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Abstract: ASFV vaccine candidate ASFV-G-∆I177L has been shown to be highly efficacious in
inducing protection against challenges with the parental virus, the Georgia 2010 isolate, as well as
against field strains isolated from Vietnam. ASFV-G-∆I177L has been shown to produce protection
even when used at low doses (102 HAD50) and shows no residual virulence even when administered
at high doses (106 HAD50) or evaluated for a relatively long period of time (6 months). ASFV-G-∆I177L
stocks can only be massively produced in primary cell macrophages. Alternatively, its modified
version (ASFV-G-∆I177L/∆LVR) grows in a swine-derived cell line (PIPEC), acquiring significant
genomic modifications. We present here the development of ASFV-G-∆I177L stocks in a swine
macrophage cell line, IPKM, and its protective efficacy when evaluated in domestic pigs. Successive
passing of ASFV-G-∆I177L in IPKM cells produces minimal genomic changes. Interestingly, a stock
of ASFV-G-∆I177L obtained after 10 passages (ASFV-G-∆I177Lp10) in IPKM cells showed very
small genomic changes when compared with the original virus stock. ASFV-G-∆I177Lp10 conserves
similar growth kinetics in primary swine macrophage cultures than the original parental virus ASFV-
G-∆I177L. Pigs infected with 103 HAD50 of ASFV-G-∆I177Lp10 developed a strong virus-specific
antibody response and were completely protected against the challenge with the parental virulent
field isolate Georgia 2010. Therefore, IPKM cells could be an effective alternative for the production
of ASFV vaccine stocks for those vaccine candidates exclusively growing in swine macrophages.

Keywords: ASFV; ASF; ASFV vaccine; ASFV-G-∆I177L

1. Introduction

African swine fever (ASF) is a lethal disease that affects wild and domestic pigs and
is widely geographically distributed in Europe, Africa, Asia, and the Caribbean area [1].
African swine fever virus (ASFV), the etiological agent of ASF, is a large, structurally
complex virus with a large genome containing a double-stranded DNA of 180–190 kilobase
pairs encoding more than 160 proteins [2,3].

Until recently, no commercial vaccines were available, and disease control was mainly
performed by culling all the infected animals and severely restricting mobility of potentially
susceptible animals.
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In the last few years, several experimental live attenuated vaccine strains have been
developed by deleting virus genes implicated in the process of ASFV virulence in pigs.
Most of these attenuated strains were shown to be efficacious in inducing protection against
the infection with the corresponding virulent parental field isolate [4–13].

One of these vaccine candidates is the ASFV-G-∆I177L strain which has been shown to
be highly efficacious in inducing protection against the challenge with either the parental
Georgia 2010 isolate or the Vietnamese field isolate TKN/ASFV/DN/2019 [4,5]. ASFV-
G-∆I177L has been shown to efficiently induce protection without presenting residual
virulence [14,15]. Production of ASFV-G-∆I177L stocks requires the use of primary cell
macrophage cultures. Adaptation to grow in swine cell line, although successful in terms of
maintaining it safety and efficacy, produced undesirable significant genomic modifications.
This type of genomic modification is a usual result in the process of the adaptation of
an ASFV strain to grow in an established cell line [16]. We report here the production of
ASFV-G-∆I177L stocks using the swine macrophage cell line IPKM. The results demonstrate
that ASFV-G-∆I177L grows well in IPKM cells and that successive passages in those cells
produce minimal changes in the genome of the obtained virus. Importantly, pigs infected
with 103 HAD50 of ASFV-G-∆I177L passed 10 successive times in IPKM cells developed
a strong virus-specific antibody response and conferred complete protection against the
challenge with the parental virulent field isolate Georgia 2010. Thus, IPKM cells could
be an effective alternative for the production of ASFV vaccine stocks for those vaccine
candidates only growing in swine macrophages.

2. Materials and Methods
2.1. Viruses and Cells

ASFV-G-∆I177L strain was previously developed in our laboratory [4]. Primary
macrophage cell cultures were produced, as previously described [13], and they were
seeded at a concentration of 5 × 106 cells/mL. Virus titrations were performed using swine
macrophage cultures, as previously described [13]. IPKM cells, immortalized porcine
kidney macrophage-derived cell lines [17], were kindly provided by Dr Kokuho Take-
hiro from the National Institute of Animal Health of Japan. IPKM culture media was
formulated exactly as previously described [17]. A series of 10 successive passages of
ASFV-G-∆I177L in IPKM cell cultures were performed at an MOI of 1. Each infection step
was allowed to proceed until reaching approximately 80% of the cytopathic effect, at which
point cultures were frozen. Intermediate stocks were then prepared by thawing the cell
culture suspension, clarification by centrifugation, and titration of virus suspensions on
primary swine macrophage cultures, as described below. Comparative growth kinetics
between the original ASFV-G-∆I177L stock (ASFV-G-∆I177Lp0) and the stock produced
after 10 successive passages in IPKM cells (ASFV-G-∆I177Lp10) were set using an MOI of
0.01 HAD50, as previously described [13] with sample points obtained at 2, 24, 48, 72, and
96 h post-infection. Samples were titrated using swine macrophage cell cultures in 96-well
plates. Virus-infected cells were detected by hemadsorption (HA), as described in chapter
3.9.1. of the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals [18]. Briefly,
20 µL of a fresh preparation of 1% pig erythrocytes in buffered saline was added to each
well of the 96-well plate. The presence of rosettes was recorded for 7 days, and virus titers
were calculated by the Reed and Muench method [19].

2.2. Sequencing and Analysis of the ASFV-G-∆I177L Genome

ASFV-G-∆I177Lp0 and ASFV-G-∆I177Lp10 DNA were extracted from the infected
IPKM cells using a DNA extraction kit (Qiagen DNeasy Blood and Tissue Kit). DNA
concentration was determined using the Qubit dsDNA high-sensitivity (HS) assay kit (Life
Technologies; Carlsbad, CA, USA) and read on a Qubit 2 fluorometer (Life Technologies).
The DNA library was then used for NGS sequencing using a Nextera XT kit in the NextSeq
sequencer (Illumina, San Diego, CA, USA), strictly following the manufacturer’s protocol.
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Sequence analysis was performed using CLC Genomics Workbench software (CLCBio,
Waltham, MA, USA).

Analysis of the virus genome was performed using CLC Genomics Workbench v23
(QIAGEN, Aarhus, Denmark). Illumina reads were trimmed for quality (limit = 0.05),
ambiguous base pairs (max = 2), adapters, and minimum size (min = 50) and from the
5’ (20 nucleotides) and 3’ terminal end (5 nucleotides) and were mapped against ASFV
Georgia 2007/1 (Genbank accession: FR682468.2) using the “Map Reads to Contigs” tool
with the following parameters: contig Masking = off; update contigs = off; match score = 1;
mismatch score = 2; gap cost = linear; insertion and deletion cost = 3; length fraction = 0.7;
similarity fraction = 0.8; global alignment = off; auto-detect paired distances = on; and
non-specific match handling = random. Basic Variant detection was then performed on the
read mappings using the following parameters: ploidy = 2; ignore positions with coverage
over 2,000,000; ignore broke pairs = off; ignore non-specific matches = off; minimum
coverage = 1; minimum count = 1; minimum frequency = 50%; and filters for quality,
direction/position, and technology specifics = off. Single nucleotide polymorphisms (SNPs)
that appeared in over 70% of reads were considered to be of high confidence and were
compared to the original batch of ASFV-G-∆I177L and reported.

2.3. Differential Detection of ASFV-G Genome in Challenge Animals

Real-time PCR (qPCR) was used to differentiate between the presence of the parental
virus ASFV-G and ASFV-G- I177Lp10, as previously described [20]. As an overall marker for
the presence of ASFV, the presence of p72 gene was used with primers and probes as in the
standard diagnostic test for ASFV: forward 5’-CTTCGGCGAGCGCTTTATCAC-3′, reverse
5′-GGAAATTCATTCACCAAATCCTT-3‘, and probe 5′-6FAM-CGATGCAAGCT TTAT-
MGB-NFQ-3’. For the specific detection of the portion of the I177L gene deleted from the
ASFV-G-∆I177L genome, the following primers were used: forward 5′-GAACTGGAAAAA
ACTTTAACGGC-3′; reverse 5′-CCATTACCGGCAAGCTAGG-3′; and probe 5′-6FAM-
ACGGATCCCCCTTCGCATTTGA-MGB-NFQ-3’. These oligonucleotides target the I177L
gene that is absent from the ASFV-G-∆I177L genome.

2.4. Detection of ASFV Specific Antibodies

ASFV antibody detection was performed using an in-house ELISA, as previously de-
scribed [21]. Briefly, ELISA antigen was prepared from ASFV-infected Vero cells. Maxisorb
ELISA plates (Nunc, St Louis, MO, USA) were coated with 1 µg per well of infected or
uninfected cell extract. The plates were blocked with phosphate-buffered saline containing
10% skim milk (Merck, Kenilworth, NJ, USA) and 5% normal goat serum (Sigma, Saint
Louis, MO, USA). Each swine serum was tested at multiple dilutions against both infected
and uninfected cell antigens. ASFV-specific antibodies in the swine sera were detected
using an anti-swine IgG-horseradish peroxidase conjugate (KPL, Gaithersburg, MD, USA)
and SureBlue Reserve peroxidase substrate (KPL, Milford, MA, USA). Plates were read
at OD630 nm in an ELx808 plate reader (BioTek, Shoreline, WA, USA). Sera titers were
expressed as the log10 of the highest dilution, where the OD630 reading of the tested sera
at least duplicated the reading of the mock-infected sera.

2.5. Evaluation of ASFV-G-∆I177Lp10 Efficacy in Domestic Pigs

The efficacy of ASFV-G-∆I177Lp10 in inducing protection against challenges with
the parental virus African swine fever Georgia2010 isolate (ASFV-G) was assessed in
experimentally infected 35–40 kg commercial breed pigs. Groups of pigs (n = 5) were
intramuscularly (IM) inoculated with 103 HAD50 of either ASFV-G-∆I177Lp10 or mock-
inoculated. The appearance of clinical signs (such as depression, anorexia, staggering gait,
purple skin discoloration, diarrhea, and cough), as well as changes in body temperature,
were recorded daily for 28 days. Blood samples were scheduled to be obtained at days
0, 4, 7, 11, 14, 21, and 28 post-inoculation (pi). At day 28 pi, both groups of animals
were IM challenged with 102 HAD50 of ASFV-G. Animals were monitored and sampled
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as described above until day 21 post-challenge. All animal experiments were performed
under biosafety level 3 conditions in the animal facilities at Plum Island Animal Disease
Center, strictly following a protocol approved by the Institutional Animal Care and Use
Committee (225.06-19-R_090716, approved on 6 September 2019).

3. Results and Discussion
3.1. Successive Passages of ASFV-G-∆I177L in IPKM Cells

To assess the ability of IPMK to support virus growth without the need for an initial
period of adaptation, the ASFV-G-∆I177L virus was successively passed 10 times in IPMK
cells. All passage steps were conducted with an MOI of 1, based on stock titers calculated
by titrations performed in primary macrophage cell cultures. Each infection step was
allowed to proceed until reaching approximately 80% of the cytopathic effect, at which
point cultures were frozen, intermediate stocks were prepared as described in Material
and Methods, titrated, and prepared for the next passage. A parallel set of passages was
also performed with a viral stock of the parental virus ASFV Georgia 2010 isolate (ASFV-
G). The results demonstrated that replication of both ASFV-G-∆I177L and the parental
ASFV-G remained relatively stable along the 10 passages (Figure 1). Variation in final titers
between passages remained in a titer range of 105.8−7.3 HAD50/mL for ASFV-G-∆I177L
and 105.8−7.8 HAD50/mL for ASFV-G. Therefore, it appears that both viruses efficiently
replicate in IPKM cells without an obvious process of initial adaptation. These results
corroborate previously published ones demonstrating that several ASFV strains can readily
replicate in IPKM cells [22], where ASFV strains Armenia07, Kenya05/Tk-1, Espana75, and
Lisbon60 were shown to replicate in IPKM as efficiently as they do in primary cultures of
pulmonary-derived swine macrophages.
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Figure 1. Replication of ASFV-G-∆I177L in successive passages in IPKM cells. ASFV-G-∆I177L and
ASFV-G were passed 10 consecutive times (MOI = 1) in IPKM cell cultures. Viral yield in each
passage was quantified in primary cultures of swine macrophages and titers expressed as HAD50/mL.
Titrations were conducted by duplicated (presented data represent one set of them).

3.2. Genomic Modifications of ASFV-G-∆I177L during Passages in IPKM Cells

After passage 4 and 10 in IPKM cells (ASFV-G-∆I177Lp4 and ASFV-G-∆I177Lp10,
respectively), ASFV-G-∆I177Lp4 and ASFV-G-∆I177Lp10 were sequenced and compared
to the original stock of the virus (ASFV-G-∆I177Lp0). A total of three mutations of high
confidence (over 70% of the reads at that position contained the SNP) were observed. In
ASFV-G-∆I177Lp4, two mutations were observed. The first, at position 115,987, within
the DNA polymerase (gene G1211R) coding region, an A to C mutation did not result in a
change to the amino acid sequence. The second mutation was within the coding region
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of the E199L inner virion membrane protein, where there was an A to T mutation that
resulted in a serine-to-threonine mutation at position 133. While the mutation within
E199L was maintained for all 10 passes of the virus in IPKM cells, the silent mutation
within G1211R was no longer present after 10 passes. In addition, ASFV-G-∆I177Lp10
presented an insertion of a single A in a non-coding region at position 1362. Therefore, after
10 passages in IPKM cells, ASFV-G-∆I177Lp10 acquired only one amino acid mutation in
the E199L gene. This gene encodes for a structural protein described as being involved
in the processes of cell autophagia [23] and virus entry to the target cell [24]. It is not
clear if the serine to threonine amino acid mutation found in the ASFV-G-∆I177Lp10 may
affect the function of E199L protein in any of the above-described functions, particularly
considering the similar characteristics of both amino acid residues. Similarly to these
results, the stability of the genome sequence of the Armenia 2007 isolate after consecutive
15 passages in IPKM was also reported [22].

3.3. Assessment of Kinetic Replication of ASFV-G-∆I177L in IPKM Cells

To evaluate the growth kinetics ability of ASFV-G-∆I177L on IPKM cells, a study
was conducted where replication of the original ASFV-G-∆I177L (ASFV-G-∆I177Lp0) was
compared to that of the virus after 10 passages in IPKM (ASFV-G-∆I177Lp10). ASFV-Gp0
and ASFV-Gp10 were added as control. A multistep growth curve was performed in
primary swine macrophage cultures infected at a low MOI (0.01) with either ASFV-G-
∆I177Lp0 and ASFV-Gp0 or their respective product obtained after 10 passages in IPKM
cells (ASFV-G-∆I177Lp10 and ASFV-Gp10). Virus yields were evaluated at 2, 24, 48, 72, and
96 h post-infection by titration in primary swine macrophages.

The results demonstrated that ASFV-Gp10 showed an almost indistinguishable ki-
netics of replication when compared to the parental ASFV-Gp0. No statistical differences
were found in any of the time points tested (Figure 2). Conversely, ASFV-G-∆I177Lp0
exhibited a decreased replicative ability when compared with ASFV-G-∆I177Lp10, which
presented a replicative kinetics comparable to that of the ASFV-Gp0 and ASFV-Gp10 viruses.
Differences between ASFV-G-∆I177Lp0 and ASFV-G-∆I177Lp10 varied between 101.5 to
102.5 HAD50/mL, depending on the time point considered post-infection. Therefore, it
appears that along the passages, ASFV-G-∆I177Lp10 acquired small mutations that may be
responsible for increasing its ability to replicate in IPKM cells.
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similar conditions. Samples were taken from two independent experiments at the indicated time
points and titrated in swine macrophages. Data represent means and standard deviations. Sensitivity
using this methodology for detecting virus is ≥log10 1.8 HAD50/mL. (*) Indicates significant dif-
ferences. Statistically significant differences at specific time points between groups were evaluated
by ANOVA analysis and confirmed by Tukey’s honest significance test (≤0.05). Analyses were
conducted using the software JMP Pro version 16.0.0.

3.4. Assessment of ASFV-G-∆I177Lp10 Replication in Domestic Pigs

To evaluate the efficacy of ASFV-G-∆I177Lp10 in inducing protection in domestic
pigs against infection with the parental virulent ASFV-G, a group (n = 5) of 35–40 kg pigs
was inoculated IM at a dose of 103 HAD50. This vaccine dose was selected because it
resembles the dose of the virus recommended by the manufacturer of the commercial
version of the ASFV-G-∆I177L produced in primary cultures of swine macrophages [5]. A
control group of animals with similar characteristics was mock-inoculated. The appearance
of clinical signs potentially associated with ASF was monitored daily for 28 days after
inoculation. All animals in both groups remained clinically normal. The record of the rectal
temperature values in animals of both groups remained within a normal range (below
40 ◦C) (Figure 3). Therefore, ASFV-G-∆I177Lp10 remains completely attenuated to domestic
pigs when inoculated under the condition described here.
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Figure 3. Evolution of body temperature in animals (5 animals/group) IM inoculated with 103

HAD50 of ASFV-G-∆I177Lp10 or mock-inoculated and challenged 28 days later with 102 HAD50 of
parental virulent ASFV-G. Data represent individual animals.

The replication of recombinant ASFV-G-∆I177Lp10 in the inoculated animals was
analyzed by quantifying viremia titers at different times post-inoculation (pi). Viremia
kinetics in these animals exhibited a heterogeneous pattern (Figure 4). One of the animals
presented a detectable viremia at day 7 pi with a relatively high titer (approximately 105

HAD50/mL) and showed similar viremia values (ranging from 104.8–106 HAD50/mL) until
day 28 pi. Another two animals presented low viremia titers by day 7 pi (approximately 103

HAD50/mL), and while one of them reached titer values ranging from 103.2–105 HAD50/mL
until day 28 pi, the viremia titers in the other animal fluctuated between being undetectable
(≤101.8 HAD50/mL) to 103.2 HAD50/mL. Viremias in the remaining two animals were at
undetectable levels (≤101.8 HAD50/mL) in all tested time points.

The kinetics of replication exhibit lower viremia titers than those observed in pigs
with similar characteristics inoculated IM with 102 HAD50/mL of the original stock ASFV-
G-∆I177L (ASFV-G-∆I177Lp0) [4].
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3.5. Assessment of the Efficacy of ASFV-G-∆I177Lp10 to Protect Domestic Pigs against the
Challenge with the Virulent Parental ASFV-G

Although the host immune mechanisms producing protection against infection with
virulent strains of ASFV are still not well-defined [25,26], our previous experience indicated
that the only parameter consistently associated with protection against challenge is the
level of circulating antibodies [21]. Assessment of the presence of virus-specific antibodies
in the ASFV-G-∆I177Lp10-inoculated animals was detected in the sera of these animals
using in-house-developed ELISAs [21].

All animals infected with ASFV-G-∆I177Lp10 developed a circulating antibody re-
sponse, which was presented in the first two of the animals by day 11 pi, in all of them by
day 21 pi, and reached the highest titers y day 28 pi (Figure 5). Therefore, all animals devel-
oped a strong antibody response comparable to that described in animals inoculated with
IM containing 102 HAD50/mL of the original stock ASFV-G-∆I177L (ASFV-G-∆I177Lp0) [4].
No antibody titers were detected in the mock-vaccinated group at any time point tested.

To further assess the ability of ASFV-G-∆I177Lp10 to induce protection against the
challenge of highly virulent parental virus ASFV-G, the animals previously inoculated with
103 HAD50/mL of ASFV-G-∆I177Lp10 were IM-infected at 28 days later with 102 HAD50 of
ASFV-G. The mock vaccinated group (n = 5) of naïve animals was included as the control
group and was inoculated under the same conditions.

Mock animals started showing clinical signs of the disease by days 4–5 post-challenge
(dpc), worsening in their clinical presentation quickly with animals being euthanized due
to the severity of the disease: two of them by day 5; one on day 6; and the remaining two
by day 7 pc (Figure 3). Conversely, animals in the group previously inoculated with ASFV-
G-∆I177Lp10 remained clinically normal during the 21-day observation period. Therefore,
immunization with ASFV-G-∆I177Lp10 induced solid protection against clinical disease
after animals were challenged with the highly virulent parental virus.

Viremia titer values in the control animals after the challenge with ASFV-G peaked by
the 4th dpc (ranging between 106.8 and 108.8 HAD50/mL) and stayed at that level until all
animals needed to be euthanized due to the severity of the clinical signs. Conversely, after
the challenge, none of the animals previously inoculated with ASFV-G-∆I177Lp10 showed
viremia titers higher than those present at the time of the challenge. Actually, viremia
titers in these animals gradually declined, with the viremia levels in all these animals being
undetectable by the 11th dpc. (Figure 4).
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To evaluate the presence of replication of the ASFV-G after the challenge in the pro-
tected animals, blood samples showing the highest viremia titers in each animal were then
tested using specific real-time PCRs for the detection of p72-, I177L- and mCherry-genes
following procedure previously described [20]. All positive samples detected the presence
of p72 and mCherry genes but were negative for I177L, indicating the absence of challenge
virus. These results indicate that replication of the challenge virus did not occur in all
ASFV-G-∆I177Lp10-infected animals. This result is similar to that obtained in animals
immunized with ASFV-G-∆I177L (ASFV-G-∆I177Lp0) [4].

In summary, we showed here that the ASF live attenuated vaccine strain ASFV-G-
∆I177L could be grown for at least 10 successive passages in the swine macrophage-derived
cell line IPKM acquiring minimal genetic modifications and be as safe and efficacious
to protect animals against the infection with the virulent ASFV-G strain as the parental
ASFV-G-∆I177L is.

These results open the possibility of using IPKM cells as subtract to grow ASFV
vaccine strains originally produced and grown in primary swine macrophage cell cultures,
which represents a limitation in the massive production of vaccine viruses for commercial
purposes. The use of a cell line would also provide a contamination-free cell substrate and
would avoid the systematic use of animals as cell providers.
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