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Abstract
Motivation: Recent rapid developments in spatial transcriptomic techniques at cellular resolution have gained increasing attention. However,
the unique characteristics of large-scale cellular resolution spatial transcriptomic datasets, such as the limited number of transcripts captured per
spot and the vast number of spots, pose significant challenges to current cell-type deconvolution methods.

Results: In this study, we introduce stVAE, a method based on the variational autoencoder framework to deconvolve the cell-type composition
of cellular resolution spatial transcriptomic datasets. To assess the performance of stVAE, we apply it to five datasets across three different bio-
logical tissues. In the Stereo-seq and Slide-seqV2 datasets of the mouse brain, stVAE accurately reconstructs the laminar structure of the pyrami-
dal cell layers in the cortex, which are mainly organized by the subtypes of telencephalon projecting excitatory neurons. In the Stereo-seq dataset
of the E12.5 mouse embryo, stVAE resolves the complex spatial patterns of osteoblast subtypes, which are supported by their marker genes. In
Stereo-seq and Pixel-seq datasets of the mouse olfactory bulb, stVAE accurately delineates the spatial distributions of known cell types. In sum-
mary, stVAE can accurately identify spatial patterns of cell types and their relative proportions across spots for cellular resolution spatial transcrip-
tomic data. It is instrumental in understanding the heterogeneity of cell populations and their interactions within tissues.

Availability and implementation: stVAE is available in GitHub (https://github.com/lichen2018/stVAE) and Figshare (https://figshare.com/
articles/software/stVAE/23254538).

1 Introduction

Spatial transcriptomics is a revolutionary molecular profiling
method that enables the measurement of mRNA expression
levels of genes in biological tissue, while simultaneously pro-
viding spatial information. This technique presents a unique
opportunity to identify spatial patterns of cell types and un-
cover cellular heterogeneity within tissues (Michaela et al.
2020). Spatial transcriptomics technologies such as 10�
Visium have been widely used for systematic profiling of spa-
tially resolved transcriptome (Stähl et al. 2016). With a spot
diameter of 55 lm, 10� Visium offers a spatial resolution of
about 1–10 cells per spot. There may be multiple cell types
present in each spot. To resolve the cell types that are present
in each spot, several methods have been developed, including
DestVI (Lopez et al. 2022), RCTD (Cable et al. 2021),
Stereoscope (Andersson et al. 2020, Gayoso et al. 2022), and
Spotlight (Elosua-Bayes et al. 2021). In this article,
Stereoscope denotes the one reimplemented in scvi-tools
(Gayoso et al. 2022). These methods use single-cell RNA

sequencing (scRNA-seq) data as a reference and infer the cell
type proportion of the spots.

Sequencing-based spatial transcriptomics technologies that
can achieve cellular resolution are emerging, including Slide-
seqV2 (Stickels et al. 2021), Stereo-seq (Chen et al. 2022),
Pixel-seq (Xiaonan et al. 2022), and other technologies. These
technologies present several unique challenges for methodol-
ogy development. Firstly, the datasets generated from these
technologies tend to have a much larger scale: the number of
profiled spatial spots can range from 10 000 to 500 000
(Supplementary Table S1). This means the deconvolution pro-
cess would be extremely time-consuming and memory-
intensive. Secondly, the number of cells per spot is small.
Therefore, the cell-type composition of spots should be very
sparse. Thirdly, the datasets generated from these technolo-
gies tend to have a higher level of noise: the mean total unique
molecular identifier (UMI) counts per spot are very low
(Supplementary Table S2). In particular, existing excellent
methods (e.g. RCTD, DestVI, and cell2location) have

Received: 16 June 2023; Revised: 10 October 2023; Editorial Decision: 16 October 2023; Accepted: 19 October 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(10), btad642
https://doi.org/10.1093/bioinformatics/btad642

Advance Access Publication Date: 20 October 2023

Original Paper

https://orcid.org/0009-0002-8633-8223
https://orcid.org/0000-0002-0489-3884
https://orcid.org/0000-0002-4407-3055
https://github.com/lichen2018/stVAE
https://figshare.com/articles/software/stVAE/23254538
https://figshare.com/articles/software/stVAE/23254538
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad642#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad642#supplementary-data


limitations in addressing all the challenges, thereby restricting
their application in the analysis of large-scale cellular resolu-
tion spatial transcriptomics. This highlights the need to de-
velop a method with efficient memory usage that can
accurately infer the sparse cell-type composition of spots for
large-scale spatial transcriptomic datasets with cellular
resolution.

We have developed stVAE that employs a variational
encoder-decoder framework to decompose cell-type mixtures
for cellular resolution spatial transcriptomic data. stVAE is
scalable to large-scale datasets and has less running time (see
Supplementary Material). For the small spatial transcriptomic
dataset, which may lack enough data to train stVAE, we con-
struct a pseudo-spatial transcriptomic dataset to guide the
training of stVAE on the small spatial transcriptomic dataset
(i.e. smaller number of spatial spots). More importantly,
stVAE could accurately capture the sparsity of cell-type
composition in the spots of cellular resolution spatial tran-
scriptomic data. Through the implementation on sequencing-
based spatial transcriptomic data generated from different
platforms and tissues, we demonstrate that stVAE accurately
decomposes the cell-type mixtures for cellular resolution spa-
tial transcriptomic data.

2 Materials and methods

2.1 Statistical model

Our model consists of one encoder network E and one de-
coder network Dx. The encoder network takes a UMI count
vector Xi as input. The outputs of E are the mean vector
ElðXiÞ and the vector of the diagonal elements ErðXiÞ of the
covariance matrix diag½ErðXiÞ� for the normal distribution
q/ðZijXiÞ ¼ N ðElðXiÞ; diag½ErðXiÞ�Þ. We sample latent fea-
ture Zi from q/ðZijXiÞ using re-parameterization trick.

The decoder network Dx with trainable parameter x takes
Zi as input and generate the cell type proportion vector
Yi ¼ fyit; t 2 ½1; ::;T�; i 2 ½1; ::; I�g, where yit represent the pro-
portion of cell type t at spot i. We assume that the spatial ex-
pression data Xi follows a negative binomial distribution.

Formally, the model of stVAE is as follows:

zi � Nð0; IÞ; (1)

Zi ¼ ErðXiÞzi þ ElðXiÞ: (2)

Yi � DxðZiÞ; (3)

lig ¼ sg

XT

t¼1

yitutg þ cg; (4)

Xig � NBðlig;bgÞ; (5)

where lig represents the mean expression level of gene g at
spot i, bg represents the gene-specific dispersion parameter, utg

represents the mean gene expression level of gene g for cell
type t, sg represents the gene-specific scaling parameter, and cg

denotes the gene-specific additive noise. In our model, utg and
bg are estimated from scRNA-seq reference data using the
package scvi-tools. Combining Equation (4) and (5), we have
likelihood of Xi as

phðXigjYiÞ ¼ NB sg

XT

t¼1

yitutg þ cg;bg

 !

¼ NB sg

XT

t¼1

DxðZiÞtutg þ cg; bg

 !

¼ phðXigjZiÞ;

(6)

where h ¼ ðx; sg; cgÞ. Apart from stVAE, we also considered
three alternative models. The first model is denoted as
stVAE_Poisson, where the only difference is that we replace the
negative binomial distribution with the Poisson distribution to
model the spatial expression data Xi. In the second model, we
model spatial transcriptomics Xig using zero-inflated negative bi-
nomial distribution (ZINB): Xig � ZINBðlig; bg; sgÞ, where lig

represents the mean expression level of gene g at spot i, bg repre-
sents the gene-specific dispersion parameter, sg represents the
gene-specific dropout parameter. In the third model, we replace
the variational autoencoder in stVAE with a deep neural net-
work (DNN) (details in Supplementary Fig. S9), which has the
same hidden layers and output layers with Dx. DNN takes Xi as
input and outputs Yi. We compared the performance of these
models with stVAE on the mouse brain Stereo-seq (Chen et al.
2022) dataset, the mouse olfactory bulb (MOB) Stereo-seq
(Chen et al. 2022) and Pixel-seq (Xiaonan et al. 2022) datasets.
(Supplementary Figs S10 and S11), and they do not perform as
well as stVAE.

2.2 Variational inference

We implement the variational autoencoder (VAE) framework
(Kingma and Welling 2013) for variational inference. The poste-
rior distribution phðZijXiÞ of the latent feature Zi is approxi-
mated by a tractable normal distribution q/ðZijXiÞ. This could
be achieved by minimizing the Kullback–Leibler divergence.

DKLðq/ðZijXiÞjphðZijXiÞÞ ¼ Eq/ log
q/ðZijXiÞ
phðZijXiÞ

� �

¼ DKLðq/ðZijXiÞjphðZiÞÞ

�Eq/ ½log phðXijZiÞ� þ log phðXiÞ;
(7)

where phðZiÞ ¼ N ð0; IÞ is the prior distribution of Zi.
Define the evidence lower bound (ELBO):

LELBOðh;/; XiÞ ¼ log phðXiÞ �DKLðq/ðZijXiÞjphðZijXiÞÞ:
(8)

So maximizing LELBOðh;/; XiÞ is equivalent to minimizing
the following objective function,

Lðh;/; XiÞ ¼ DKLðq/ðZijXiÞjphðZiÞÞ � Eq/ ½log phðXijZiÞ�:
(9)
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3 Results

3.1 Overview of stVAE

The framework of stVAE is shown in Fig. 1. The network archi-
tecture of stVAE consists of encoder and decoder networks
(Fig. 1a). The network takes gene expression of both pseudo
spots and real spatial spots as input and generates their inferred
cell type proportions. The pseudo spots are generated from a ref-
erence scRNA-seq dataset: the true cell type proportions are
known for the pseudo spots, and these pseudo spots serve as the
supervised component to facilitate training of the neural net-
works in stVAE. To reduce the noise in raw data, stVAE enco-
des gene expression data of spots into low-dimensional latent
features. This dimension reduction operation preserves the essen-
tial information and helps remove some noise in the input data
(Im et al. 2017, Nguyen and Holmes 2019). To capture the spar-
sity of cell type composition in the spots of cellular resolution
spatial transcriptomic data, we utilize the Sparsemax (Martins
and Astudillo 2016) layer in the output layer. Through mini-
batch training, stVAE is scalable to large-scale datasets. To re-
duce processing time, stVAE is implemented by Pytorch, which
could be accelerated by GPU.

The intuition of stVAE is illustrated in Fig. 1b, through the
implementation on the E12.5 mouse embryo Stereo-seq spa-
tial transcriptomic dataset. The encoder network embeds the
spots in a low-dimensional space Z, where different cell types
are well separated. Taking advantage of this, the decoder net-
work uses the latent feature Z as input and can easily estimate
the cell type composition of the spots from Z. To validate the

performance of stVAE, we constructed a simulation study (see
Supplementary Material).

3.2 Application of stVAE on a cellular resolution

spatial transcriptomic data of mouse brain

To assess the effectiveness of stVAE in real tissues, we first ap-
plied stVAE to analyze a cellular resolution spatial transcrip-
tomic dataset of mouse brain generated from Stereo-seq (Chen
et al. 2022). The mouse brain (Stereo-seq) dataset has a spatial
resolution of 10lm and comprises 251 760 spots (bin 20,
20� 20 DNA nanoballs are aggregated). We used a public
mouse brain scRNA-seq dataset (Zeisel et al. 2018) as the
reference.

We first assessed stVAE in identifying regionally enriched
cell types. For example, stVAE correctly localized dentate gy-
rus granule neurons (DGGRC2) to the dentate gyrus (Zeisel
et al. 2018), which is strongly supported by the expression of
its top-ranked marker genes Ahcyl2 (Supplementary Fig.
S2a). We zoomed in the region of the dentate gyrus
(Supplementary Fig. S2b): notably, the densely packed cells in
the histology image are well-matched with the distribution of
DGGRC2 inferred by stVAE and its marker gene Ahcyl2.

Next, we compared stVAE with DestVI and Stereoscope
for mapping 23 subtypes of telencephalon projecting excit-
atory neurons (TEGLU) to the cortical pyramidal layers. We
did not include RCTD and Spotlight in this comparison be-
cause they cannot be implemented due to the high memory us-
age. DestVI failed to infer the proportions of most TEGLU
subtypes (Supplementary Fig. S3). We first visualized the

Figure 1. Overview of stVAE. (a) The network architecture of stVAE. It consists of encoder and decoder networks. stVAE takes gene expression of both

pseudo spots and real spatial spots as input and generates their inferred cell type proportions. The pseudo spots are generated from the scRNA-seq

reference dataset with known cell type proportions, which can be used as a supervised component to guide the training process for small spatial

transcriptomic datasets. (b) An example demonstrating the intuition of stVAE. The encoder network takes spatial transcriptomic spots as inputs and

encodes them to the latent features Z. The cell types become better separated at the latent space of Z. The decoder network takes Z as input and

estimates the cell type composition of the corresponding spots.
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Figure 2. stVAE accurately resolves subtypes of telencephalon projecting excitatory neurons (TEGLU) and other cell types in the mouse brain Stereo-seq

dataset. (a) Top two rows, the proportions of five TEGLU subtypes inferred by stVAE and Stereoscope are displayed on each spot; The third row,

expression levels of the five corresponding top-ranked marker genes are displayed; Bottom row, the Spearman’s rank correlations between the inferred

cell type proportion and expression levels of the top two marker genes for the five TEGLU subtypes. (b) Comparison of Spearman’s rank correlation

between the expression of top-ranked marker genes and the proportions of 23 TEGLU subtypes inferred by stVAE and Stereoscope. (c) Comparison of

Moran’s I score for 23 TEGLU subtypes using the proportions inferred by stVAE and Stereoscope. (d) Comparison of Spearman’s rank correlation

between the expression of top-ranked marker genes and the cell type proportions inferred by stVAE and Stereoscope over all spots for 224 cell types.
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inferred proportions of five subtypes of TEGLU and observed
that stVAE identified more distinct patterns with higher pro-
portions of the cell types in their localized areas compared to
Stereoscope, supported by the high expression of the corre-
sponding top two marker genes ranked by P-value in Zeisel
et al. (2018) (Fig. 2a). Therefore, stVAE accurately repro-
duced the laminar structure of the pyramidal cell layers in the
cortex of the mouse brain. Next, to quantitatively assess the
performance of stVAE on all 23 subtypes of TEGLU, we se-
lected the top two ranking marker genes (sorted by P-value)
for each TEGLU subtype and calculated the Spearman’s rank
correlation between its inferred cell type proportion and
marker gene expression across all spots. All the marker gene-
cell type pairs were pooled in the boxplots (Fig. 2b). The
resulting higher correlation confirms the accuracy of stVAE
deconvolution in identifying the TEGLU subtypes. We also
computed Moran’s I score, which evaluates the spatial auto-
correlation of the inferred cell type proportion (Moran 1950).
The higher Moran’s I score (Fig. 2c) demonstrates that the

spatial distribution of TEGLU subtypes inferred by stVAE has
a stronger spatial pattern. Furthermore, to compare the over-
all performance of stVAE and Stereoscope on the mouse brain
(Stereo-seq) dataset, we calculated the Spearman’s rank corre-
lation between the inferred proportions of the 224 cell types
and the expression of their 446 top-ranked marker genes
(Zeisel et al. 2018). The higher Spearman’s rank correlation
(Fig. 2d) confirms the accuracy of stVAE deconvolution in
mouse brain (Stereo-seq) dataset.

3.3 stVAE identifies cell types in a large-scale

cellular resolution spatial transcriptomic data of

E12.5 mouse embryo

We next applied stVAE to identify cell types in a large-scale
cellular resolution spatial transcriptomic data of E12.5 mouse
embryo generated from Stereo-seq (Chen et al. 2022). The
dataset has a spatial resolution of 10 lm and comprises
318 364 spots (bin 20, 20�20 DNA nanoballs are aggre-
gated). The scRNA-seq reference dataset of the mouse embryo

Figure 3. Application of stVAE on E12.5 mouse embryo obtained from Stereo-seq. Top three rows, the proportions of the five osteoblast subtypes

inferred by stVAE, DestVI, and Stereoscope are displayed on each spot. The fourth row, expression levels of the five corresponding top-ranked marker

genes are displayed; Bottom row, the Spearman’s rank correlations between the inferred cell type proportions and expression levels of the top two

marker genes for each of the five osteoblast subtypes.
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is obtained from the mouse organogenesis cell atlas (Cao
et al. 2019).

To benchmark stVAE, DestVI, and Stereoscope in mapping
cell subtypes with complex spatial patterns, we considered
subtypes of osteoblasts, which are cells responsible for synthe-
sizing bone tissue and play a crucial role in skeletal develop-
ment and remodeling (Dirckx et al. 2019). We focused on five
osteoblast subtypes with distinct spatial patterns and utilized
their top-ranked marker genes (Cao et al. 2019) to evaluate
their inferred proportions. Compared to DestVI and
Stereoscope, stVAE accurately identified these osteoblast sub-
types (Fig. 3), supported by the expression of their corre-
sponding marker genes. For example, the spatial pattern of
osteoblasts-15 is difficult to discern using DestVI and
Stereoscope, but its marker gene, Camk1d, shows a clear
spatial pattern that closely matches the proportion of
osteoblasts-15 inferred by stVAE. Therefore, stVAE could aid
in elucidating the intricate spatial patterns of osteoblast sub-
types, which are corroborated by the spatial patterns of their
top-ranked marker genes.

3.4 stVAE accurately localized cell types in cellular

resolution spatial transcriptomic data of MOB

Finally, we applied stVAE to localize cell types in two cellular
resolution spatial transcriptomic datasets of MOB generated
from Stereo-seq and Pixel-seq, respectively. Both datasets
have a cellular spatial resolution of 10 lm. The MOB (Stereo-
seq) (Chen et al. 2022) dataset comprises 107 416 spots (bin
14, 14�14 DNA nanoballs are aggregated). The MOB
(Pixel-seq) (Xiaonan et al. 2022) dataset has 115 590 spots
(33� 33 bin). We used a public MOB scRNA-seq dataset
(Tepe et al. 2018) as the reference. The coronal MOB has a
clear anatomical structure and is organized into six layers:
rostral migratory stream (RMS), granule cell layer (GCL), mi-
tral cell layer (MCL), external plexiform layer (EPL), glomer-
ular layer (GL), and olfactory nerve layer (ONL) (Fu et al.
2021) (Fig. 4a).

We first utilized the MOB (Stereo-seq) dataset to evaluate
the overall performance of stVAE by looking at all 40 cell
types together. More specifically, for each cell type, we calcu-
lated the Spearman’s rank correlation coefficient and JS dis-
tance between the expression of its top two marker genes
(Tepe et al. 2018) and the inferred proportion of cell type
across all the spots (Fig. 4b and c). stVAE tends to have a
higher correlation and lower JS distance compared to the
other methods, which suggests that cell type proportion in-
ferred by stVAE is more strongly supported by the observed
marker gene expression. Additionally, the cell type proportion
inferred by stVAE tends to have a higher Moran’s I score
(Fig. 4d).

Next, we focused on five cellular subtypes with distinct
regional identities, including astrocytes (Astro1), olfactory
ensheathing cells (OEC4), developing immature neurons
(n04-Immature), granule cells (n12-GC-6), and mitral and
tufted (M/T) cells (n16-M/TC-2). Compared to other meth-
ods, the cell type proportions inferred by stVAE are more
distinct, where the cell types have a higher proportion in
the areas that they are localized, supported by the expres-
sion of their marker genes (Fig. 4e). For example, the top-
ranked marker gene of n04-Immature Sox11 is highly
expressed in the region RMS, which is consistent with the

higher proportion of n04-Immature inferred by stVAE in
the same region (Kahle and Bix 2012). Furthermore, com-
pared to other methods, stVAE identified a distinct enrich-
ment of n12-GC-6 in the superficial regions of GCL, which
is supported by the expression of the marker gene Cplx1
and also the literature (Tepe et al. 2018). This demonstrates
that stVAE is better able to capture the complex spatial het-
erogeneity of cell types.

4 Discussion

The unique characteristics of the large-scale cellular resolu-
tion spatial transcriptomics datasets, such as the low UMI
counts and sparse cell-type composition per spot, pose sig-
nificant challenges to current cell-type deconvolution meth-
ods. Therefore, we developed stVAE. Compared to existing
methods, stVAE encodes gene expression data of spots into
low-dimensional latent features, which is a dimension re-
duction method to reduce noise. Additionally, the
Sparsemax layer integrated into the model enhances
stVAE’s ability to accurately capture the sparsity of cell-
type composition in real data.

The spearman’s correlation values shown in Figs 2–4 are
low. This is because the total UMI counts per spot tend to be
low (shown in Supplementary Table S1), indicating a low cap-
ture rate and high level of noise (Liu et al. 2023). As a result,
the observed marker gene expressions tend to show a high
level of sparsity and noise, resulting in a low correlation with
cell type proportions across all spots. Even so, compared to
other methods, cell type proportions inferred by stVAE have
higher correlations with the expression levels of marker
genes.

To demonstrate that stVAE is well-designed, we compare
stVAE with three versions of the model. The results
(Supplementary Fig. S10) indicate that the negative binomial
distribution is sufficient for modeling spatial transcriptomics.

In fact, integration of scRNA-seq data and spatial tran-
scriptomics data has been widely utilized in analyzing tran-
scriptomics data. SpaGE (Abdelaal et al. 2020) and stPlus
(Shengquan et al. 2021) perform joint embedding to identify a
common latent space shared by scRNA-seq data and spatial
transcriptomic data. CARD (Ma and Zhou 2022) assumes a
linear model between the mixed-cell expression matrix and
the cell-type-specific expression matrix, which is constructed
from the scRNA-seq data. PAST (Zhen et al. 2022) treats the
scRNA-seq data as one source to construct a prior gene ex-
pression matrix. This matrix could provide reference informa-
tion to the Bayesian neural network module in PAST during
the training process. In comparison, stVAE utilizes
maximum-likelihood estimation to derive gene expression
profiles for each cell type from the scRNA-seq data. Then the
cell type’s expression profiles are incorporated into the VAE
framework.

With the high-quality reference scRNA-seq data available,
stVAE is well-suited for processing cellular resolution spatial
transcriptomics datasets, and it is especially useful for large-
scale datasets containing more than 100 000 spots. As more
cellular resolution spatial transcriptomic datasets become
available, stVAE is poised to play an increasingly important
role in the analysis of such data.
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Figure 4. Application of stVAE on the mouse olfactory bulb dataset generated from Stereo-seq. (a) Laminar organization of the mouse olfactory bulb in the

histology image (Fu et al. 2021). (b and c) comparison of Spearman’s rank correlation coefficient and JS distance between stVAE and the other methods,

where the expression of top-ranked marker genes and the inferred cell type proportion of 40 cell types across all the spots are used in the computation.

(d) Comparison of Moran’s I score between stVAE and the other methods, where the score is computed from the inferred cell type proportions over all

the spots. (e) Top five rows, the proportions of the five cell types inferred by stVAE, and the other methods are displayed. The sixth row, expression levels

of the five corresponding top-ranked marker genes are displayed; Bottom row, Spearman’s rank correlations between the inferred cell type proportions

and the expression levels of the top two marker genes for the five cell types are shown.
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