, phi_i;

!The ampersand (“&”) in Mplus is a keyword for a lagged predictor;

!”phi|” adds a random effect so this effect is allowed to vary across people;

%BETWEEN%

adhere; !between-person variance in adherence intercept, sigma_00; 

phi; ! between-person variance in tetrachoric autocorrelation, sigma_11; 

phi WITH adhere; !between-person covariance of intercept and 

autocorrelation, sigma_10;
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[phi]; fixed effect of autocorrelation, gamma_10;

[adhere$1]; fixed effect of threshold tau_0;

OUTPUT: STDYX;

The MODEL statement outlines the desired associations between variables. For an N > 1
DSEM, there are two parts of the MODEL statement: ∘/∘ WITHIN∘ corresponds to the within-

person model (i.e., Eq. (4a) and ∘BETWEEN÷ corresponds to the between-person model 

(i.e., Eq. 4b). An ampersand (&) following a variable name is used to denote the lag of 

the variable. So adhere ON adhere&1 specifies that Adherence is regressed on lag-1 

Adherence. To allow paths to vary across people, a vertical pipe (I) is placed before the path 

with an arbitrary label to name the latent variable being assigned to the path. For instance, 

phi ∣ adhere ON adhere & 1 specifies that the lag-1 autoregression is being assigned 

a latent variable named “phi” and the value of this path is a distribution rather than a single 

value. By default, Mplus will include random intercepts for outcomes, so only random 

effects for slopes need to follow this convention. The default in Mplus Version 8.1 or later 

is also to latent center any predictors not in a WITHIN or BETWEEN option in the VARIABLE 

statement, so the lagged predictor will automatically be latent centered in this code. Also 

note that the label for the raw binary variable is used in the code despite the fact that the 

model operates on the normal process assumed to underlie the binary variable. Mplus will 

perform the necessary transformation behind the scenes and there is no code necessary to 

specify the model this way once the variable is included in the CATEGORICAL statement.

In the between-person model, fixed effects are placed in square brackets whereas variances 

and covariances are specified by plain variable names. Mplus uses the outcome variable 

in the between-person model to represent the intercept variance. The fixed effect for the 

intercept is parameterized in terms of the threshold, so [adhere $1] corresponds to the 

threshold fixed effect (which needs to be multiplied by −1 to convert it back to the intercept). 

The dollar sign “$” in the square brackets is an Mplus keyword corresponding to which 

threshold to estimate. With ordinal outcomes, there are multiple thresholds to consider and 

different numbers may appear here. In the simpler case of binary outcomes, there is only a 

single threshold to differentiates 0 s from 1s, so a 1 will always appear after the dollar sign 

for binary outcomes.

Model fitting

The code in the previous section was run in Mplus Version 8.7 to fit the model in Eq. (5) 

to the motivating data. For readers looking for a brief overview of Bayesian MCMC with 

DSEM, we suggest p. 614 of McNeish and Hamaker (2020). This code uses the Mplus 
default settings of two chains using the potential scale reduction method (Gelman & Rubin, 

1992) with a stringent threshold of R̂ ≤ 1.10 for all parameters (Brooks & Gelman, 1998, 

p. 442) to determine convergence. The code sets a minimum of 5000 iterations before the 

chains are allowed to stop, which is not an Mplus default and is explicitly set in the code. 

By default, Mplus discards the first half of iterations as burn-in and posteriors are based 

on the second half of iterations. Prior distributions were set to the Mplus defaults, which 

are N 0, ∞  for the autocorrelation fixed effect, N 0, 5  for the threshold fixed effect, and 
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W−1 I2, 3  for the random effect covariance matrix. Mplus output for each example analysis 

is provided on the Open Science Framework page for this project. 3

W−1 is the inverse Wishart distribution, which is a multivariate distribution applied to all 

elements of a matrix simultaneously as opposed to placing priors on each element of the 

matrix individually. The benefit of the inverse Wishart prior is that its support is restricted 

to positive definite matrices, which avoids potential nonpositive definite issues that can 

arise with placing priors on individual elements (e.g., all covariance matrices are square 

and symmetric but not all square symmetric matrices are covariance matrices). Using an 

inverse Wishart whose first argument is an identity matrix and whose second argument (the 

degrees of freedom) is the dimension of the matrix plus one yields a marginal distribution 

for random effect correlations that is uniform over [−1, 1], which is uninformative and gives 

equal consideration to any admissible random effect correlation (Asparouhov & Muthén, 

2010).

Bayesian estimation is preferred for DSEM for computational purposes because maximum 

likelihood and other frequentist methods often encounter convergence issues or are 

intractable with many latent variables (Asparouhov et al., 2018). This reflects a “Bayes 

as Computational Frequentism” approach whereby computational advantages of MCMC 

motivate Bayesian methods rather than a philosophical Bayesian approach where subjective 

beliefs are explicitly built into the model (Levy & McNeish, 2022). Because the motivation 

for Bayesian methods is computationally motivated rather than philosophically motivated, 

the interpretation of the results minimally deviates from a model estimated with frequentist 

methods and the Mplus output changes little when the estimation method is changed.

Results and interpretation

The posterior distribution medians and 95% credible intervals for the unconditional probit 

DSEM model are shown in Table 1. Throughout this paper we refer to the posterior 

distribution medians as “estimates” to correspond to how Mplus labels the output but note 

that Bayesian MCMC provides an entire distribution of values for each parameter (which 

can be summarized by a measure of central tendency like the median) rather than a single 

point estimate for each parameter as with a frequentist estimator like maximum likelihood. 

Bayesian MCMC also provides credible intervals (CrI) rather than confidence intervals (CI) 

provided in frequentist analyses. The difference is that the goal of CIs is to determine limits 

within which the true population value would be found a certain percentage of the time 

if the study were infinitely repeated whereas CrIs summarize uncertainty in the parameter 

estimates for the given data and priors. CIs and CrIs both measure uncertainty and may 

be similar, but can differ non-trivially because they are quantifying uncertainty in different 

ways.

The first row in Table 1 shows that the fixed effect for the threshold is τ0 = − 1.28. Given 

the latent centering, probit assumptions (i.e., the left panel of Fig. 3), and Mplus intercept 

parameterization; the interpretation of the output can be a little nuanced. Based on our 

3The Open Science Framework project link is https://osf.io/bx72m
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previous discussion of probit model, the intuitive interpretation would be to use τ0 to 

calculate the average predicted probability of adherence such that Φ −τ0 = Φ 1.28 = 0.90. 

However, it is important to note that DSEM in Mplus uses a theta parameterization for probit 

models, which means that the within-person residual variance is constrained to 1 but that 

there is no set constraint on the variance of the underlying process y*. This is relevant in 

DSEM because there are almost always predictor variables and between-person variances. 

So, to the extent that predictors explain variance in the outcome and there is non-null 

between-person variance, the variance of y* will be greater than 1. If the variance of y* > 1, 

then y* will not necessarily follow a standard normal distribution, which has ramifications 

for calculating predicted probabilities because Φ ⋅  is only appropriate for standard normal 

distributions.

Nonetheless, there is a straightforward solution - namely, Φ ⋅  can still be used but its 

argument (the number within parentheses) needs to be divided by the standard deviation 

y*, denoted SD y* . Of course, the next question is how to calculate SD y* . The standard 

deviation of y* is V ar y* w + V ar y* b , the square root of the sum of the within-person 

and between-person underlying process variances. These numbers do not appear directly 

in the Mplus output, but they can be obtained without too much effort. The easiest way 

to calculate V ar(y* w ) from the Mplus output is V ar(y* w ) = 1/ 1 − Rw
2  where Rw

2  is the 

within-person R2 provided at the bottom of the standardized estimates in Mplus (the 

standardized estimates must be requested in the OUTPUT statement). For V ar(y* b ), the 

formula is similar but substitutes the intercept variance estimate in the numerator such that 

V ar y* b = σ00/ 1 − Rb
2  where Rb

2 is the between-person R2 provided at the bottom of the 

standardized estimates in Mplus. If there are no between-person predictors, Mplus will not 

report Rb
2 and this formula reduces to V ar y* b = σ00. Together, this will account for all 

explained and unexplained sources of variance for y* so that predicted probabilities can be 

accurately calculated.

In this example, Rw
2 = 0.253, so V ar(y* w ) = 1/ 1 − 0.253 = 1.34 and 

there are no between-person predictors, so V ar y* b = 0.91. Therefore, 

SD y* = V ar y* w + V ar y* b = 1.34 + . 91 = 1.50. Finally, the interpretation of the 

threshold would be: for a person whose underlying normal process was at their person 

mean at time t − 1 (i.e., yt − 1, i
* w = 0), the average predicted probability of adherence is 

Φ −τ0/SD y* = Φ 1.28/1.50 = Φ 0.85 = 1.50. This value is near the descriptive mean 

adherence proportion of 0.77. Essentially, latent centering results in the intercept referring 

to when the person was at their typical value for the underlying process of Adherence 

at time t − 1 rather than if Adherence itself was 0 at time t − 1. Note that the predicted 

probability calculation multiplies τ0 by −1 because the interest is modeling the probability 

that Adherence =1, which requires the intercept rather than the threshold.

There are no p values in Bayesian models 4, but the Bayesian analog of the frequentist idea 

of statistical significance can be determined from inspecting whether the 95%CrI contains 

0. On the probit scale, a 0 value for the intercept implies a predicted probability of 50%. 
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The 95%CrI for the threshold is [−1.69,−0.87], meaning that the predicted probability of 

Adherence for a person where yt − 1, i
* w = 0 is different from 50%. The 95%CrI for the intercept 

(rather than the threshold) could be determined by reversing the sign and order the upper and 

lower limits: [0.87, 1.69].

There is large between-person variability in the intercept - the estimate is 0.91 and the 

95%CrI is [0.36,1.78], which clearly does not contain 0. Note that using an inverse Wishart 

prior distribution prohibits random effect variances from being negative, so assessing 

whether 0 is within the CrI is less objective for variance parameters because 0 will always be 

outside the CrI (e.g., McNeish & Hamaker, 2020, p. 614). Nonetheless, the lower bound of 

the CrI remains far from zero, so we are comfortable concluding that the intercept has non-

negligible between-person variance despite the diminished utility of using CrIs for inference 

in this situation. Assuming normality of the random effects (as in Eq. 5) implies that most 

person-specific intercepts across people will fall between 1.28 ± 1.96 0.91 = − 0.59, 3.15 . 

Again, these intercept values are on the probit scale, so we can convert them to predicted 

probabilities by evaluating the standard normal cumulative distribution function at these 

values, Φ 3.15/1.50 = 0.98 and Φ − 0.59/1.50 = 0.35, which corresponds to the descriptives 

whereby some people nearly always adhered to the intervention and others rarely did.

The autocorrelation fixed effect is 0.32 and zero is not within the CrI, meaning that there 

is a non-null autocorrelation between the underlying normal process of Adherence at time 

t and time t − 1. Additionally, note that the between-person variance in the tetrachoric 

autocorrelation is non-null and that zero is well outside the 95% CrI. This indicates that 

there is heterogeneity in the strength of the autocorrelation between the underlying process 

of Adherence at time t and time t − 1 across people. The random effect covariance between 

intercepts and tetrachoric autocorrelation is null, indicating that there does not appear 

to be a systematic relationship between the person-specific intercepts and person-specific 

tetrachoric autocorrelations.

Example 2: Probit DSEM for a binary outcome with a continuous covariate

The previous section covered the basics of DSEM in Mplus for an unconditional model 

with a binary outcome and no covariates. Here, we cover considerations when a continuous 

covariate is included to predict the outcome. In the motivating data, each morning prior 

to participants having a chance to adhere to the intervention, participants were also asked 

on a 0–10 scale “how motivated are you to avoid binge eating today” where 10 indicated 

being the most motivated M = 7.38, SD = 2.44 . We can include this variable in the model 

to assess whether motivation to avoid binge eating predicts whether participants will adhere 

to the intervention. The covariate was measured at each day, so it is a time-varying covariate 

rather than a time-invariant covariant (the latter would be a variable that differs across 

people but is constant across time for a particular person). The distinction between time-

varying and time-invariant covariates is based upon the frequency of data collection rather 

4Mplus does provide a column with a one-tailed p value in its default output. However, the interpretation of this value does not 
coincide with the interpretation provided by a traditional frequentist p value. The Bayesian p value reported in Mplus corresponds to 
the proportion of the posterior distribution on the opposite side of 0 than the posterior summary (the “Estimate” column in Mplus). For 
example, a value of 0.03 for a positive estimate would mean that 3% of the posterior distribution is below 0 (Muthén, 2010 p. 7).
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than the variable itself. For instance, binge eating avoidance could be time-invariant if it 

were only collected once at baseline as opposed to being collected every day, as in the 

motivating study.

In multilevel time-series analysis (like DSEM), it is important to person-mean center 

time-varying covariates to disaggregate temporary states from stable traits. For example, 

imagine someone reports a “9” value for binge eating avoidance at day 2. Solely from this 

information, we could not determine if this person was generally avoidant and was reporting 

typical behavior or whether this person is reporting much higher avoidance relative to their 

typical behavior. Raw variable values conflate the state- and the trait-level information of a 

behavior into a single value (Hoffman & Walters, 2022). Person-mean centering can be used 

to calculate the mean of binge eating avoidance across all timepoints for each person as an 

estimate of trait-level avoidance. Each day’s difference from the person mean then provides 

a state-level estimate of avoidance relative to the person’s typical level. This changes the 

scaling of the time-varying covariate such that “0” means the person is at their typical value 

rather than at the lowest value on the scale. When person-mean centering covariates in 

multilevel time-series analysis, users have two options for how to calculate the person-mean 

- (a) observed-mean center around the descriptive mean or (b) latent-mean center treating 

the trait-level component as a latent variable. By default, Mplus will latent-mean center 

covariates to accommodate measurement error, unreliability, or missing data.

Model equations and path diagram

When extending Eq. (5) to include a covariate, the model can be written as

Latent‐Decomposition
Pr Adℎereti = 1 = Φ yti

*

yti
* = yti

* w + αi

BEAti = BEAti
w + BEAi

b

Within‐ Person
yti

* w = ϕiyt − 1, i
* w + βiBEAti

w + eti

BEAti
w ∼ N 0, ω

eti ∼ N 0, 1

Between‐Person

αi = − τ0 + γ01BEAi
b + u0i

ϕi = γ10 + u1i

βi = γ20 + u2i

BEAi
b = γ30 + u3i

u0i

u1i

u2i

u3i

∼ N

0
0
0
0

,

σ00

σ10 σ11

σ20 σ21 σ22

0 0 0 σ33

(6)

The latent decomposition in Eq. (6) includes the two expressions in Eq. (5) and now 

also includes the continuous covariate binge eating avoidance (abbreviated BEA) because 

the model will disaggregate its effect into within-person and between-person components. 

Similar to Eq. (5), BEAti
w  represents the state component of binge eating avoidance whereas 

BEAi
b  represents the trait component. The within-person model in the second set of 

expressions in Eq. (6) is similar to Eq. (5) except that there is now a new effect βi that 
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captures how binge eating avoidance affects the underlying process of Adherence. Note that 

binge eating avoidance has a w superscript to indicate that it is the within-person component 

of binge eating avoidance that has been centered around its latent mean (i.e., the third 

expression could be rearranged such that BEAti
w = BEAti − BEAi

b ). Because binge eating 

avoidance is continuous, the within-person variance around the latent mean is quantified by 

ω.

The third set of expressions corresponds to between-person relationships. First, note that 

BEAi
b  has its own equation in the between-person model because the person-mean is 

modeled as a latent variable (with a mean γ30 and a variance σ33) rather than being a 

descriptive calculation from the data. Also note that BEAi
b  also appears as a predictor of 

the intercept in the αi equation, meaning that the baseline probability of adherence is being 

modeled as a function of the person’s trait-level binge eating avoidance. This also means 

that −τ0 is conditional and corresponds to when BEAi
b = 0.

Including binge eating avoidance in the within-person and between-person models allows 

the effect to be fully disaggregated so that the model can differentiate the effects of being 

momentarily avoidant and being habitually avoidant. The momentary effect of binge eating 

avoidance βi  is modeled as person-specific, meaning that the effect is allowed to be 

different across people. The random effect covariances of αi and BEAi
b  are constrained to 0 

in Eq. (6) to avoid redundancy with parameters in the model (e.g., BEAi
b  predicts αi, so u3i

should not also covary with the random effect for the intercept u0i).5 All covariances between 

other random effects are estimated. Do note that random effect covariances are the least 

stable parameters to estimate (Kretzschmar & Gignac, 2019) and may present difficulties 

with modest samples or as models become more complicated.

Figure 4 shows a path diagram for the model in Eq. (6). The left panel shows the latent 

decomposition of Adherence (through its underlying normal process, y*) and binge eating 

avoidance. All within-person components are constrained to have a mean of 0 because they 

are centered around the latent person mean (i.e., the average across all state components 

equals the trait component). The within-person component of binge eating avoidance is a 

predictor of the underlying process of Adherence, and the effect is modeled with a latent 

variable because the value of this path varies across people. 6 In the between-person model, 

the latent mean of binge eating avoidance predicts the person-specific intercept.

5Only the covariance between the intercept of the outcome and the trait-like component of the covariate BEAi
b  must be constrained 

to 0. The other covariances involving BEAi
b  could theoretically be estimated, but the full covariance would no longer be block 

diagonal, which is not supported by the Gibbs sampler in Mplus (Asparouhov & Muthén, 2010). A random walk algorithm 
suggested by Chib and Greenberg (1998) can support arbitrary covariance structures and can be implemented in Mplus by specifying 
ALGORITHM=GIBBS(RW). This algorithm does not support multivariate priors like inverse Wishart and can be less efcient that 
the default Gibbs sampler. When we applied this method, there was poor mixing even with millions of iterations, so we elected to use 
the Mplus default sampler without estimating these two covariances.
6This model considers binge eating avoidance as a contemporaneous efect of Adherence such that the covariate collected at time t 
predicts an outcome also collected at time t. This was done because the covariate was collected before the outcome on each day, so 
there is no ambiguity about temporal precedence. However, covariates can also be lagged efects if the hypothesized effect is thought to 
take more time to unfold (e.g., binge eating avoidance yesterday predicts Adherence today) or to delineate between the cause and efect 
more clearly if one variable was not necessarily collected frst within time t. In such case, autoregression in the covariate may be added 
to the model.
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Mplus code and model fitting

The annotated code for fitting the conditional model in Eq. (6) is shown below. The code 

is similar to the code presented in Example 1 but has a few notable differences. First, the 

within-person model includes a second random slope for the effect of within-person binge 

eating avoidance on Adherence. Because bea is not included in a WITHIN option in the 

VARIABLE statement, it will automatically be latent centered. In the between-person portion 

of the MODEL statement, the latent person mean of binge eating avoidance predicts the 

person-specific intercept. The model was fit in Mplus 8.7 using the same options described 

in the previous example.

Results and interpretation

The posterior medians and the 95% CrIs for the model are shown in Table 2. In this 

section, we focus on parts of the model that are new or have changed once the binge eating 

avoidance covariate was added to the model. The binge eating avoidance latent mean γ30  is 

7.22, which means that the average person’s mean of binge eating avoidance is 7.22 (on the 

original 1–10 scale of the outcome). There is variability in the latent person means as noted 

by the large variance σ33 = 3.06 , meaning that different people have different trait-level 

binge eating avoidance.

VARIABLE:

USEVARS ARE adhere bea

CATEGORICAL=adhere ; !specify variables that are categorical;

TINTERVAL = day(1); !specify the largest increment of time that can have 

only one observation;

CLUSTER= id; !repeated measures are clustered within ID;

MISSING ARE .; !identify missing data code;

LAGGED= adhere(1); !create lag-1 predictor adherence;

ANALYSIS:

TYPE= TWOLEVEL RANDOM; !Two-Level Model with random effects;

ESTIMATOR=BAYES;!Lagged variables can only be estimated with Bayes in Mplus; 

BITERATIONS= (5000); !Run at least 5000 iterations of the MCMC algorithm;

MODEL:

%WITHIN%

phi|adhere ON adhere&1;

!Adherence yesterday predicts Adherence today, phi_i;

!”phi|” adds a random effect so this effect is allowed to vary across people;

beta|adhere on bea; !BEA predicts Adherence at the same day, beta_i;

!”beta|” gives this path a random effect so it is allowed to vary across 

people;

%BETWEEN%

adhere; !between-person variance in adherence intercept, sigma_00; 

phi; ! between-person variance in autoregreesion, sigma_11; 

beta; !between-person variance of BEA effect, sigma_22; 
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bea; !between-person variance of BEA latent mean, sigma_33;

adhere phi WITH adhere phi beta ; !between-person random effect covariances, 

off-diagonal sigma elements;

[adhere$1]; !fixed effect of threshold, tau_0);

[phi]; !fixed effect of autoregression, gamma_10;

[beta]; !fixed effect of within-person BEA effect, gamma_20;

[BEA]; !intercept for latent mean of BEA (the mean of the person means), 

gamma_30;

adhere on bea; !fixed effect of BEA latent mean on adherence intercept, 

gamma_01;

OUTPUT: STDYX;

The effect of latent centered binge eating avoidance in the within-person model γ20

corresponds to the change in the predicted probability of adherence when a person 

is momentarily one point above the person mean (a 1-point increase has the same 

meaning as it did on the original 0–10 scale). This estimate is 0.06 but zero is 

within the CrI 95% CrI = − 0.07, 0.19 , meaning that moment-to-moment changes in 

reported binge eating avoidance do not seem to meaningfully affect whether a person 

adheres to the intervention, on average. However, this effect varies across people 

σ22 = 0.08, 95% CrI = 0.04, 0.15 , so it is possible that momentarily higher binge eating 

avoidance does affect the probability of adherence for some people.

If we wanted to inspect the within-person effect of binge eating avoidance for each person, 

we can create a distribution of plausible values for each person (Asparouhov & Muthén, 

2010). This is similar to factor scoring a latent variable in a frequentist setting whereby a 

value of the latent variable is predicted for each person. However, consistent with Bayesian 

philosophy, an entire distribution of possible factor scores is predicted (e.g., Rubin, 1996). 

This essentially treats the latent variable as a big multiple imputation problem where the 

latent variable is missing for all people (Enders, 2010; Mislevy & Sheehan, 1989). In Mplus, 

a dataset of plausible values can be created by adding the following line of code to the input 

file,

SAVEDATA: FILE IS scores.dat;

SAVE ARE FSCORES (200);

This will create a dataset called “scores” (the name is arbitrary and can be changed) in 

the same folder as the input file (a path directory can also be specified to save the file 

elsewhere). To that dataset, Mplus will save the mean, median, standard deviation, and 2.5 

and 97.5 percentile of the distribution of plausible values for each person. The number in 

parentheses is the number of plausible values to create for each latent variable; we use 200 

here and suggest using at least 100 plausible values. Increasing this number will increase the 

precision of the results, but the tradeoff is higher computational time. From this information, 

researchers can assess whether 0 is within the 95% CrI (formed by the 2.5 and 97.5 

percentiles) to determine if the effect is non-null for each person. This information can be 
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summarized in a caterpillar plot as in Fig. 5 below. We can see that the within-person binge 

eating avoidance effect is mostly null across the sample but there are four people in the data 

where the effect appears to be positive and non-null (though this may just be chance). If 

heterogeneity in this effect were a research interest, time-invariant predictors could be added 

to the βi equation in the between-person model to explain the source of the heterogeneity.

If it is more desirable to plot the standardized values in a caterpillar plot, the within-person 

standardized estimates (as recommended by Schuurman et al., 2016) can be requested. 

Within-person standardization first standardizes coefficients for each person using the 

person-specific variances of the time-varying covariate and the outcome and then takes the 

mean across all values of all people to arrive at a single standardized value. The following 

Mplus code at the end of the input file will output these standardized values,

OUTPUT: STDYX; 

SAVEDATA: STDRESULTS ARE stand.dat; 

This will create a dataset called “stand” (the name is arbitrary and can be changed) in 

the same folder as the input file (a path directory can also be specified to save the file 

elsewhere) with estimates and credible intervals for each person. For each person in the 

data, this file will have multiple rows – one for each within-person standardized effect in the 

within-person model and one for the R2 of each within-person outcome. For the model in 

Eq. (6), this results in five rows per person – three within-person effects (ϕi, βi, and ω) and 

two within-person R2 values (Adhere and BEA). We do not report the caterpillar plot for the 

standardized effect because it largely mirrors Fig. 5.

Because we disaggregated binge eating avoidance, in addition to the within-person 

momentary effect, we also have the between-person effect to assess whether people who 

are habitually avoidant have different probabilities of intervention adherence. This is 

captured by γ01, which is 0.23 and zero is not in the CrI 95% CrI = 0.01, 0.43 . The positive 

coefficient means that people who have higher trait-level values of binge eating avoidance 

are predicted to have a higher probability of adhering to the intervention.

Recall that probit models are linear in the underlying normal process associated with 

probabilities, but are nonlinear in the probability itself. Therefore, the intercept (and 

values of other covariates if there are more than one covariate) need to be included to 

accurately capture how changes in the underlying process change the predicted probability. 

For instance, the interpretation of this coefficient would not be that a 1 -unit increase in the 

latent mean of binge eating avoidance predicts an increase in the probability of adhere of 

Φ γ01 = Φ 0.23 = 0.59. Instead, the proper interpretation of a one-unit change in the latent 

mean of binge eating avoidance would depend on the value of binge eating avoidance 

because changes in probabilities are nonlinear.

The fixed effect for the intercept is −τ0 = − 0.25, Rw
2 = 0.353, Rb

2 = 0.144, and σ00 = 0.94; 

meaning that SD y* = 1.55 + 1.10 = 1.63 and the predicted probability of adherence is 
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Φ − 0.25/1.63 = 0.44, which falls well below the descriptive adherence probability of 0.77. 

This discrepancy is due to the fixed effect being conditional on the person mean being 

0 whereas the average is closer to 7. Table 3 shows the predicted probabilities based on 

different person mean values of binge eating avoidance using the estimates in Table 2. 

A 1-point change in the person mean roughly equates to a 5% increase in the predicted 

probability for most of the scale but the increase tapers off towards the upper extreme. Note 

that when BEAi
b  is at 7 and near the sample average, the predicted probability of adherence 

is 0.79 and near the sample average of 0.77. Given that the between-person effect of binge 

eating avoidance is non-null, there is a noticeable change in the predicted probability of 

adherence as BEAi
b  changes. Overall, the model implies that increases in trait-level binge 

eating avoidance – but not increases in momentary state-level changes in binge eating 

avoidance – are related to higher intervention adherence.

Example 3: Probit residual DSEM for a binary outcome with a time trend

As noted at the beginning of this paper, autoregressive models assume stationarity which 

requires that the expected value does not systematically increase or decrease over time. 

In the motivating data, a violation of stationarity may occur if, for instance, people 

systematically adhered to the intervention less at the end of the study because they grew 

tired of participating. Systematic time trends (e.g., linear increases or decreases, cyclical 

changes like day of the week or time of day) in the raw outcome do not necessarily preclude 

using autoregressive models entirely because the assumption can still be satisfied as long as 

time trends are explicitly modeled.

Residual DSEM (RDSEM; Asparouhov et al., 2017) is one such model that can incorporate 

time trends for intensive longitudinal data. In an RDSEM, the autoregression occurs in the 

residuals of the outcome after accounting for a time trend rather than autoregressing the 

variable itself (Asparouhov & Muthén, 2020, 2022a). The location of the autoregression is 

moved to the residuals because– after accounting for systematic trends related to time – 

they are independent of systematic time trends. In other words, including time as a predictor 

produces detrended residuals, as long as the time trend has been properly modeled. This 

effectively relocates the stationarity assumption from the variable to the residuals. Therefore, 

the residuals can satisfy stationarity assumptions, even in the presence of a time trend in the 

variable.

In the context of the motivating data, the top panel of Fig. 6 shows a plot of the raw 

proportion of participants adhering to the intervention across the 28 days of the study. 

The grey dashed horizontal line is the mean across all days and the black line is a linear 

trend in the proportions. If the series were stationary and mean reverting, the solid black 

and dashed grey lines would overlap. The trend is not overwhelming, but the solid black 

line is discernibly different from the horizontal grey dashed line, so it may be worth 

considering a model that autoregresses detrended residuals to better adhere to stationarity. 

The bottom panel of Fig. 6 shows a plot of the detrended proportions with the linear effect 

of time removed. These data look more convincingly mean- reverting such that there are no 

systematic increases or decreases and the black and grey lines completely overlap. As an 
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informal graphical explanation, detrending essentially rotates the entire data series in the top 

panel counterclockwise until the black line and grey line are indistinguishable.

This idea can be implemented as an RDSEM to model intensive longitudinal data that may 

have a systematic time trend. Equation (7) shows the model equations for an unconditional 

probit model with a linear trend for Day. The path diagram is shown in Fig. 7.

Latent‐Decomposition
Pr Adℎereti = 1 = Φ yti

*

yti
* = yti

* w + αi

Within‐Person
yti

* w = γ01Dayti + dti

dti = ϕidt − 1, i + eti

eti ∼ N 0, 1

Between‐Person
αi = − τ0 + u0i

ϕi = γ10 + u1i

ui ∼ N 0, Σ

(7)

The main difference in the RDSEM model in Eq. (7) occurs in the first and second 

expressions in the within-person model. Specifically, note that yti
* w  is no longer 

autoregressed on itself – instead, it is predicted by Day in the first expression. In Eq. (7), 

Day is modeled as a fixed effect, but it is possible to model this effect as person-specific 

if the time trend is thought to vary across people (adding a random effect to the time trend 

would allow the coefficient – but not the functional form – to change across people). Also 

note that the residual in the first expression is denoted by d rather than e, where d is the 

detrended residual associated with yti
* w . The detrended residual d appears as an outcome in 

the second expression where it is autoregressed on d at time t − 1. In the second expression, 

ϕi is the autocorrelation in the detrended residuals of yti
* w , rather than the autocorrelation of 

yti
* w  itself. The e term in the second expression is then the residual term in the autoregression 

equation for d. That is, the autoregression is on the detrended residuals of yti
* w  but this 

autoregression is not perfect and therefore has another residual e, which is assumed to follow 

a standard normal distribution. As a result, the variance of d is not fixed to a particular value 

and the residual variance of yti
* w  is instead a function of the strength of the autocorrelation, 

1/ 1 − ϕi
2 . This means that the model has a theta parameterization such that the residual 

variance is not constrained to be exactly equal to 1 (Asparouhov & Muthén, 2020, p. 285). 

Just like DSEM, this unconditional RDSEM could be also expanded to include covariates.

The code for fitting this model in Mplus is similar to the code in Example 1 with a few 

changes. First, day is added to after a WITHIN = option in the VARIABLE statement because 

it is only used as a predictor in the within-person model and we do not need to disaggregate 

it (i.e., there are no trait and state components of time). The %WITHIN% section of the code 

changes slightly to

%WITHIN %
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Phi| adherê ON adherê1;

adhere on day;

The caret (“^”) replaces the ampersand (“&”) in the code to tell Mplus that the 

autoregression involves the residual of adhere, not adhere itself. The last line then 

includes a linear trend for day to model the possible trend over time. The full Mplus input 

file is included on the Open Science Framework page associated with this paper.

After fitting the model with the same options as in Examples 1 and 2, the 

estimated fixed effect for the threshold τ0 is now −1.48 rather than −1.28 as in 

the unconditional model in Example 1. Rw
2 = 0.259, σ00 = 1.08 and there are no between-

person predictors, so SD(y*) = 1.56. Converting this to a predicted probability yields 

Φ[−τ0/SD(y*)] = Φ(1.48/1.56) = 0.83. This is slightly higher than then 0.80 predicted 

probability in Example 1 because it corresponds only to the first day of the study rather 

than to the entire study window (similar to the trend line in the top panel of Fig. 6 at 

Day = 0). The linear effect of Day is γ10 = − 0.017 which means that for each additional 

day of the study, the predicted probability of adherence on the y* scale decreases by 

0.017 and adherence is less likely as the study progresses. For example, the predicted 

probability of adherence on day 28 of the study (when coding the first day as day 

0) is, Φ −τ0 + 27 × γ10 /SD y* = Φ 1.48 + 27 × − 0.017 /1.56 = Φ 1.02/1.56 = 0.74, which 

corresponds to the trendline in the top panel of Fig. 6. The 95% CrI for the linear effect of 

Day barely does not include 0, 95% CrI = − 0.032, − 0.002 , so there is borderline evidence 

that the linear trend of Day is non-null and may need to be accounted to satisfy stationarity 

assumptions. Alternatively, including the linear trend of Day could be used as a sensitivity 

analysis to assess whether conclusions would change depending on potential stationarity 

violations.

Example 4: Cumulative probit DSEM for ordinal outcomes

When discussing binary probit DSEM in previous sections, we parameterized the fixed 

effect for the intercept as the opposite of the threshold such that αi = − τ0 + u0i. This 

parameterization results in probit models that look similar to models for continuous 

outcomes (and matches Mplus output). However, this parameterization does not extend 

to ordinal data with three or more categories, which require multiple thresholds. In this 

section, we discuss a more general parameterization of binary probit models and how this 

more general version can be extended to ordinal data. We also provide an example to 

discuss differences in interpretation when DSEM models are applied to ordinal versus binary 

outcomes.

General form of the binary probit model

In earlier sections, we discussed thresholds and intercepts with binary outcomes as 

essentially interchangeable aside from multiplying by −1. However, the intercept and 

threshold technically correspond to different quantities in a probit model (Long, 1997, p. 

122). Specifically, the intercept is the mean of the underlying normal distribution yti
* whereas 

the threshold dictates which values of yti
* manifest as different observed values of yti. A model 
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estimating the intercept and threshold(s) simultaneously is unidentified because there would 

be more latent quantities than observed information (Long, 1997, p. 123). Therefore, either 

the intercept or threshold must be constrained (often arbitrarily) for identification. Though 

many possibilities exist, there are two primary approaches.

In the first approach, the threshold is constrained to 0 and the fixed effect of the intercept 

is estimated. This is shown in the top panel of Fig. 8 using estimates from Table 1 where 

the intercept and threshold were 1.28 units apart. In the second approach, the intercept fixed 

effect could be constrained to 0 and the threshold is estimated. This is shown in the bottom 

panel of Fig. 8. Both approaches give equivalent predicted probabilities (Long, 1997, p. 

122; the area to the left of τ in either panel of Fig. 8 is 0.20), they just represent different 

identification strategies because the scaling of the underlying normal process is arbitrary 

given that it is latent.

Up to this point, we blended these different approaches to simplify interpretations 

by essentially using the mirror image of the bottom panel of Fig. 8. That is, when 

discussing previous models, we kept the mean of the underlying normal distribution at 

0 (i.e., Eq. 3) and estimated the intercept fixed effect (Eqs. 5–7) as the opposite of the 

threshold. This scaling approach makes the model look more like a continuous DSEM 

and simplifies calculations of the predicted probabilities. Although this is permissible to 

simplify interpretations with binary outcomes, the same simplification is not effective for 

ordinal models where multiple thresholds are present to establish three or more categories 

(Asparouhov et al., 2018, p. 363). For ordinal outcomes, the number of thresholds is equal to 

the number of categories minus one, which makes the distinction between the intercepts and 

thresholds more meaningful because multiple thresholds are present. The next subsection 

presents an example with an ordinal outcome to demonstrate these differences.

Extending probit models to ordinal outcomes

The motivating data contain a daily five-point Likert response to the prompt “Tempting food 

made it difficult for me to not binge eat today” (referred to as “Temptation” hereafter). 

Across all 50 participants and timepoints, the responses were roughly symmetric with 

a slight negative skew: 18% strongly disagree, 16% disagree, 24% neutral, 27% agree, 

and 16% strongly agree. Even though some studies suggest that five timepoints may 

be sufficient to treat a response as continuous (e.g., Rhemtulla et al., 2012; Robitzsch, 

2020), we will model this item as ordinal to avoid any possible issues with treating Likert 

scales as continuous such as ceiling or floor effects, distributional assumption violations, or 

assumptions that sequential categories represent equal changes in the underlying construct 

(Hamaker et al., 2023; Haqiqatkhah et al., 2022; Liddell & Kruschke, 2018). We use the 

same binge eating avoidance covariate in the model as well to provide some guidance on 

covariate interpretation.

The major change for ordinal outcomes is that the thresholds appear in the definition of 

yti
* rather than in the α equation in the between-person model. So, whereas Eq. (3) used 

“0“ in the inequalities to specify how yti
* manifests into observed categories, Eq. (8a) uses 

thresholds:
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Temptationti =

5 if yti
* ≥ τ4

4 if τ3 ≤ yti
* < τ4

3 if τ2 ≤ yti
* < τ3

2 if τ1 ≤ yti
* < τ2

1 if yti
* < τ1

(8a)

This is the notable divergence between ordinal probit models and how we parameterized 

binary models in earlier sections. Whereas binary models have one threshold and one 

intercept, ordinal models have one intercept but multiple thresholds. It is less intuitive to 

determine constraints when there are multiple thresholds in ordinal models, so it is easier to 

constrain the lone intercept to have a fixed effect of 0 and estimate the thresholds.

Calculating predicted probabilities for each category is then expanded. The first and last 

categories are similar to the latent decompositions in Eqs. (5–7) in that they only have one 

term (e.g., any portion of yti
* below τ1 manifests as Temptation =1, so there is no lower 

bound for values of yti
* that result in Temptation =1). However, middle categories require 

subtraction because thresholds are cumulative. That is, the total area to the left of τ3 captures 

the probability of responding 1,2, or 3 rather than just the probability of responding 3. 

Therefore, the probability of all lower categories must be subtracted to isolate the probability 

of any middle category. More formally, the predicted probability calculations in ordinal 

models would be expanded to

Pr Temptationti = 5 = Φ −τ4 + yti
*

Pr Temptationti = 4 = Φ τ4 − yti
* − Φ τ3 − yti

*

Pr Temptationti = 3 = Φ τ3 − yti
* − Φ τ2 − yti

*

Pr Temptationti = 2 = Φ τ2 − yti
* − Φ τ1 − yti

*

Pr Temptationti = 1 = Φ τ1 − yti
*

(8b)

As in Eqs. (5–7), the underlying normal process yti
* is still partitioned into within-person 

and between-person components such that yti
* = yti

* w + αi. The only difference is that the 

fixed effect in the αi expression is fixed to 0 given that the thresholds are estimated. 

However, there can still be between-person variance in the intercept by including a random 

intercept such that αi = u0i. So, the average intercept is constrained to 0 but the intercept for 

person i is not necessarily 0. Additionally, time-invariant covariates can still be included 

to explain systematic between-person reasons why the intercept may differ across people. 

Note that between-person variance is modeled with one random effect on the intercept 

rather than through multiple random effects for each threshold, which makes an implicit 

assumption that the spacing between thresholds remains the same across all people. That is, 

the thresholds are not necessarily equidistant, but if the distance from τ1 to τ2 is 0.50 and the 

distance from τ2 to τ3 is 0.25, those relative distances will be maintained across all people 

(i.e., there are no i subscripts on the thresholds).
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Otherwise, the rest of the model for an ordinal outcome is unchanged compared to a binary 

outcome. Models for binary and ordinal outcomes both operate on the underlying normal 

process yti
*, so defining how yti

* manifests into observed data is the only major change in 

the model specification between binary versus ordinal models and all other portions of the 

model are identical. So, if we are trying to model how binge eating avoidance affects the 

dynamics of the ordinal Temptation variable, the model would look almost identical to 

Eq. (6) for the binary Adherence variable. The only difference is that the first expression 

in the Latent Decomposition section would be expanded with Eq. (8b) and the −τ0 term 

would be removed from the between-person αi expression based on the ordinal definition 

of yti
* in Eq. (8a). Similarly, the Mplus code for an ordinal model with a disaggregated 

continuous covariate model looks no different from the code associated with the model in 

Eq. (6) other than changing the outcome variable (though not required, if being explicit, 

this model would have more thresholds denoted by including the outcome label followed 

by $2,$3y, and $4 in square brackets). We do not provide the full code in text, but it is 

available on the Open Science Framework page for this paper. The results from fitting this 

model (with the same estimation criteria as previous examples) are shown in Table 4. To 

simplify the interpretation, we rescaled the binge eating avoidance covariate by subtracting 

7.22 (its mean in Table 2). We still latent center the covariate, but this rescaling will make 

the thresholds correspond to the typical person rather than a someone whose latent person 

mean of binge eating avoidance is 0.

Results and interpretation

To highlight differences between this analysis and the earlier binary outcome analyses, there 

are now four thresholds which delineate which values of yti
* manifest as which discrete Likert 

responses. The estimated thresholds are τ1 = − 1.16, τ2 = − 0.50, τ3 = 0.26, and τ4 = 1.28. In 

this model, Rw
2 = 0.203, Rb

2 = 0.018, and σ00 = 0.49, meaning that SD y* = 1.32. If applying 

the standard normal cumulative distribution function to these thresholds divided by 1.32 

to rescale onto the standard normal metric, the corresponding predicted probabilities for 

the respective Likert categories are 19%, 16%, 22%, 26%, and 17%, which resemble the 

descriptive proportions of 18%, 16%, 24%, 27%, and 16%.

The top panel of Fig. 9 shows how yti
* is discretized to manifest into Likert responses, 

where the estimated thresholds are represented by vertical dashed lines. The mean of yti
*

in the top panel of Fig. 9 is 0, which represents the average across all people. There is non-

negligible between-person intercept variance σ00 = 0.49, 95% CrI = 0.27, 0.78 , meaning that 

the location of the yti
* distribution shifts horizontally across people. For instance, the middle 

panel of Fig. 9 shows a hypothetical person whose intercept for Temptation is one standard 

deviation below the sample average (i.e., the mean of yti
* = − 0.70). The threshold values have 

not changed, but yti
* has shifted left such that this person has a much higher probability of 

responding towards the lower end of the Likert scale (e.g., the area under the curve to the 

left of the leftmost threshold has expanded in the middle panel relative to the top panel). If 

interpreting the model this way, calculations for predicted probabilities must adjust values 

so that the mean of yti
* is rescaled to 0 so that Φ ⋅  can be applied, similar to how we have 

needed to adjust for the variance not being equal to 1.
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An alternative interpretation of the between-person intercept variability is that the mean of 

yti
* stays at 0, but all thresholds move to the right by 0.70 if the person that is one standard 

deviation below average on Temptation such that their spacing is preserved (i.e., moving the 

intercept to the left or all the thresholds to the right produces the same effect; this relates 

back to multiplying by −1 when converting between thresholds and intercepts in earlier 

sections). This is shown in the bottom panel of Fig. 9 (this panel is offset to align the 

thresholds). In other words, −u0i can be interpreted as a shift parameter on the thresholds 

(Asparouhov et al., 2018) and this shift occurs in the location, but not the scale (i.e., the 

variance is constant, but the means can change). Note that the probabilities are equivalent 

between the middle and bottom panels of Fig. 9, but the bottom panel has the advantage that 

no mean adjustments are required before applying Φ ⋅  to compute predicted probabilities. 

The point of presenting these different interpretations is to emphasize that yti
* is latent and 

has no inherently meaningful scale. The parameter effects dictate the relative distance and 

spacing, but the anchor point is arbitrary and is only needed for identification (similar to 

constraining a latent variable variance or a factor loading in standard SEM).

Turning to covariate effects, the within-person effect of binge eating avoidance in Table 4 

was non-null γ20 = − 0.10, 95% CrI = − 0.19, − 0.01 , so we will discuss its interpretation 

here. It is important to remember that, in the model, the covariates affect αi and yti
* w , 

not τ. This implicitly assumes that all categories are affected equally (i.e., the spacing 

between thresholds is constant across all covariate values), which is sometimes referred 

to as the parallel regression assumption (McCullagh, 1980). Specifically, because γ20 is 

a within-person effect, its interpretation is: for every one-unit increase in binge eating 

avoidance above the latent person mean, yti
* w  is predicted to decrease by 0.10. Graphically, 

this means that yti
* w  shifts left as BEAti

w  increases such that responses on the lower end of the 

Likert scale become more probable. Alternatively, an equivalent effect would be to shift all 

thresholds to the right by 0.10.

Figure 10 shows this effect graphically. In the top panel, the grey distribution is yti
* w  when 

the person is at the latent person mean for the covariate and the black distribution is how 

yti
* w  shifts when the person is 1-unit above the covariate latent person mean. The alternative 

interpretation is shown in the bottom panel. The location of yti
* w  is constant (the solid black 

line), the grey dashed lines are the thresholds when the person is at their covariate latent 

person mean, and the black dashed lines represent how the thresholds shift when a person is 

one-unit above their covariate latent person mean. The predicted probabilities are identical 

in either case. The effect is not overwhelmingly large, but the response probabilities for 

the lower end of the scale increase as within-person binge eating avoidance momentarily 

increases. Substantively, the interpretation would be that momentarily higher feelings of 

binge eating avoidance are associated with being slightly less tempted by food.

Discussion

Many existing treatments of dynamic structural equation models consider categorical 

outcomes as a straightforward extension of models for continuous outcomes. Although 

this may resonate with statisticians and more technically inclined readers, the nuances of 
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interpreting models with binary or ordinal outcomes – even if the statistical foundations 

are straightforward – warrant dedicated resources for empirical researchers for whom the 

connections may not be obvious. Our goal in this paper was to provide an accessible 

overview of some foundational models for multilevel time-series analysis with categorical 

outcomes in Mplus to provide readers with a starting point for approaching these models, 

especially because binary behavioral items and Likert item responses are common outcomes 

in intensive longitudinal studies.

Of course, this topic is broader than what could be covered in detail in a single paper 

and there are caveats and extensions to what was discussed. For instance, these models are 

appropriate for processes that are mean reverting or that can made mean reverting after 

conditioning on time trends. Outcomes featuring rare binary events that are nearly always 

1 or nearly always 0 will have trouble satisfying stationarity assumptions and may not 

be suitable for these models. This issue may also be problematic with binary outcomes 

and shorter time series (e.g., less than 20 observations per person) if there is not enough 

variability in the outcome to reasonably identify moment-to-moment dynamics (Asparouhov 

& Muthén, 2022b). The models described in this paper are also only appropriate for 

outcomes that do not have absorbing states such that the outcome is permitted to take on any 

possible value at any point in time. This could be problematic in areas like developmental 

psychology where children may not revert back to particular behaviors once a certain 

developmental milestone has been achieved. If a “1” response precludes a participant from 

later responding “0”, other models like dynamic latent class analysis or time-to-event models 

may be more appropriate.

Mplus does have some built-in safeguards for mild violations of these assumptions such as 

removing inadmissible values from posterior distributions should they arise. Anecdotally, 

the Mplus development team had noted that if the MCMC estimation converges, then the 

number of discarded iterations will tend to be small (e.g., less than 10%; Asparouhov, 

2020, http://www.statmodel.com/discussion/messages/24588/27731.html?1580727445) and 

that highly non-stationary processes will simply fail to converge in most cases. For instance, 

in the analysis for Example 2 where the mean prevalence was 0.77 from 28 time-points 

per person, the output showed a warning that some iterations were discarded from the 

posterior (likely stemming from the small number of people with very high adherence rates 

and whose data were largely noninformative). However, in general, researchers considering 

using DSEM or RDSEM for binary outcomes should first ensure that that there is sufficient 

variability in the binary outcome to warrant such an analysis or that the design has enough 

time-points to allow for sufficient variability to be observed.

As extensions, we only covered continuous time-varying covariates but binary time-varying 

covariates may also be of interest. If the binary covariate has a contemporaneous effect, then 

the model would not look much different than the example presented in Example 2. The 

covariate could be latent centered such that the person-mean would be the person-specific 

proportion and the within-person and between-person components could be simultaneously 

included to disaggregate momentary and habitual effects of the covariate. If the binary 

covariate is lagged or if the model has two simultaneous binary outcomes, the situation 

becomes a little more complex because both binary variables would be assumed to have 
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a continuous underlying process and both variables would be disaggregated into within 

and between components. This can be accommodated in Mplus and an important point 

to remember when interpreting the output is that Mplus parameterizes the model such 

that covariates predict the latent intercept even though the fixed effect is defined as a 

threshold. Therefore, covariate effects should be interpreted as effects on the intercept, not 

the threshold. Of course, as noted in Example 4, the scaling can be somewhat arbitrary so 

the covariate effects could also be conceptualized as effects on the thresholds if the sign of 

the effect were reversed.

In closing, there are many exciting opportunities to make new discoveries or to refine our 

understanding of existing theories of the mechanism of behavior using intensive longitudinal 

data. Recent software developments have made models for intensive longitudinal data more 

accessible to a broader audience of researchers, including new procedures that have recently 

been added to Mplus. Though models for continuous outcomes have been covered in some 

detail recently, resources for applying these intensive longitudinal models to categorical 

outcomes have been far scarcer. We hope that this paper supplements existing didactic 

resources and gives empirical researchers a readable introduction to approaching these 

analyses when the focal outcome is binary or ordinal and helps to clarify concepts that are 

unique to models with categorical outcomes like probit links, underlying normal processes, 

cumulative distribution functions, and differences between intercepts and thresholds.
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Fig. 1. 
Plots showing how probit scale uses area under a standard normal distribution to determine 

predicted probabilities. The left panel shows the predicted probability of y = 1 as the 

grey shaded area to the left of a Z-score of −1. The right panel shows the predicted 

probability that y = 1 as the grey shaded area to the left of a Z-score of +0.50. The predicted 

probabilities for y = 0 based on thresholds are represented by the white space under the 
curve
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Fig. 2. 
Trace plot for treatment adherence for four representative participants
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Fig. 3. 
Path diagram for an unconditional probit DSEM. This model corresponds to the model 

shown in Eq. (5)
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Fig. 4. 
Path diagram of DSEM model with a latent-centered continuous covariate. This diagram 

corresponds to the model shown in Eq. (6)
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Fig. 5. 
Caterpillar plot for within-person effect of binge eating avoidance for all 50 people in the 

study. Solid markers indicate that 0 was outside the person-specific 95% credible interval; 

open markers indicate that 0 was inside the person-specific 95% credible interval
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Fig. 6. 
Average intervention adherence proportion across the 28 days of the study using the raw 

proportion (top panel) and the linearly detrended proportion (bottom panel). The horizontal 

dashed line is average across all days and the solid black line is the linear trend in the 

proportions
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Fig. 7. 
Path diagram for RDSEM model that includes a linear trend for Adherence across time. This 

diagram corresponds to the model in Eq. (7)
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Fig. 8. 
Comparison of the intercept (alpha) and the threshold (tau) for a binary outcome under two 

different identification strategies. The top panel constrains the threshold to 0 and estimates 

the intercept, the bottom panel constrains the intercept to 0 and estimates the threshold. The 

predicted probabilities are identical in either case
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Fig. 9. 
Graphical representation of multiple thresholds in a model with ordinal outcomes. In 

the top panel, the intercept is 0 and the thresholds are τ1 = − 1.16, τ2 = − 0.50, τ3 = 0.26, 

and τ4 = 1.28. The model allows between-person variance, so the middle panel shows the 

same thresholds for a person whose intercept is one standard deviation below average 

(mean = − 0.70). The bottom panel shows the same information as the middle panel but 

parameterizes the change by keeping the intercept at 0 but shifting the threshold to the right 
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rather than shifting the intercept to the left. The predicted probabilities in the middle and 

bottom panels are the same, they just present two different ways of looking at the model
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Fig. 10. 
Graphical representation of within-person effects of a time-varying covariate. In the top 

panel, the thresholds are constant. The grey distribution represents the underlying normal 

within-person process when the covariate equals 0 and the black distribution represents 

the underlying normal within-person process when the covariate equals 1. In the bottom 

panel, the underlying normal within-person process has a constant mean of 0. The grey 

dashed lines represent the threshold when the covariate equals 0 and the black dashed lines 
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represent the thresholds when the covariate equals 1. The predicted probabilities are equal in 

either case, these are just two different ways of interpreting the same effect
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Table 1

Parameter estimates from multilevel autoregressive model for binary intervention adherence

Effect Notation Est. 95% CrI

Fixed effect parameters

 Threshold τ0 −1.28 [−1.67, −0.89]

 Autocorrelation γ0 0.32 [0.10, 0.54]

Covariance parameters

 Intercept variance σ00 0.91 [0.36, 1.78]

 Autocorrelation variance σ11 0.21 [0.11, 0.34]

 Intercept, autocorrelation covariance σ10 −0.06 [−0.41, 0.23]

Note: The intercept is equal to the threshold with the sign reversed. The intercept is used for calculating predicted probabilities that the outcome 
equals 1; the threshold is used for calculating predicted probabilities that the outcome equals 0
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Table 3

Predicted probabilities for intervention adherence for different latent person means of binge eating avoidance

Latent person mean BEAi
b Predicted probability Φ −225 + 0.225 × BEAi

b /1.6β

0 0.44

1 0.49

2 0.55

3 0.60

4 0.65

5 0.70

6 0.75

7 0.79

8 0.83

9 0.86

10 0.89

Note: In the equation under the “Predicted Probability” column, −0.25 is fixed threshold estimate conditional on BEAi
b

 = 0, 0.225 is the 

between-person covariate effect of BEAi
b

, and 1.63 is the standard deviation of y*which is included to convert the quantity to scale of a standard 

normal distribution
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