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Abstract 

Background  Synapse loss is an early event that precedes neuronal death and symptom onset and is considered 
the best neuropathological correlate of cognitive decline in Alzheimer’s disease (AD). Vesicle-associated membrane 
protein 2 (VAMP-2) has emerged as a promising biomarker of AD-related synapse degeneration in cerebrospinal fluid 
(CSF). The aim of this study was to explore the CSF profile of VAMP-2 across the AD continuum in relation to core 
AD biomarkers, other synaptic proteins, neurogranin (Ng) and synaptosomal-associated Protein-25 kDa (SNAP-25) 
and cognitive performance.

Methods  We developed a digital immunoassay on the Single Molecule Array platform to quantify VAMP-2 in CSF 
and used existing immunoassays to quantify Ng, SNAP-25 and core CSF AD biomarkers. The clinical study included 62 
cognitively unimpaired AD biomarker-negative subjects and 152 participants across the AD continuum from the SPIN 
cohort (Sant Pau Initiative on Neurodegeneration). Cognitive measures of episodic, semantic, executive and visu-
ospatial domains and global cognition were included. Statistical methods included χ2 tests, spearman correlation, 
and ANCOVA analyses.

Results  The VAMP-2 assay had a good analytical performance (repeatability 8.9%, intermediate precision 10.3%). 
Assay antibodies detected native VAMP-2 protein in human brain homogenates. CSF concentrations of VAMP-2, 
neurogranin and SNAP-25 were lower in preclinical AD stage 1 compared to controls and higher at later AD stages 
compared to AD stage 1 and were associated with core AD biomarkers, particularly total tau (adj. r2 = 0.62 to 0.78, 
p < 0.001). All three synaptic proteins were associated with all cognitive domains in individuals on the AD continuum 
(adj. r2 = 0.04 to 0.19, p < 0.05).

Conclusions  Our novel digital immunoassay accurately measures VAMP-2 changes in CSF, which reflect AD biomark-
ers and cognitive performance across multiple domains.
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Introduction
Ever since the National Institute on Aging – Alzheimer’s 
Association (NIA-AA) introduced a new research frame-
work for the definition of Alzheimer’s disease (AD), fluid 
and imaging biomarkers of hallmark pathologies (Aβ, 
t-tau, p-tau) have become the main defining biomarkers 
in AD research. Additional biomarkers, categorized as 
‘N’, represent surrogates of underlying neurodegenera-
tion that are not necessarily AD specific, but could have 
added diagnostic value for disease staging and progno-
sis [1]. The ‘N’ biomarkers include proxies of cerebral 
atrophy, axonal degeneration and synaptic dysfunction. 
Among these, synapse loss is considered to be an early 
pathological manifestation [2, 3] and the major corre-
late of cognitive impairment in AD, as evaluated in post-
mortem brain tissue of pathologically confirmed cases by 
electron microscopy [4] and immunohistochemistry tar-
geting the established pre-synaptic protein synaptophy-
sin [3, 5–7].

Objective surrogate biomarkers for AD-related cogni-
tive decline that are easily accessible in fluids are needed; 
however, very few studies on synaptic proteins have 
described the spectrum of cognitive impairment in the 
development of dementia [8]. While the Mini-Mental 
State Examination (MMSE) is a commonly used cogni-
tive test, the Free and Cued Selective Reminding Test 
(FCSRT) and the California Verbal Learning Test (CVLT-
2) as indicators for episodic memory loss are among the 
most sensitive in the early stages of AD [9–11].

Synaptic proteins have been evaluated in exploratory 
CSF cohorts and shown to be altered in subjects with 
sporadic AD, both by mass spectrometry [12–16] and 
immunoassays [8, 17–23] but the first steps towards 
patient monitoring have largely been restricted to CSF 
neurogranin measurements in clinical trials [24, 25].

A meta-analysis of synaptic pathology on human 
brain tissue pointed towards a selective molecular 
vesicular machinery vulnerability [26] and in several 
AD models, defects in synaptic vesicle recycling were 
found to be linked to amyloid and tau toxicity in early 
stages [27, 28]. Consequently, components of the syn-
apse vesicle exocytosis pathway have attracted much 
attention in the pursuit of synaptic biomarkers for AD. 
For example, synaptosomal-associated protein-25  kDa 
(SNAP-25) [8, 18, 20] and synaptotagmin I [29, 30], 
were increased in CSF even at the earliest preclinical 
stages [31] and more recently, synaptic vesicle glyco-
protein 2A (SV2A) has been proposed as a promising 

PET imaging target to assess decreased synaptic den-
sity in AD patients [32, 33]. In the last few years, ves-
icle-associated membrane protein-2 (VAMP-2), also 
known as synaptobrevin-2, has emerged as a promising 
biofluid marker in AD. VAMP-2 is part of the soluble 
N-ethylmaleimide-sensitive factor attachment protein 
receptors (SNARE)-complex, together with SNAP-25 
and syntaxin-1, and is the most abundant constituent of 
pre-synaptic secretory vesicles [34] with a widespread 
expression throughout the brain [35, 36] and a very 
specific enrichment in glutamatergic synapses [13, 37]. 
It also plays a critical role in the post-synaptic traffick-
ing of glutamate receptor subunits, particularly in the 
CA1 region of the hippocampus [38]. Loss of VAMP-2 
in different brain regions has been reported in AD [39, 
40] and its presence in CSF has now been documented 
in multiple, independent studies using mass reac-
tion monitoring (MRM) [13–16, 41]. Moreover, CSF 
VAMP-2 has been shown to be elevated in CSF from 
AD patients compared to cognitively unimpaired sub-
jects in multiple clinical cohorts of sporadic AD [13, 
15], in a cohort of patients with neuropathologically 
confirmed AD [41], and in adults with Down syndrome 
with dementia compared to cognitively unimpaired 
adults with Down syndrome [42]. Moreover, a head-
to-head comparison with eight other synaptic proteins 
in CSF revealed that VAMP-2 was the best and only 
synaptic protein to correlate with episodic memory in 
adults with Down syndrome [42]. On the other hand, 
CSF VAMP-2 was elevated in AD patients but com-
parable between patients with neuropathologically 
confirmed frontotemporal lobar degeneration and cog-
nitively normal individuals, suggesting a certain level of 
specificity of CSF VAMP-2 for AD [41].

These previous studies of CSF VAMP-2 were per-
formed using our in-house targeted mass spectrom-
etry assay [13, 41, 42]. To facilitate the quantification 
of VAMP-2 in larger CSF cohorts, we have developed 
a digital immunoassay for VAMP-2. Here, we provide 
a characterization of the assay antibodies with different 
methodologies and describe the analytical characteris-
tics of the assay on the Single Molecule Array (Simoa) 
platform. Using this assay, we also provide a compre-
hensive evaluation of CSF VAMP-2 across the sporadic 
AD continuum in a larger selection (n = 214) of the 
SPIN cohort [43]. We include a full exploration of the 
association with CSF core AD and other synaptic bio-
markers and with measures of cognitive decline.
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Materials and methods
Study design: Sant Pau Initiative on Neurodegeneration 
cohort (SPIN)
This is a single-centre, cross-sectional study of CSF lev-
els of the VAMP-2 protein in cognitively unimpaired 
subjects and participants on the AD continuum selected 
from the Sant Pau Initiative on Neurodegeneration 
cohort (SPIN) at Hospital Sant Pau, Barcelona, Spain 
[43]. The study was approved by the local ethics com-
mittee and was conducted in accordance with the Dec-
laration of Helsinki. All participants gave their written 
informed consent to participate in the study.

Clinical cohort
All participants from the SPIN cohort [43] were evalu-
ated by neurologists with expertise in neurodegenerative 
diseases and by neuropsychologists. Specific cognitive 
tests were administered to assess the main cognitive 
domains: episodic (Free and Cued Selective Remaining 
Test), semantic (semantic fluency; 1 min animals), execu-
tive function (phonemic fluency; 1 min ‘p’), visuospatial 
(copy of the figure of the Rey-Osterrieth Complex Figure 
(ROCF)) using a previously published neuropsychologi-
cal battery [43], including MMSE and FCSRT. All par-
ticipants were assessed for core AD biomarkers, namely 
brain amyloidosis (low CSF levels of Aβ42, CSF Aβ42:40 
ratio using our local cut-offs or positive amyloid PET 
imaging), tau pathology and neurodegeneration (high 
CSF levels of phosphorylated tau and total tau) based 
on local cut-offs. These cut-offs have high specificity and 
sensitivity to distinguish AD dementia patients from con-
trols (CSF Aβ42: 916  pg/mL, Aβ42:40 ratio: 0.062, CSF 
p-tau: 63 pg/mL, CSF t-tau: 456 pg/mL) [44]. Diagnoses 
of prodromal AD and AD dementia were made according 
to NIA-AA guidelines [45]. Subjects within the normal 
range following formal neuropsychological evaluation, 
when accounting for age and education (mostly recruited 
among patients’ caregivers), were classified into preclini-
cal AD stages in accordance with NIA-AA guidelines 
[46]. Inclusion criteria for controls required the absence 
of a cognitive or neurological disorder (MMSE 27–30, 
Clinical dementia rating = 0, FCSRT total immediate 
score > 7, absence of significant impairment in other 
domains or in daily living activities) and normal CSF 
AD biomarkers. A subset of samples had VAMP-2 rela-
tive quantification using our targeted mass spectrometry 
assay [13].

CSF collection and biomarker assessment
CSF samples were collected following international con-
sensus recommendations as previously described [43]. 
Samples were stored at − 80 °C and were not thawed prior 
to analysis. Commercially available immunoassays were 

used on the LUMIPULSE G600II automated platform to 
determine levels of CSF Aβ42, Aβ40, total tau (t-tau), and 
phosphorylated tau 181 (p-tau 181) (Lumipulse® G assays 
β-Amyloid 1–40 and 1–42, t-tau, p-tau 181 from Fujirebio, 
Ghent, Belgium), while neurogranin was measured with 
a commercial ELISA (Ng (Neurogranin (Trunc P75) 
ELISA from EUROIMMUN, Lübeck, Germany)). SNAP-
25 CSF levels were determined using an ADx homebrew 
Simoa assay. Details about the SNAP-25 Simoa assay can 
be found elsewhere [8], with the remark that detector 
ADx405 was exchanged for antibody RD042, because of 
its slightly improved signal-to-noise ratio in Simoa appli-
cations. Samples were blinded for clinical diagnosis and 
randomized before analysis. All samples were measured 
in batch for the core biomarkers, followed by a separate 
batch for the synaptic biomarkers.

VAMP‑2 antibody development and characterization
All immunizations, fusion, screening and subcloning 
protocols were carried out at Biotem (Apprieu, France) 
according to the ARRIVE (animal research: report-
ing of in  vivo experiments) recommendations [47]. Five 
OF1 mice were immunized with four low doses (10  μg) 
of a short keyhole limpet hemocyanin-coupled peptide, 
S27–R47, of human VAMP-2 (Uniprot identifier P63027). 
The spleen was harvested of one selected mouse and its 
lymphocytes were fused with Sp2/0-Ag14 myeloma cells. 
Fused cells were plated out in 96-well plates and cul-
ture supernatants were screened on biotinylated peptide 
via ELISA, on HEK293T cell lysate with overexpressed 
human VAMP-2 (#LY415423, Origene Technologies, 
Rockville, USA) and on human temporal cortex extracts 
(Tissue Solutions, Glasgow, UK) via Western blot anal-
ysis. One monoclonal antibody (mAb), RD087, was 
selected and paired with a VAMP-2 specific commercial 
antibody, D601A, (#13,508, Cell Signaling, Danvers, USA) 
on Simoa. The epitopes of both antibodies were mapped 
through indirect ELISA by antibody recognition of short 
overlapping biotinylated peptides that were coated indi-
vidually on streptavidin-coated plates. Western blot 
analysis was performed to analyse reactivity of the mAbs 
towards recombinant VAMP protein isoforms 1, 2 and 3 
(NBC1-18,336, NBC1-18,335, NBC1-18,346, Novus Bio-
logicals, Centennial, USA), and towards native VAMP-2 
in soluble human brain homogenate and synaptosome 
fractions [13]. One hundred nanograms of recombinant 
VAMP and 50 μL of total soluble brain homogenate or 
synaptosome were denatured for 10′ at 95 °C, run onto a 
10% Tris–glycine gel, blotted and detected with 1 μg/mL 
of mAb RD087 or D601A and anti-actin (MAB1501R, 
Merck, Kenilworth, USA), followed by detection with 
1:5000 anti-goat or anti-mouse-horseradish peroxidase 
(Jackson Immuno Research labs, West Grove, USA).
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VAMP‑2 immunoassay and partial analytical validation
The VAMP-2 Simoa homebrew assay was developed 
according to the general Quanterix Homebrew assay 
guidelines with the homebrew assay development kit 
components (reference 101,354, Quanterix, Billerica, 
USA) unless specified otherwise. In brief, 0.25 mg/mL of 
mouse mAb RD087 was coupled for 2  h at RT to 2E08 
paramagnetic beads in 150 μL coupling buffer (50  mM 
MES, 10 mM NaCl pH 6.2) after activation with 0.05 mg/
mL 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
(EDC, #A35391, ThermoFisher Scientific, Waltham, 
USA). The coated beads were blocked overnight at 4  °C 
and stored in bead diluent upon further use. Detector 
mAb D601A was dialyzed overnight into biotinylation 
buffer (borate pH 8.5) and biotinylated for 1 h at RT with 
EZ-Link™ Sulfo-NHS-LC-Biotin at 32 × excess (#A39257, 
Life Technologies, Carlsbad, USA). Next, Tris pH 9 was 
added for 1 h at a final concentration of 20 mM to stop 
the reaction. The biotinylated detector was dialyzed back 
into PBS for further use.

To measure VAMP-2 in CSF, 1E07 active capture 
beads/mL were combined with 1E07 helper beads/mL in 
sample diluent (PBS, 0.1% bovine serum albumin, 0.05% 
Tween-20). Twenty-five microlitres of this bead solution, 
100 μL of 1:4 diluted CSF and 20 μL of biotinylated detec-
tor (at 1 μg/mL) were incubated for 1 h (80 cadences) in 
a cuvette, followed by several wash steps. In a second 
step, 100 μL of 50  pM streptavidin-β-galactosidase was 
added and incubated for 5  min and 15  s (7 cadences), 
followed by several wash steps. 50 μL of resorufin β-D-
galactopyranoside substrate solution was added to the 
beads, mixed, and loaded onto the Simoa disc array for 
imaging. The immunoassay consists of a seven-point 
peptide calibrator M1–A69 (500–300–100–50–20–10–
5–2 pg/mL) and was characterized for multiple analytical 
parameters according to previously described guidelines 
[48]: lower limit of quantification (LLOQ), dilutional 
linearity, parallelism, spike-recovery, repeatability and 
intermediate precision. A quality control (QC) panel of 
three routine CSF samples was measured in four runs on 
separate days, and at least three times within each run, 
to analyse precision. The same QC panel was used to 
qualify the clinical measurements. The LLOQ was calcu-
lated based on the mean and variability of sixteen blank 
measurements. To evaluate parallelism, five CSF samples 
with high endogenous analyte levels were serially diluted 
within the calibrator range and measured in duplicate. 
Dilutional linearity was evaluated using three samples 
that were spiked with a calibrator concentration above 
the highest calibration point and diluted three-fold until 
LLOQ was reached. A zero, low (4.9  pg/mL), medium 
(22.4  pg/mL) and high (237.8  pg/mL) concentration of 
calibrator was spiked into five CSF samples with variable 

endogenous VAMP-2 present and measured in duplicate 
for spike-recovery assessment. Sample diluent was used 
as a reference matrix and spiked in the same manner.

Immunohistochemistry of post‑mortem brain tissue
Formalin-fixed paraffin-embedded (FFPE) sections 
were dewaxed, hydrated and treated with methanol 
and H2O2 to inhibit endogenous peroxidase. The sec-
tions were boiled in Tris/EDTA buffer pH 9 and blocked 
with 0.2% bovine serum albumin for 1  h at RT. Then, 
they were incubated overnight at 4  °C with the primary 
mAbs RD087 or D601A (#13,508, Cell Signaling, Dan-
vers, USA), diluted 1:200. After washing, sections were 
incubated 1 h at RT with 1:200 secondary antibody (Goat 
Anti-Rabbit-HRP, Dako, Glostrup, Denmark). Peroxidase 
activity was revealed with 3,3’-diaminobenzidine tetrahy-
drocloride chromogen (liquid DAB + substrate Chromo-
gen System, Dako, Glostrup, Denmark) and stained with 
haematoxylin (EnVisionTM FLEX haematoxylin, Dako, 
Glostrup, Denmark). The sections were dehydrated and 
mounted using DPX (PanReac Applichem, ITW Rea-
gents, Barcelona, Spain).

Statistical analyses
Statistical analyses were performed in R version 4.0.5. 
Group differences were compared using χ2 test for cat-
egorical variables, t-test or ANCOVA for linear vari-
ables. P-values for pairwise age-adjusted means in the 
ANCOVA were adjusted for multiple testing using the 
Bonferroni method. Correlation analyses were performed 
using the Spearman (ρ) coefficient. We used receiver 
operating characteristic curves to determine the diag-
nostic accuracy via the area under the curve (AUC) and 
compared ROC curves using the DeLong test. Where 
regression residuals deviated from a Gaussian distribu-
tion (Shapiro–Wilk p < 0.05), tests were performed on 
log2 transformed values, which did not deviate from a 
Gaussian distribution (Shapiro–Wilk p > 0.05).

Results
Characterization of VAMP‑2 monoclonal antibodies
A capture monoclonal antibody RD087 was gener-
ated from a mouse immunization with an N-terminal 
VAMP-2 peptide. This peptide overlaps substantially 
with the protein sequence of an MRM peptide (human 
VAMP-2 L32–R47) used in two independent studies that 
quantified VAMP-2 changes in AD [13, 15] (Fig. 1A). The 
antibody clone performed well as a capture antibody in 
combination with a commercial rabbit monoclonal anti-
body D601A as detector in the Simoa format resulting in 
a quantification of all tested CSF samples from clinical 
and remnant origin (Fig. 1B). Additional antibody char-
acteristics are highlighted in Fig. S1. On Western blot 
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(Fig. S1A), the mAbs detected native full-length VAMP-2 
only (one band at approx. 12.6  kDa) in whole human 
brain homogenates, with an enriched signal in the syn-
aptosomal fraction. D601A had high specificity towards 
recombinant VAMP-2 while RD087 cross-reacted with 
recombinant VAMP-1. The detected antigen fragment 
P19–V43 is part of the intracellular N-terminal domain 
and the SNARE motif and the minimal linear epitopes of 
both mAbs map closely together, with approximately 3 
residues apart (Fig. S1B). Both antibodies showed distinct 
reactivity with the neuropil in grey matter compared 
to white matter on human cortex tissue slices, which is 
indicative of synaptic localization (Fig. S1C).

Analytical and clinical performance of VAMP‑2 
immunoassay
The VAMP-2 Simoa assay met the acceptance crite-
ria (85–115%) for all studied parameters in the partial 
analytical validation (Tables S1–S4). It had an LLOQ of 

4.2  pg/mL and repeatability and intermediate precision 
were 8.9% and 10.3%, respectively. The immunoassay was 
evaluated for cross-reactivity with recombinant VAMP-1 
and VAMP-3 homologues but only detected recombinant 
VAMP-2 (Fig. S2A). Immunoassay protein levels corre-
lated mildly with previous MRM-based quantifications 
in a subset of the cohort (ρ = 0.36, p = 0.02) [13] (Fig. 
S2B). In the clinical evaluation, all VAMP-2 levels could 
be measured in CSF at dilution factor 4; they were within 
the quantifiable range and spanned 24–1044  pg/mL 
(dilution-corrected concentrations) (Fig.  1B). The inter-
run coefficient of variation (%CV) of QC samples were 
7.5, 8.3 and 8.5%, respectively. The calibrator inter-run 
%CV and clinical sample intra-run %CV did not exceed 
7.6% and 19.2%, respectively.

Demographics of the clinical cohort
Demographic and clinical data of the 214 participants 
included in the study are shown in Table  1. The study 

Fig. 1  Novel VAMP-2 immunoassay features. A Schematic overview of VAMP-2 protein sequence aligned with the protein fragment (red) 
that is recognized by the VAMP-2 immunoassay consisting of mAbs RD087 and D601A. VAMP-2 protein domains are indicated and assigned 
with different colours. Highlighted in green is the MRM peptide sequence used by Lleó et al. (2019) [13] to quantify VAMP-2 in CSF 
of subjects with sporadic Alzheimer’s disease. Created with BioRender.com. B Clinical frequency distribution of CSF VAMP-2 levels in patients 
from the Alzheimer’s continuum (n = 152) and cognitively healthy controls (n = 62) combined with the assays’ calibration curves (red) from five 
Simoa runs. The CSF concentrations of three QC samples used in the cohort are highlighted in green and the LLOQ is marked with a dotted 
line. VAMP-2, vesicle-associated membrane protein-2; mAbs, monoclonal antibodies; MRM, multiple reaction monitoring; LLOQ, lower limit 
of quantification; QC, quality control



Page 6 of 13Goossens et al. Alzheimer’s Research & Therapy          (2023) 15:186 

included cognitively unimpaired subjects and patients 
in the AD continuum (preclinical (Stage 1 and Stage 
2), prodromal AD (pAD) and AD dementia (dAD). The 
mean age-at-analysis was significantly lower in controls 
compared to Stage 2 (p = 0.03), pAD (p < 0.01) and dAD 
(p < 0.01) but not compared to Stage 1 (p = 0.2). The male/
female ratio was comparable across all groups (p = 0.22). 
The percentage of APOE ε4 carriers was lower (p < 0.001) 
and mean years of education was higher (p < 0.001) in 
controls compared to participants on the AD continuum. 
As expected, mean MMSE and FCSRT scores were com-
parable in preclinical Stages 1 and 2 but lower in pAD 
(p < 0.001) and dAD (p < 0.001) compared to controls.

Association of synaptic markers with age, sex and APOE ε4 
allele
We observed no statistically significant difference in CSF 
VAMP-2, Ng or SNAP-25 between males and females in 
the controls (p > 0.06). We observed low CSF VAMP-2 
(p = 0.04) and SNAP-25 (p = 0.01) but not Ng (p = 0.08) 
concentrations in females compared to males in the dAD 
group only. Participants in the pAD group who were car-
riers of the APOE ε4 allele had lower CSF Ng concentra-
tions than non-carriers (p = 0.03). This was not the case 
for VAMP-2 or SNAP-25 or for Ng in another group 
(p > 0.05). CSF VAMP-2 and SNAP-25 were associated 
with age in controls (adj. r2 = 0.09, p = 0.01, adj. r2 = 0.05, 
p = 0.04, respectively) and in preclinical Stage 1 (adj. 
r2 = 0.32, p < 0.001, adj. r2 = 0.32, p < 0.001, respectively). 
CSF Ng was associated with age in preclinical Stage 1 

(adj. r2 = 0.21, p < 0.001) but not in controls (adj. r2 = 0.03, 
p = 0.08). We observed a significant interaction between 
age and the APOE ε4 allele such that the association of 
the synaptic markers with age in participants on the AD 
continuum was weaker in APOE ε4 carriers (adj. r2 = 0.07 
to 0.09, p < 0.01) compared to noncarriers (adj. r2 = 0.37 
to 0.41, p < 0.001).

CSF synaptic markers have a biphasic profile over the AD 
continuum compared to controls
We observed a strong pair-wise correlation between 
the three synaptic biomarkers in all groups (ρ > 0.88, 
p < 0.001). Figure 2A–C shows the regression lines in par-
ticipants on the AD continuum (VAMP-2 and SNAP-25 
ρ = 0.88, p < 0.001; VAMP-2 and Ng ρ = 0.87, p < 0.001; Ng 
and SNAP-25 ρ = 0.89, p < 0.001) and controls (VAMP-2 
and SNAP-25 ρ = 0.79, p < 0.001; VAMP-2 and Ng 
ρ = 0.78, p < 0.001; Ng and SNAP-25 ρ = 0.82, p < 0.001). 
We compared CSF concentrations of the three synaptic 
biomarkers over the AD continuum. As mean age was 
elevated across AD stages, we compared CSF VAMP-
2, Ng and SNAP-25 across groups including age as a 
covariate. We observed similar CSF profiles across the 
AD continuum (Fig.  2D–F). Specifically, CSF levels of 
VAMP-2 were lower in Stage 1 (p < 0.001) but compa-
rable in Stage 2 (adj.p = 0.1), pAD (adj.p = 0.9) and dAD 
(adj.p = 0.9) compared to controls and elevated in Stage 2 
(adj.p < 0.01), pAD (adj.p < 0.001) and dAD (adj.p < 0.001) 
compared to Stage 1. CSF Ng and SNAP-25 both showed 
the same biphasic profile when adjusting for age: i.e., 

Table 1  Demographic and clinical data of the participants included in the study

Mean values (standard deviation, range) are given for each variable across clinical and biomarker groups

AD preclinical stage 1 or 2, preclinical Alzheimer’s disease stage 1 or 2; pAD, prodromal Alzheimer’s disease; dAD, AD dementia. MMSE, Mini-Mental State Examination; 
FCSRT, Free and Cued Selective Reminding Test. Cut-offs for positivity: CSF Aβ42 < 916 pg/mL, Aβ42:40 ratio < 0.062, CSF p-tau > 63 pg/mL, CSF t-tau: > 456 pg/mL

N Controls AD preclinical stage 1 AD preclinical stage 2 pAD dAD
62 30 9 74 39

Age at analysis, years 63 (5.8, 53–74) 61 (6.4, 52–76) 68 (8.3, 57–84) 73 (6, 54–84) 69 (7, 54–85)

% APOE ε4 allele carriers 18 33 56 62 59

% female 69 53 44 61 64

CSF Aβ42:40 ratio 0.11 (0.01, 0.07–0.12) 0.09 (0.02, 0.04–0.12) 0.04 (0.01, 0.02–0.06) 0.04 (0.01, 0.03–0.06) 0.04 (0.01, 0.03–0.06)

CSF p-tau pg/mL 38 (10, 21–58) 30 (12, 14–56) 119 (80, 67–326) 115 (51, 57–340) 136 (59, 47–384)

CSF t-tau pg/mL 264 (65, 138–438) 204 (79, 85–416) 683 (355, 404–1568) 700 (285, 378–1890) 819 (342, 405–2000)

Education, years 25 (5, 6–20) 15 (3, 8–20) 15 (5, 8–20) 11 (5, 1–20) 11 (4, 3–20)

Global deterioration scale 1 (0.2, 1–2) 1.2 (0.5, 1–3) 1 (0, 1–1) 3 (0, 3–3) 4.2 (0.5, 4–6)

MMSE score 29 (0.9, 26–30) 29 (1, 27–30) 28.4 (1.3, 27–30) 26 (2.2, 19–30) 20.5 (4.7, 9–30)

FCSRT 44.5 (2.9, 35–48) 45.2 (3.6, 32–48) 40.6 (5.9, 33–48) 20.7 (10.8, 0–43) 12 (11, 0–43)

Semantic fluency 20.4 (5.8, 7–33) 18.1 (4.7, 12–27) 21.4 (4.9, 12–33) 9.4 (4.0, 3–16) 12.5 (4.7, 1–22)

Phonemic fluency (execu-
tive functioning)

15.8 (4.1, 9–23) 14.6 (6.6, 6–29) 16.0 (4.9, 0–26) 7.5 (4.1, 2–15) 10.5 (4.8, 2–25)

ROCF (visuospatial) 31.6 (2.8, 26–36) 29.2 (5.6, 19–36) 16.3 (4.5, 6–26) 17.6 (13.5, 2–34) 27.6 (6.0, 13–34)
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higher in Stage 2 (p < 0.0001), pAD (p < 0.0001) and 
dAD (p < 0.0001) compared to Stage 1 but also lower in 
Stage 1 (p < 0.001) and higher in Stage 2 (adj.p < 0.001), 
pAD (adj.p < 0.001) and dAD (adj.p < 0.001) compared to 
controls.

The markers showed diagnostic accuracy to differenti-
ate controls from symptomatic AD (pAD + dAD) as seen 
in the receiver operating characteristic (ROC) analy-
sis (Fig.  2G–I). SNAP-25 showed high area under the 
curve (AUC) values to discriminate dAD from controls 
(AUC = 0.864) and pAD from controls (AUC = 0.866) 
and performed statistically better than VAMP-2 
(AUC = 0.640, 0.696, respectively) in both analyses 
(p < 0.0001). All three proteins showed comparable AUC 

values to discriminate preclinical Stage 1 from con-
trols (Ng AUC = 0.799, VAMP-2 AUC = 0.798, SNAP-25 
AUC = 0.762).

Association of synaptic biomarkers with core AD 
biomarkers in CSF
Of the core AD CSF biomarkers, the synaptic proteins 
were strongly associated with CSF tau markers, p-tau 
(adj. r2 = 0.47 to 0.81, p < 0.001), and t-tau (adj. r2 = 0.39 to 
0.70, p < 0.001) and to a lesser extent with the Aβ42:40 ratio 
(adj. r2 = 0.11 to 0.49, p < 0.001), at all AD stages. Figure 3 
plots the regression lines for these associations in all par-
ticipants on the AD continuum: CSF p-tau (adj. r2 = 0.66 
to 0.78, p < 0.001), t-tau (adj. r2 = 0.62 to 0.75, p < 0.001), 

Fig. 2  CSF profile of synaptic markers in AD. A–C Pairwise correlation of VAMP-2, SNAP-25 and neurogranin (Ng) in controls (blue) 
and in participants on the AD continuum (orange). Linear regression lines are shown for each group. Shaded areas represent standard error 
of the regression lines. D–F Violin plots showing mean and standard error (box) CSF levels of VAMP-2, Ng and SNAP-25 in cognitively healthy 
controls and patients across the AD continuum; (preclinical) Stage 1, (preclinical) Stage 2, prodromal AD (pAD) and AD dementia (dAD). Bars mark 
comparisons where Bonferonni-adjusted ANCOVA p < 0.05 using log2 transformed levels, and adjusted for age. G–I Receiver operating characteristic 
(ROC) curves of synaptic proteins at different disease stages: Stage 1 (G), pAD (H), dAD (I)
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Aβ42:40 ratio (adj. r2 = 0.5 to 0.63, p < 0.001) and in con-
trols, p-tau (adj. r2 = 0.62 to 0.71, p < 0.001), and t-tau 
(adj. r2 = 0.55 to 0.68, p < 0.001).

Association of synaptic markers with cognitive 
performance in AD
We tested for association of the synaptic biomarkers with 
different memory domains including episodic memory 
(FCSRT), semantic memory (semantic fluency), execu-
tive function (phonemic fluency), visuospatial memory 
(ROCF test) and global cognition (MMSE) in individuals 
on the AD continuum, at each AD stage and in controls, 
adjusting for age and years of education. All three syn-
aptic proteins were associated with all cognitive domains 
in individuals on the whole AD continuum (Fig.  4) and 
with executive function in dAD (VAMP-2 adj. r2 = 0.14, 
p = 0.02, Ng adj. r2 = 0.12, p = 0.03, SNAP-25 adj. r2 = 0.18, 
p = 0.01). VAMP-2 was associated with episodic memory 
in controls (adj. r2 = 0.07, p = 0.02). Ng (adj. r2 = 0.12, 
p = 0.05) and SNAP-25 (adj. r2 = 0.17, p = 0.02) were asso-
ciated with visuospatial memory in AD stage 1.

Discussion
We have developed a digital immunoassay to quantify 
the synaptic protein, VAMP-2, in CSF. Using this assay, 
we show for the first time that VAMP-2, Ng and SNAP-
25 have similar biphasic profiles over the course of the 
AD continuum compared to controls, showing changes 
that precede those of other CSF markers of tau-medi-
ated neurodegeneration. The synaptic markers were all 
individually associated with core AD biomarkers and 
cognitive decline over multiple domains in participants 
on the AD continuum. To develop the VAMP-2 assay, 
we inoculated mice with a short protein fragment of 
approximately 25 amino acids located in the N-termi-
nal proline-rich domain that showed minimal cross-
reactivity towards other VAMP isoforms. Moreover, the 
sequence of this VAMP-2 fragment largely overlaps with 
the original MRM peptide that was first detected in CSF. 
This is because the capture mAb RD087 was explicitly 
generated against this epitope to facilitate the alignment 
with ‘gold standard’ mass spectrometry (MS). After all, 
MS serves as a reference method for the standardization 

Fig. 3  Association of synaptic markers with core AD biomarkers in CSF. CSF VAMP-2 (A), SNAP-25 (B) and Ng (C) are plotted against core CSF AD 
biomarkers (Aβ42:40 ratio, p-tau, total tau) in cognitively healthy controls and AD patients. Linear regression lines are shown for each group. Shaded 
areas represent standard error of the regression lines
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of CSF immunoassays as it helps to develop certified 
reference materials needed for harmonization, e.g. Aβ42 
[49]. The new assay had a good analytical performance 
and it could measure VAMP-2 in all clinical CSF sam-
ples in a robust and accurate manner (intermediate pre-
cision %CV of approximately 10%).

The availability of immunoassays for other synaptic pro-
teins, Ng and SNAP-25, allowed direct head-to-head com-
parison of these markers with VAMP-2 in CSF. This is the 
first time that a biphasic profile of SNAP-25 and Ng has 
been reported in sporadic AD, but this profile is similar to 
that of other synaptic proteins (calsyntenin-1, GluR4, neu-
rexin-2A, neurexin-3A, syntaxin-1B and thy-1 cell surface 
antigen) [13, 41]. In a previous smaller study of VAMP-2 
[13] using MRM-based measurements, we observed only 
a trend towards lower CSF VAMP-2 at this AD stage and 
elevated levels of CSF VAMP-2 at later AD stages. In this 

study, higher concentrations of CSF VAMP-2 were asso-
ciated with higher CSF p-tau181 and t-tau and moder-
ately with lower CSF Aβ42:40 ratio throughout the AD 
continuum. In another cohort where the same VAMP-2 
immunoassay was used, controls and AD subjects were 
divided into four subgroups with increasing p-tau lev-
els. Consistent strong positive associations of VAMP-2 
with p-tau were also observed, independent of the dis-
ease stage. VAMP-2 was lower in participants with cog-
nitive impairment and positive for amyloid markers but 
with low p-tau levels (A + ,T-) compared to healthy con-
trols [50]. Combined with the data from this study, we 
hypothesize that CSF VAMP-2, as well as SNAP-25 and 
Ng, partially reflect at least two separate mechanisms: (i) 
synaptic dysfunction with low concentration at normal/
low p-tau levels (A + ,T −) which could either be consid-
ered a general early-stage process or a process related to 

Fig. 4  Association of synaptic markers with cognitive performance. CSF VAMP-2, SNAP-25, and Ng are plotted against episodic, semantic, executive, 
visuospatial domains and global cognition in participants on the Alzheimer’s continuum. Linear regression lines are shown. Shaded areas represent 
the standard error of the regression lines. FCSRT, Free and Cued Selective Reminding Test, MMSE, mini-mental state examination
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a specific biological AD subtype with low p-tau and (ii) 
tau-mediated neuronal loss which leads to higher con-
centrations due to release into the CSF. What is causing 
the decreased CSF levels in A + ,T − subjects without the 
confounding effect of tau has yet to be determined; it 
could point towards a reduced structural synaptic den-
sity, intracellular sequestration of the protein, a down-
regulation of VAMP-2 expression due to altered synaptic 
activity and/or a decreased synaptic vesicle mobility and 
release. VAMP-2 and SNAP-25 form part of the SNARE 
complex, and VAMP-2 is the most abundant constitu-
ent of synaptic secretory vesicles [35] with a widespread 
expression throughout the brain [36, 37]. Perturbation of 
SNARE complex assembly has also been reported in post-
mortem brains of AD patients [51] which may be caused 
by directly interfering amyloid-beta oligomers that impair 
SNARE-mediated exocytosis [52, 53].

Individually, the three synaptic markers were mildly 
associated with measures of cognitive impairment across 
all domains studied (episodic, semantic, executive, visu-
ospatial and global cognition) in individuals on the AD 
continuum.

In a previous study comparing the expression of seven 
presynaptic proteins in postmortem tissue, VAMP-2 was 
the only protein decreased in all tested brain regions 
(CA1 region in the hippocampus, the occipital cortex, the 
entorhinal cortex and caudate nucleus) of AD compared 
to non-neurodegenerative controls and low VAMP-2 
expression was associated with MMSE and FCSRT 
scores in the hippocampus and entorhinal cortex [40]. In 
the same study, SNAP-25 was comparable between AD 
and controls in all brain regions tested. Taken together, 
future evaluation of the associations of CSF VAMP-2 and 
SNAP-25 with in vivo neural correlates (e.g. hippocampal 
atrophy) of declining episodic memory and other cogni-
tive functions in AD patients as measured with structural 
MRI [54], could provide valuable information.

Emerging blood biomarkers are more easily accessible 
for widespread clinical use than CSF biomarkers and an 
extensive unbiased proteomics study has shown that syn-
aptic proteins including Ng and SNAP-25 are present in 
plasma [55]. Unfortunately, measurements of Ng in blood 
do not have diagnostic value for AD as levels are high and 
unrelated to altered CSF neurogranin, probably due to the 
contribution of peripherally expressed neurogranin pep-
tides [17]. Also, current SNAP-25 immunoassay formats 
lack sensitivity to pick up SNAP-25 fragments in plasma 
[20] so it is worthwhile exploring VAMP-2 as a potential 
marker for synaptic integrity in blood in the future.

A limitation of this study is the cross-sectional design, 
particularly in the analysis of cognitive decline. Thus 
longitudinal studies, measuring several cognitive scores 
on multiple time points, preferably combined with an 

additional CSF samples will help to fully establish the 
prognostic value of VAMP-2 concentrations in the AD 
continuum. Another limitation is the relatively small 
sample size for the preclinical AD stages which show 
decreased synaptic protein levels in A + T − individuals 
in this study. To validate these findings larger studies are 
needed with well-defined criteria for preclinical AD.

In conclusion, we have developed a novel digital immu-
noassay with good specificity and sensitivity to measure 
CSF VAMP-2 levels in subjects with sporadic AD. CSF 
VAMP-2 performed similarly to CSF SNAP-25 and Ng, 
showing changes early in the disease process that cor-
relate with core AD biomarkers and multiple cognitive 
domains.
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Additional file 1: Figure S1. Characterization of monoclonal antibod-
ies used in immunoassay. (A) Western blot showing reactivity of mAb 
D601A (left panel) and RD087 (middle panel) towards recombinant VAMP 
protein isoforms and native VAMP. VAMP-1, -2 and -3 (lanes 1, 2 and 3 
resp.) were loaded on a gel besides whole homogenates (lanes 4 and 6) 
and a synapse enriched fraction (lane 5) of a post-mortem human cortex.  
The homogenates are also shown on SDS-PAGE (right panel). White 
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arrowhead: actin, black arrowhead: VAMP. (B) Peptide scan to map minimal 
epitopes of D601A (red) and RD087 (green). Either antibody was added 
to individually coated biotinylated peptides with sequential overlap in 
indirect ELISA (pt435-pt447, upper panel). (C) Immunohistochemistry 
on human frontal cortex using RD087 (upper panels) or D601A (lower 
panels). Staining with either mAb locates predominantly to the neuropil 
in grey matter only, which is consistent with synaptic localization. VAMP, 
vesicle-associated membrane protein; mAb, monoclonal antibody.

Additional file 2: Figure S2. Specificity analysis of VAMP-2 Simoa assay. 
(A)Recombinant VAMP-1, VAMP-2, VAMP-3 were serially diluted in sample 
diluent and measured in parallel with the VAMP-2 homebrew assay.  (B) 
Correlation of VAMP-2 CSF concentrations obtained with Simoa versus 
MRM [13] on a subset (n=41) of the SPIN cohort. VAMP, vesicle-associated 
membrane protein; MRM, multiple reaction monitoring; ρ, Spearman rank 
correlation coefficient; CI, confidence interval.

Additional file 3: Table S1. Repeatability and intermediate precision of 
VAMP-2 assay on three routine CSF samples (QC1-QC3). Sr = repeat-
ability standard deviation, SRW = intermediate precision standard 
deviation. Table S2. Spike-recovery of VAMP-2 assay on four routine CSF 
samples spiked with low, medium and high concentration of calibrator 
peptide. Table S3. Dilutional linearity using three routine CSF samples 
spiked with a concentration above the highest calibration point and 
diluted three-fold into measuring range. Mean percent linearity is cal-
culated as 100 * (observed concentration at dilution X) * (dilution factor 
X) / (observed concentration at dilution X-1) * (dilution factor (X-1)). DF, 
dilution factor. Table S4. Parallelism of five CSF samples serially diluted 
in duplicate within the quantifiable range of the calibration curve. DF, 
dilution factor.
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