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Genetic variation in the human 
leukocyte antigen region confers 
susceptibility to Clostridioides 
difficile infection
Kathleen Ferar 1*, Taryn O. Hall 2, Dana C. Crawford 3,4, Robb Rowley 5, 
Benjamin A. Satterfield 6, Rongling Li 5, Loren Gragert 7, Elizabeth W. Karlson 8, 
Mariza de Andrade 9, Iftikhar J. Kullo 6, Catherine A. McCarty 10,11, Abel Kho 12, 
M. Geoffrey Hayes 13, Marylyn D. Ritchie 14, Paul K. Crane 15, Daniel B. Mirel 16, 
Christopher Carlson 17, John J. Connolly 18, Hakon Hakonarson 19, Andrew T. Crenshaw 20, 
David Carrell 21, Yuan Luo 22, Ozan Dikilitas 6, Joshua C. Denny 23, Gail P. Jarvik 24 & 
David R. Crosslin 7*

Clostridioides difficile (C. diff.) infection (CDI) is a leading cause of hospital acquired diarrhea in North 
America and Europe and a major cause of morbidity and mortality. Known risk factors do not fully 
explain CDI susceptibility, and genetic susceptibility is suggested by the fact that some patients 
with colons that are colonized with C. diff. do not develop any infection while others develop severe 
or recurrent infections. To identify common genetic variants associated with CDI, we performed 
a genome-wide association analysis in 19,861 participants (1349 cases; 18,512 controls) from the 
Electronic Medical Records and Genomics (eMERGE) Network. Using logistic regression, we found 
strong evidence for genetic variation in the DRB locus of the MHC (HLA) II region that predisposes 
individuals to CDI (P > 1.0 × 10–14; OR 1.56). Altered transcriptional regulation in the HLA region may 
play a role in conferring susceptibility to this opportunistic enteric pathogen.

Clostridioides difficile (C. diff.) infection (CDI), formerly known as Clostridium difficile infection, is the leading 
infectious cause of nosocomial diarrhea in North America and Europe and is associated with a high global burden 
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of disease1. Once acquired, this reemerging, Gram-positive, spore-forming bacterium secretes a toxin that causes 
watery diarrhea, sometimes progressing to severe pseudomembranous colitis, toxic megacolon, and sepsis2. In the 
early 2000s, the emergence of C. diff. strain NAP1/BI/027 led to increased incidence, prevalence, morbidity, and 
mortality associated with CDI3,4. This epidemic strain produces more toxin, has a higher resistance to common 
treatments, and causes more recurrent infections than other common C. diff. strains. Despite aggressive antibiotic 
treatment (e.g. vancomycin, metronidazole, and fidaxomicin) and fecal transplant5,6, outcomes of NAP1/BI/027 
CDI include significant morbidity across all age groups, 5% mortality in individuals older than 65 years of age, 
and an estimated $1.1 billion dollars per year in healthcare costs2.

Asymptomatic colonization with C. diff. is common among patients in healthcare settings, with an estimated 
prevalence of 3–26% in adults admitted to acute care hospitals and 5–7% in adults at long-term care facilities7. 
Progression from C. diff. colonization to acute CDI is generally associated with one or more risk factors8, includ-
ing new exposure to C. diff., older age, hospitalization or nursing home residency, chemotherapy, severe comorbid 
illness, proton pump inhibitor or immunosuppressant medication use, or prior use of high-risk antibiotics such 
as fluoroquinolones or cephalosporins9–11. Antibiotic use and proton pump inhibitor use are also risk factors 
for recurrent CDI12. Despite having one or more risk factors, some people colonized with C. diff. either do not 
develop CDI or successfully clear an initial infection, while other individuals are burdened by severe and/or 
recurrent CDI. This differential susceptibility may have a genetic component, given that host genetic variation 
underlies susceptibility for other infections, including enteric infections such as Helicobacter pylori13. Identifica-
tion of host genetic susceptibility loci could yield methods for prevention and/or treatment of this important 
pathogen14,15.

Previous studies have identified candidate risk loci for primary and recurrent CDI in small patient popula-
tions using a combination of genetic and clinical data. Apewokin et al.16 performed a genome-wide logistic 
regression analysis of CDI in 646 patients (57 cases; 589 controls) undergoing stem cell transplantation for 
multiple myeloma, and found several single nucleotide variants (SNVs) in the RLBP1L1, ASPH, and P7B genes 
that were associated with higher risk of CDI. Shen et al.17 identified two alleles in in the extended major histo-
compatibility complex (MHC; HLA-DRB1*07:01 and HLA-DQA1*02:01) that were associated with a reduction 
in CDI recurrence among 704 patients who achieved initial clinical cure with bezlotoxumab treatment in the 
MODIFY clinical trials. Several studies have also suggested that common SNVs in the promoter region of the 
interleukin-8 (IL-8) gene may confer increased risk for recurrent CDI by altering neutrophil recruitment during 
disease pathogenesis18,19. While these results are collectively suggestive of genetic involvement in CDI risk, the 
aforementioned studies had small sample sizes and did not always control for major risk factors such as previous 
antibiotic use or corticosteroid use in their association models. Genome-wide association studies (GWAS) that 
properly control for known risk factors and include a large number of participants are needed to identify risk 
loci with sufficient power and reliability. One such study identified 16,464 patients (1160 cases; 15,304 controls) 
from the Geisinger MyCode cohort20 using a C. diff. phenotyping algorithm developed by the Electronic Medi-
cal Records and Genomics (eMERGE) Network21. While no variants reached genome-wide significance in the 
full case–control dataset, one variant (rs114751021) in the small nucleolar RNA SNORD117 gene, located in 
the MHC region, reached genome-wide significance in a subset of cases and controls with recent exposure to 
antibiotics (P = 4.50 × 10–8; OR 2.42; 587 cases; 3166 controls). Additional validation studies in other large patient 
cohorts are needed to evaluate the role of genetic factors in CDI risk.

To identify common genetic variants associated with susceptibility to CDI, we performed joint and ancestry-
stratified GWAS and human leukocyte antigen (HLA) fine-mapping using phenotypes extracted from electronic 
medical records (EMRs) of participants aged two years or older from the eMERGE Network. The eMERGE 
Network is a National Human Genome Research Institute (NHGRI)-funded consortium of twelve study sites 
across the United States (U.S.) that supports research for furthering the implementation of genomic medicine22. 
At the time of this study, the network included a multi-ethnic cohort of roughly 99,000 U.S. participants with 
linked genetic and EMR data.

Results
Demographics
After all exclusions, there were 1349 cases and 18,512 controls identified via the eMERGE C. diff. phenotyping 
algorithm (Table 1). Approximately 74% of cases and controls self-identified as White, and 19% self-identified 
as Black or African American. Although older age is a known risk factor for C. diff. infection11, controls tended 
to be older than cases (z = 14.37, P = 2.20 × 10–16), which reflected the patient populations of the participating 
eMERGE study sites. Controls also tended to have higher BMIs than cases (z = 14.58, P = 2.20 × 10–16). Cases had 
slightly higher exposure to Class 1 (high-risk) antibiotics than controls (28% vs. 21%), yet they had much less 
exposure to Class 2 (moderate risk) antibiotics than controls (11% vs. 26%). More cases received chemotherapy 
outside of the exclusionary time period than did controls. It is worth noting that while 14 cases were identified 
from Cincinnati Children’s Medical Hospital, no controls were identified from this site. These cases were 57% 
female, with a median age of 4.0 (IQR 3.0–12.5) years and a median BMI of 16.09 (IQR 14.90–17.00). Approxi-
mately 93% of these cases were of European ancestry (genetically determined) and tended to be at high risk 
for C. diff. infection, with 50% having recent exposure to Class 1 or Class 2 antibiotics and 43% having recent 
exposure to transplant medications.

After finding the intersection of self-reported ancestry and genetically determined ancestry, there were 3700 
African participants, 14,620 European participants, and 135 Asian participants. Table 2 summarizes the demo-
graphic and phenotype characteristics of the African ancestry cases (n = 192) and controls (n = 3508) and Euro-
pean ancestry cases (n = 988) and controls (n = 13,632), which were used to conduct ancestry-stratified association 
tests. Cases in the African sample tended to be younger than those in the European sample (median age 50.8 vs. 
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59.6 years) and had higher rates of diabetes (37% vs. 20%) and HIV (14% vs. 0.8%). There was a higher propor-
tion of female participants among controls in the African sample than in the European sample (66% vs. 52%), 
and controls in the African sample had higher exposure to high-risk antibiotics (30% vs. 18%) and moderate risk 

Table 1.   Summary statistics of demographic data and phenotypes for C. diff cases and controls selected 
using the C. diff phenotyping algorithm. Significant differences between case and control distributions (as 
determined by chi-squared tests for binary variables and two-sided Z-tests for continuous variables) are shown 
in bold. *The three numbers for body mass index (BMI) and age represent the 25th, 50th and 75th quartiles of 
the distribution.

N
Case
n = 1349

Control
n = 18,512

Overall
n = 19,861 Case–control differences

Site

 Children’s Hospital of Philadelphia 11% (149) 1.4% (265) 2.1% (414) X2 = 8.64 (P = 3.29 × 10–3)

 Cincinnati Children’s Medical Hospital 1.0% (14) 0.0% (0) 0.1% (14) X2 = 564.67 (P = 2.20 × 10–16)

 Columbia 5.6% (76) 0.5% (88) 0.8% (164) X2 = 408.56 (P = 2.20 × 10–16)

 Geisinger 4.2% (57) 4.9% (899) 4.8% (956) X2 = 1.09 (P = 0.30)

 Kaiser Permanente/UW 4.2% (57) 11% (2128) 11% (2185) X2 = 67.87 (P = 2.20 × 10–16)

 Mass General Brigham 3.5% (47) 8.8% (1623) 8.4% (1670) X2 = 45.571 (P = 1.47 × 10–11)

 Mayo Clinic 7.2% (97) 17% (3127) 16% (3224) X2 = 87.03 (P = 2.20 × 10–16)

 Marshfield 2.4% (32) 4.7% (861) 4.5% (893) X2 = 15.207 (P = 9.63 × 10–5)

 Mt. Sinai 7.9% (106) 15% (2776) 15% (2882) X2 = 51.64 (P = 3.29 × 10–3)

 Northwestern 5.6% (76) 2.0% (362) 2.2% (438) X2 = 78.88 (P = 2.20 × 10–16)

 Vanderbilt 47% (638) 34% (6383) 35% (7021) X2 = 90.34 (P = 2.20 × 10–16)

Sex (female) 51% (690) 55% (10,232) 55% (10,922) X2 = 90.34 (P = 2.20 × 10–16)

Median BMI (kg/m2)* 20.8, 25.2, 29.8 24.4, 28.1, 32.9 24.2, 28.0, 32.8 Z = 14.581 (P = 2.20 × 10–16)

Median age* 39.7, 57.3, 70.0 51.1, 64.9, 76.1 50.4, 64.4, 76.0 Z = 14.372 (P = 2.20 × 10–16)

Self-identified ancestry

 American Indian or Alaska Native 0.2% (3) 0.2% (40) 0.2% (43) X2 = 0.002 (P = 0.96)

 Black or African American 15% (196) 19% (3562) 19% (3758) X2 = 21.75 (P = 3.10 × 10–6)

 Asian 0.8% (11) 0.8% (142) 0.8% (153) X2 = 0.04 (P = 0.84)

 Native Hawaiian or other Pacific Islander 0.07% (1) 0.02% (2) 0.02% (3) X2 = 0.46 (P = 0.50)

 White 75% (1008) 74% (13,716) 74% (14,724) X2 = 0.26 (P = 0.61)

 Unknown 9.2% (124) 5.0% (933) 5.3% (1057) X2 = 43.02 (P = 5.42 × 10–11)

 Not reported 0.4% (6) 0.6% (117) 0.6% (123) X2 = 0.72 (P = 0.40)

Self-identified ethnicity

 Hispanic or Latino 6.0% (81) 4.8% (895) 4.9% (976) X2 = 3.68 (P = 0.06)

 Not Hispanic or Latino 88% (1193) 92% (17,120) 92% (18,313) X2 = 28.62 (P = 8.80 × 10–8)

 Unknown 5.6% (75) 2.7% (497) 2.9% (572) X2 = 37.16 (P = 1.09 × 10–9)

Genetically determined ancestry

 African 17% (235) 21% (3849) 21% (4084) X2 = 8.75 (P = 3.10 × 10–3)

 Asian 2.4% (32) 1.6% (287) 1.6% (319) X2 = 5.37 (P = 2.05 × 10–2)

 European 80% (1082) 78% (14,376) 78% (15,458) X2 = 4.74 (P = 2.95 × 10–2)

Antibiotic exposure (Within 7–62 days prior to index date)

 High risk 28% (376) 21% (3832) 21% (4208) X2 = 38.74 (P = 4.85 × 10–10)

 Moderate risk 11% (147) 26% (4838) 25% (4985) X2 = 155.29 (P = 2.20 × 10–16)

 Low risk 1.9% (25) 1.5% (284) 1.6% (309) X2 = 0.84 (P = 0.36)

 No exposure 59% (801) 52% (9558) 52% (10,359) X2 = 30.233 (P = 3.83 × 10–8)

Cancer (First record to index date + 7 days) 20% (272) 14% (2520) 14% (2792) X2 = 44.654 (P = 2.35 × 10–11)

Chemotherapy (before 180 days prior to index date, 
after 7 days following index date) 20% (270) 12% (2263) 13% (2533) X2 = 68.60 (P = 2.20 × 10–16)

Diabetes mellitus (Ever) 24% (326) 25% (4700) 25% (5026) X2 = 0.99 (P = 0.32)

HIV (Ever) 3.0% (44) 2.0% (302) 2.0% (346) X2 = 19.52 (P = 9.94 × 10–6)

Nursing home status (within 90 days prior to index 
date) 11% (147) 2.0% (393) 3.0% (540) X2 = 365.97 (P = 2.20 × 10–16)

Corticosteroid medications (within 21 days prior to 
index date) 17% (227) 10% (1848) 10% (2075) X2 = 62.96 (P = 2.11 × 10–15)

Transplant medications (first record to index 
date + 7 days) 19% (250) 6.0% (1059) 7.0% (1309) X2 = 335.23 (P = 2.20 × 10–16)
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antibiotics (46% vs. 20%) than those in the European sample, as well as higher rates of diabetes (33% vs. 22%). 
The demographic and risk characteristics of the European sample tended to mirror those of the full study popula-
tion, but a higher proportion of cases in the European sample identified as not Hispanic or Latino (98% vs. 88%).

GWAS
Table 3 summarizes the logistic regression association results that reached genome-wide significance in the 
combined and European ancestry-only samples, with corresponding summary statistics for those findings in the 

Table 2.   Summary of demographic data and phenotypes for C. diff cases and controls in the African ancestry 
(n = 3700) and European ancestry (n = 14,620) samples. Ancestry designations reflect the intersection (∩) of 
self-identified ancestry and genetically determined ancestry (GDA). *The three numbers for body mass index 
(BMI) and age represent the 25th, 50th and 75th quartiles of the distribution.

N

African ancestry (self-ID ∩ GDA) 
Cases
n = 192

African ancestry (self-ID ∩ GDA) 
Controls
n = 3508

European ancestry 
(self-ID ∩ GDA) 
Cases
n = 988

European ancestry 
(self-ID ∩ GDA) Controls
n = 13,632

Site

 Children’s Hospital of Philadel-
phia 9.4% (18) 3.5% (124) 8.3% (82) 0.8% (107)

 Cincinnati Children’s Medical 
Hospital 0.5% (1) 0.0% (0) 1.2% (12) 0.0% (0)

 Columbia 7.3% (14) 0.4% (14) 2.8% (28) 0.2% (29)

 Geisinger 0.0% (1) 0.2% (6) 5.6% (55) 6.5% (891)

 Kaiser Permanente/UW 0.0% (1) 2.1% (74) 5.7% (56) 14% (1916)

 Mass General Brigham 3.7% (7) 2.6% (92) 3.2% (32) 10% (1384)

 Mayo Clinic 0.0% (0) 0.2% (8) 9.3% (92) 22% (3049)

 Marshfield 0.0% (0) 0.01% (1) 3.1% (31) 6.3% (853)

 Mt. Sinai 27% (52) 50% (1759) 0.7% (7) 1.9% (255)

 Northwestern 5.7% (11) 1.9% (67) 6.6% (65) 2.1% (291)

 Vanderbilt 45% (87) 39% (1363) 53% (528) 36% (4857)

Sex (female) 57% (109) 66% (2313) 50% (494) 52% (7124)

Median BMI (kg/m2)* 21.4, 26.3, 31.4 25.1, 29.7, 35.6 21.0, 25.2, 29.7 24.2, 27.8, 32.4

Median age* 38.5, 50.8, 60.5 46.8, 62.4, 75.5 41.6, 59.6, 72.0 52.1, 65.0, 76.0

Self-identified ethnicity

 Hispanic or Latino 0.00% (0) 0.2% (8) 1.3% (13) 0.6% (86)

 Not Hispanic or Latino 100% (192) 99.7% (192) 98% (963) 97% (13,259)

 Unknown 0.00% (0) 0.1% (2) 1.2% (12) 2.1% (287)

Antibiotic exposure (within 7–62 days prior to index date)

 High risk 33% (64) 30% (1038) 28% (276) 18% (2461)

 Moderate risk 12% (23) 46% (1609) 10% (99) 20% (2665)

 Low risk 1.6% (3) 1.3% (46) 2.1% (21) 1.6% (215)

 No exposure 53% (102) 23% (815) 60% (592) 61% (8291)

Cancer (First record to index 
date + 7 days) 15% (29) 11% (391) 23% (223) 15% (2019)

Chemotherapy (Before 180 days 
prior to index date, after 7 days 
following index date)

28% (53) 11% (380) 20% (197) 13% (1816)

Diabetes mellitus (ever) 37% (71) 33% (1165) 20% (202) 22% (2978)

HIV (ever) 14% (27) 5.3% (184) 0.8% (8) 0.5% (62)

Nursing home status (within 
90 days prior to index date) 11% (21) 2.3% (80) 12% (120) 2.3% (307)

Corticosteroid medications 
(Within 21 days prior to index 
date)

18% (34) 13% (455) 18% (174) 9.5% (1293)

Transplant medications (First 
record to index date + 7 days) 20% (38) 5.4% (190) 17% (169) 6.0% (822)

HLA-DRB haplotypes

 ≥ 1 HLA-DRB3, 4 OR 5 gene 98% (188) 97% (3414) 97% (955) 98% (13,336)

 ≥ 1 HLA-DRB3 gene (DR52) 73% (141) 73% (2548) 57% (559) 61% (8328)

 ≥ 1 HLA-DRB4 gene (DR53) 31% (60) 33% (1143) 51% (507) 54% (7356)

 ≥ 1 HLA-DRB5 gene (DR51) 33% (63) 32% (1108) 30% (299) 28% (3831)

 No extra DRB gene 2.1% (4) 2.7% (94) 3.3% (33) 2.2% (296)
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African ancestry-only sample. A strong association in the human leukocyte antigen (HLA) region was found in 
the European and joint ancestry samples (Fig. 1, Supplementary Fig. S2) but was not found in the African ances-
try sample. The lack of association in the African ancestry sample could be due to either insufficient detection 
power as a result of small sample size or different haplotype or linkage disequilibrium (LD) structures compared 
to individuals of European ancestry. Manhattan plots and corresponding QQ plots for the European, joint, and 
African ancestry GWAS analyses are provided (Supplementary Figs. S1–S5). The five most significantly associated 
SNVs driving the association in the European sample (rs68148149, P = 8.06 × 10–14; rs3828840, P = 9.96 × 10–14; 

Table 3.   Index SNV results from logistic regression-based genome wide analysis for joint ancestry 
(n = 19,861), European ancestry (n = 14,620), and African ancestry (n = 3700) samples. An additive model was 
used to assess the disease susceptibility impact of the minor (coded) allele at each position, while controlling 
for age, BMI, sex, ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant medications, 
corticosteroids, and medium or high-risk antibiotic exposure as covariates. Chr chromosome, SNV single 
nucleotide variant, Ref reference allele, Alt alternate allele, CA coded allele, BP base pair, CAF coded allele 
frequency, OR odds ratio. Results meeting the genome-wide significance threshold (P < 5 × 10–8) are displayed 
in bold.

Chr SNV Ref Alt CA BP
Joint CAF 
(n = 19,861)

Logistic joint 
P-value

EUR CAF 
(n = 14,620)

Logistic EUR 
P-value

Logistic 
EUR SNV-
controlled 
P-value

AFR CAF 
(n = 3700)

Logistic AFR 
P-value

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Beta Beta Beta Beta

6 rs68148149 C A C 32,511,725 0.17

6.83 × 10–9

0.17

8.06 × 10–14 0

0.18

7.2 × 10–1

1.36 (1.06–
1.74)

1.56 (1.13–
2.15) 0 0.95 (0.80–

1.13)

0.13 0.2 0 -0.02

6 rs3828840 T C T 32,520,907 0.17

8.42 × 10–9

0.17

9.96 × 10–14 0

0.18

7.1 × 10–1

1.36 (1.06–
1.74)

1.56 (1.13–
2.15) 0 0.95 (0.79–

1.13)

0.13 0.2 0 -0.02

6 rs35882239 A G A 32,522,576 0.2

1.32 × 10–8

0.21

8.18 × 10–12 9.80 × 10–1

0.2

6.7 × 10–1

1.34 (1.05–
1.70)

1.49 (1.10–
2.00)

1.00 (1.00–
1.00)

0.94 (0.78–
1.13)

0.13 0.17 0 -0.03

6 rs71534541 C T C 32,513,076 0.08

7.98 × 10–7

0.07

5.12 × 10–11 2.30 × 10–1

0.1

8.2 × 10–1

1.38 (1.04–
1.80)

1.62 (1.12–
2.33)

1.15 (0.90–
1.46)

0.96 (0.81–
1.14)

0.14 0.21 0.06 -0.02

6 rs35222480 A T A 32,522,813 0.08

8.41 × 10–7

0.08

9.88 × 10–11 2.20 × 10–1

0.1

5.0 × 10–1

1.37 (1.04–
1.80)

1.59 (1.11–
2.26)

1.14 (0.90–
1.44)

0.89 (0.66–
1.19)

0.14 0.2 0.06 -0.05

6 rs116603449 C T T 32,595,194 0.21

6.59 × 10–9

0.21

5.42 × 10–10 4.54 × 10–9

0.22

8.73 × 10–2

1.31 (1.05–
1.62)

1.39 (1.07–
1.80)

1.37 (1.06–
1.77)

1.24 (0.90–
1.70)

0.12 0.14 0.14 0.09

6 rs9270896 A G G 32,571,876 0.41

1.27 × 10–5

0.42

1.21 × 10–5 6.09 × 10–9

0.33

3.96 × 10–2

1.19 (1.01–
1.40)

1.22 (1.01–
1.47)

1.32 (1.05–
1.65)

1.26 (0.92–
1.74)

0.08 0.09 0.12 0.1

6 rs9270894 A G G 32,571,872 0.26

1.17 × 10–5

0.24

1.66 × 10–6 1.12 × 10–8

0.32

1.16 × 10–1

1.22 (1.01–
1.47)

1.29 (1.03–
1.63)

1.37 (1.06–
1.77)

1.20 (1.90–
1.58)

0.09 0.11 0.14 0.08

6 rs9270895 C T T 32,571,873 0.45

5.95 × 10–5

0.44

5.39 × 10–5 2.32 × 10–8

0.42

3.54 × 10–2

1.17 (1.00–
1.37)

1.21 (1.00–
1.45)

1.31 (1.05–
1.64)

1.26 (0.92–
1.73)

0.07 0.08 0.12 0.1

6 rs618095 G A A 32,574,736 0.28

5.05 × 10–7

0.25

2.69 × 10–6 3.71 × 10–8

0.36

1.19 × 10–2

1.26 (1.03–
1.53)

1.29 (1.02–
1.62)

1.35 (1.05–
1.73)

1.32 (0.94–
1.87)

0.1 0.11 0.13 0.12
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rs35882239, P = 8.18 × 10–12; rs71534541, P = 5.12 × 10–11; rs35222480, P = 9.88 × 10–11) mapped to the intergenic 
region between the HLA-DRB5 and HLA-DRB1 genes in the beta block of the MHC Class II region. Three of 
the five most significant SNVs (rs3828840, rs35882239, and rs35222480), with minor allele frequencies (MAFs) 
of 0.17, 0.17, and 0.20, respectively, also mapped to the 3ʹ end of the HLA-DRB6 pseudogene. A review of the 
NHGRI-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalog23 and dbSNP24 revealed that rs3828840 
has been previously associated with multiple sclerosis, an autoimmune inflammatory disease that impacts the 
central nervous system25.

Given the well-known presence of high LD within the HLA region26, a regional LD plot with reference to 
the index SNV (rs68148149) was generated using P-values from the European logistic regression analysis and 
using the 2014 1000 Genomes European superpopulation as a reference group (Fig. 2). This step was taken to 
assess the possibility that variants other than the index SNV might better explain disease association in terms of 
functional impact. While the second two most significant SNVs were in high LD with the index SNV (R2 > 0.8), 
the index SNV had the highest regulatory potential among the most significantly associated SNVs, as annotated 
by RegulomeDB27. To assess the possibility that the lack of disease association in the African ancestry sample is 
a result of different regional LD structures, a regional LD plot with reference to the index SNV was generated 
using the 1000 Genomes African superpopulation as a reference (Supplementary Fig. S6). The second two most 
significant SNVs in the European-ancestry sample were also in high LD with the index SNV in the African-
ancestry superpopulation, but higher LD was observed with more SNVs in the HLA-DRB1/5 intergenic region in 
the African superpopulation (R2 > 0.4) than in the European superpopulation (R2 > 0.2). On the other hand, lower 
LD was observed with SNVs in the region spanning HLA-DRB1 and HLA-DQA1 in the African superpopula-
tion (R2 > 0.6) than in the European superpopulation (R2 > 0.8). Differences in regional LD patterns between the 
European-ancestry and African-ancestry samples could therefore have contributed to the observed differences 
in gene-disease association patterns, in addition to insufficient detection power.

Figure 2.   Regional LD plot of SNVs evaluated in the European-ancestry logistic regression analysis, using the 
European 1000 Genomes superpopulation as a reference group. Genomic coordinates spanning the HLA-
DRB region and surrounding genes are shown on the X-axis in both subplots. Negative logarithms of P-values 
from the European-ancestry logistic regression analysis are shown on the Y-axis in the upper sublot, and 
annotated gene transcripts are distributed along the Y-axis in the lower subplot. Each dot represents a SNV in 
the regression model, with associated P-values plotted accordingly. SNVs in highest LD with reference to the 
index SNV (rs68148149) are colored in red. The LD plot was generated with the LocusZoom68 tool using default 
parameters and the 1000 Genomes Project 2014 EUR reference panel.
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A follow-up GWAS using the index SNV as a covariate revealed several new SNVs associated at genome-
wide significance (rs116603449, P = 4.54 × 10–9; rs9270896, P = 6.09 × 10–9; rs9270894, P = 1.12 × 10–8; rs9270895, 
P = 2.32 × 10–8; rs618095, P = 3.71 × 10–8) (Table 3, Supplementary Figs. S7, S8). While suggestive peaks were 
observed in chromosomes 14 and 22 using the unadjusted model, the elimination of these peaks in models that 
included the genome-wide significant index SNVs suggests that they were spuriously associated with the tagged 
region in chromosome 6. However, no SNVs of interest on chromosomes 14 or 22 were in high LD with any of 
the index SNVs on chromosome 6, therefore the nature of the association remains unknown.

HLA association analyses
All 14,620 European ancestry participants had high quality imputed HLA genotypes available for association 
analyses. Table 2 summarizes the number of participants in each ancestry stratified case–control group pos-
sessing at least one HLA-DRB3, 4 and/or 5 gene (corresponding to haplotype families HLA-DR52, 53 and 51, 
respectively)28 (Supplementary Fig. S11). The most significant SNVs from the GWAS reached genome-wide 
significance among individuals with at least one DRB3, 4 or 5 genes collectively (rs68148149, P = 1.26 × 10–13; 
rs3828840, P = 1.49 × 10–13; rs35882239, P = 2.37 × 10–11; rs71534541, P = 1.67 × 10–11; rs35222480, P = 3.17 × 10–11), 
and among individuals with at least one DRB5 gene only, or DR51 haplotype carriers (rs68148149, P = 1.55 × 10–11; 
rs3828840, P = 1.72 × 10–11; rs35882239, P = 2.62 × 10–10; rs71534541, P = 1.56 × 10–11; rs35222480, P = 4.68 × 10–11) 
(Table 4, Supplementary Fig. S9). Among DR51 haplotype carriers, the most significantly associated SNVs only 
reach genome-wide significance among carriers of the DR15 haplotype (rs68148149, P = 2.08 × 10–11; rs3828840, 
P = 2.27 × 10–11; rs35882239, P = 4.14 × 10–10; rs71534541, P = 1.75 × 10–12; rs35222480, P = 5.81 × 10–12), and more 
specifically, carriers of the HLA-DRB1*15:01 allele (rs68148149, P = 7.45 × 10–11; rs3828840, P = 8.11 × 10–11; 
rs35882239, P = 1.42 × 10–9; rs71534541, P = 7.37 × 10–12; rs35222480, P = 1.43 × 10–11). No SNVs reached genome-
wide significance among participants with at least one DRB3 or DRB4 gene only, suggesting that the HLA-DR51 
haplotype in combination with variants in the HLA-DRB1/5 intergenic region may singularly drive genetic risk 
for CDI in the European ancestry population. However, examining the risk allele frequencies of the index SNV 
(rs68148149) in cases and controls across DR51, DR52, and DR53 haplotype-enriched groups showed that the 
risk allele frequency was higher in European-ancestry cases than controls in all haplotype groups, suggesting 
that the SNV may indeed drive risk in all HLA-DR haplotype groups but that the low frequency in the DR52 
and DR53 haplotype groups limits the power to detect the association in these groups (Supplementary Fig. S12). 
The same pattern was not observed in African-ancestry cases and controls, indicating that haplotype differences 
between ancestry groups may indeed play a role in differentially conferring risk.

To assess the possibility that one or more HLA alleles themselves were driving the risk association in the 
European ancestry sample, rather than the most significantly associated SNVs identified in the GWAS, we 
performed a separate logistic regression analysis using the HIBAG-imputed HLA genotypes in the European 
ancestry sample. None of the imputed HLA alleles reached genome-wide significance. Using the classical HLA 
tags identified by de Bakker et al.29 and the NCI LDMatrix tool30, it was also confirmed that none of the GWAS-
identified SNVs were in high LD (R2 > 0.5) with any classical HLA alleles in either the European ancestry or 
African ancestry 1000 Genomes superpopulations. The index SNV was in moderate LD with the tag SNV for 
the DRB1*15:01-DRB5*01:01 haplotype in the European ancestry superpopulation (rs3135388; R2 = 0.186) and 
low LD with the tag SNV in the African ancestry superpopulation (rs443623; R2 = 0.002).

Discussion
Using a robust EMR-based phenotyping algorithm, we identified a large, multi-institutional corpus of patients 
with a history of at least one episode of CDI and controls without CDI. Our results suggest that genetic variation 
in the (HLA-)DRB locus of the HLA region may increase risk of infection in European ancestry populations. In 
this study, European participants who possessed the minor allele among the most significantly associated SNVs 
had 56% greater odds of having at least one episode of CDI. As the key beta-subunits of MHC Class II surface 
receptors on antigen presenting cells (APCs), the proteins encoded by DRB genes play a critical role in stimulat-
ing the host adaptive immune response against foreign peptides and are therefore excellent candidates for future 
studies of host immunity to C. diff.31.

The MHC (HLA) Class I and II loci are among the most polymorphic coding regions in the human genome, 
and DRB genes are particularly variable in copy number and combination. Although there is only one monomor-
phic DRA gene per (HLA-)DR haplotype, there are five common DR haplotype families composed of different 
combinations of protein coding DRB genes (DRB1, DRB3, DRB4 and DRB5) and pseudogenes (DRB2, DRB6, 
DRB8 and DRB9)28. DRB1 is present in all haplotypes, but any given individual may have as few as two protein 
coding DRB genes (2 copies of DRB1), or as many as four genes (2 copies of DRB1 + 1 or 2 copies of DRB3, 4 or 
5) between homologs. The unique combination of DRB genes on each haplotype is remarkably conserved and 
has been maintained in ancestral DNA since before the divergence of human and gorilla lineages over five mil-
lion years ago32. Although having a diverse set of MHC II molecules may confer a selective advantage against 
infection33, each additional DRB gene is nonetheless susceptible to intragenic and/or regulatory mutations in 
the highly polymorphic HLA region and may paradoxically increase susceptibility to other diseases. In the case 
of gastrointestinal infections, protective effects of the DRB1*04:05 allele against enteric infection caused by Sal-
monella typhi or Salmonella paratyphi have been observed in Vietnamese and Nepalese patients34. Conversely, 
the DRB1 gene has also been implicated in increasing host susceptibility to a number of inflammatory diseases, 
including Crohn’s disease, type I diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS), ulcerative colitis 
and Alzheimer’s disease, primarily in European populations35–40.

Haplotype effects appear to play a critical role in conferring risk for CDI. In this study, the risk association 
only reached genome-wide significance in individuals carrying at least one copy of the DRB1*15:01-DRB5*01:01 
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haplotype41, and individuals in this group had 200% higher odds of developing CDI on average. These results 
indicate that the DRB1*15:01-DRB5*01:01 haplotype is involved in conferring CDI risk among individuals 
with common genetic variants in the tagged DRB1-DRB5 intergenic region (Supplementary Fig. S10). This 
haplotype is most strongly associated with susceptibility to multiple sclerosis42–45, but has also been associated 
with susceptibility to other autoimmune conditions including anti-glomerular basement membrane disease in 
European ancestry populations46,47, and both systemic lupus erythematosus and adult onset Still’s disease in 
Japanese populations48.

One possible explanation for increased CDI risk among these individuals is that differential MHC II gene 
expression impacts the baseline composition of their gut microbiota, thereby influencing colonization resistance 
to opportunistic enteric pathogens like C. diff. Secretory Immunoglobulin A (IgA) antibodies play an essential 
role in shaping an individual’s gut microbial community and maintaining a homeostatic balance of microbes 
within the mucosal immune system49, and the interactions between APCs and CD4+ T-follicular helper (Tfh) 
cells are key to driving the production of IgA by plasma cells50. Studies in mouse models have previously dem-
onstrated that MHC II polymorphisms directly affect antibody-mediated microbiota composition, and that the 
unique microbial communities formed under the influence of different MHC genotypes can impact an organism’s 
susceptibility to opportunistic pathogens like Salmonella enterica typhimurium when treated with antibiotics51,52. 
Understanding the unique interactions between commensal microbe antigens presented by APCs, the MHC II 
molecules encoded by the DRB1*15:01-DRB5*01:01 haplotype, and Tfh cells may provide valuable insights into 
how host genetics impact the composition of gut microbial communities in individuals susceptible to enteric 
infection, compared with those who are resistant to infection.

Alternatively, increased CDI risk among these individuals may be driven by differential T-cell mediated 
responses to the TcdA and TcdB toxins produced by C. diff. bacteria. In addition to sculpting the host microbiota, 
high affinity IgA helps to neutralize bacterial toxins53. Unique interactions between T-cells and C. diff. toxins 
specifically bound by DRB1*15:01-DRB5*01:01 MHC II molecules may impact the host anti-toxin IgA response 
differently than other T-cell-MHC II interactions, thus influencing the host’s ability to clear circulating toxins. 
Recent Phase III, placebo-controlled clinical trials of the monoclonal antibody treatments actoxumab (anti-TcdA) 
and bezlotoxumab (anti-TcdB) showed that TcdB toxin neutralization alone could decrease CDI recurrence by 
38% among patients receiving standard antibiotic therapy for initial or recurrent CDI54. Naturally occurring 
anti-TcdB antibodies in the placebo group also conferred protection against recurrent CDI, recapitulating the 
importance of neutralizing TcdB in controlling infection55. However, other studies have failed to replicate these 
results when comparing healthy controls with CDI patients, suggesting that anti-toxin antibody concentrations 
may not fully explain susceptibility to initial and/or recurrent infection56.

Although the MHC II region is strongly associated with CDI in this study, the SNVs that confer risk are nei-
ther located in coding regions, nor in high LD with SNVs in coding regions, suggesting that the mechanism for 
altered gene expression may be regulatory. One possible mechanism for altered expression of the DRB1*15:01-
DRB5*01:01 haplotype is allele-specific DNA methylation of the DRB1 and/or DRB5 regulatory regions, given 
that that targeted bisulfite sequencing has previously identified the DRB1-DRB5 intergenic space as a differentially 
methylated region57. Disruptions to normal DNA methylation patterns, and to resulting gene expression, have 
been known to modulate susceptibility to a number of human diseases58. For example, in the case of DRB1*15:01-
DRB5*01:01-associated multiple sclerosis, DNA hypermethylation in exon 2 of DRB1 confers protection against 
the major risk allele and is driven by several SNVs in high LD with one another that overlap with CpG sites59. It is 
possible that disrupted methylation patterns at or near the regulatory regions of DRB1*15:01 and/or DRB5*01:01 
also contribute to differential expression of these MHC II proteins, thus impacting the landscape of the host adap-
tive immune response via microbiome-mediated and/or toxin-mediated mechanisms. Additional gene expression 
analyses, such as expression quantitative trait loci (eQTL) analysis, could be used to explore whether the top 
SNVs regulate expression levels of nearby genes.

This study has several important limitations. First, sample size and statistical power were severely limited 
among non-European ancestry samples, which may have contributed to the lack of significant associations in the 
African ancestry analyses. It is also possible that within the European sample, the comparatively low frequency 
of the risk allele in the DR52 and DR53 haplotype groups, compared to DR51, limited the power to detect a true 
risk association in other DR haplotype groups. Second, replicate studies are needed to confirm the identified 
association. However, the large, multi-site biobank of linked EMR and genotype data used in this study supports 
the replicability and reliability of these results, and future association studies would benefit immensely from 
these types of biobanks. While the gene associations in this study do not align exactly with those identified in 
the previous C. diff. GWAS conducted by Li et al. using the MyCode cohort, they do support the hypothesis that 
immune molecules encoded within the MHC region are involved in CDI pathogenesis. Third, C. diff. cases were 
not stratified by primary and recurrent CDI, and it is possible that the genetic variants driving pathogenesis are 
different between these two forms of infection. For example, Shen et al. identified alleles in DRB1 and DQA1 
that were different from those identified in this study and were protective against CDI recurrence, suggesting 
that the genetic factors involved in initial vs. recurrent infection could be distinct from one another. Fourth, 
the length and severity of infection were not considered in the current study, but future analyses would benefit 
from continuous trait regression analyses to identify genetic variants associated with increased CDI length and/
or severity, rather than susceptibility. Additionally, C. diff. cases in this study included individuals with a positive 
antigen test as their only criterion for infection. The C. diff. antigen test cannot accurately distinguish between 
toxigenic and non-toxigenic strains and may falsely identify asymptomatic carriers as C. diff. cases. Finally, the 
specific toxigenic ribotype that each case was exposed to was not included in the analysis, and it is possible that 
different C. diff. ribotypes are associated with different genetically determined host responses.

Our findings suggest that genetic variation in the MHC II locus of the HLA region drives susceptibility to 
CDI and highlights the importance of the adaptive immune response in combating opportunistic pathogens. To 
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better understand how host genetics might confer microbiome-mediated risk for opportunistic enteric infections, 
future studies should explore the mechanisms of interaction between commensal microbe antigens presented 
by APCs and the MHC II molecules encoded by the DRB1*15:01-DRB5*01:01 haplotype. Interactions between 
DRB1*15:01-DRB5*01:01 MHC II molecules, C. diff. exotoxins and T-cells may alternately play a critical role 
in CDI pathogenesis, and additional work is needed to understand whether and how the host IgA response is 
differentially impacted by the combined effects of haplotype and transcriptional modifications. Finally, future 
work should address the possibility that allele-specific DNA methylation is a driver of epigenetic transcriptional 
regulation of the DRB1 and/or DRB5 genes. If this mechanism is experimentally validated, therapeutics that 
modulate MHC II molecule transcription levels could potentially be developed to decrease the incidence of CDI 
among individuals who carry the risk genotype.

Methods
Participants
Cases and controls were selected from among the ~ 99,000 participants of the eMERGE Network. Participating 
sites included the following: 1. The Children’s Hospital of Philadelphia, Philadelphia, PA; 2. Cincinnati Children’s 
Medical Hospital, Cincinnati, OH; 3. Columbia University, New York, NY; 4. Geisinger, Danville, PA; 5. Mass 
General Brigham, Boston, MA; 6. Kaiser Permanente Washington (formerly Group Health Cooperative) and Uni-
versity of Washington partnership, Seattle, WA; 7. Marshfield Clinic, Marshfield, WI; 8. Mayo Clinic, Rochester, 
MN; 9. Meharry Medical College, Nashville, TN; 10. Mount Sinai, New York, NY; 11. Northwestern University, 
Evanston, IL; and 12. Vanderbilt University, Nashville, TN. Informed consent was obtained from participants 
by each eMERGE site. The eMERGE study was approved by each participating site’s institutional review board, 
and all methods were performed in accordance with the relevant guidelines and regulations at each institution.

Case–control selection using Clostridioides difficile phenotyping algorithm
Clostridioides difficile cases and controls were selected using a variety of information contained in the EMR, 
including International Classification of Disease (ICD) Clinical Modification (CM) codes 9th and 10th editions, 
lab and medication data, and clinician progress notes. The C. diff. phenotyping algorithm used in this study was 
designed collaboratively by the University of Washington, Group Health and Vanderbilt as part of the eMERGE 
Network and was published in the Phenotyping KnowledgeBase (PheKB) in 201260,61. Case/control selection 
and exclusion criteria are depicted as a flowchart in Fig. 3.

For participants aged two years or older, there were four combinations of EMR data considered for case 
selection. First, individuals with a positive C. diff. antigen or toxin test were selected. Second, those with one or 
more inpatient or outpatient diagnoses of C. diff. (ICD-9-CM code 008.45; ICD-10-CM code A047), followed 
by one or more days of medication for treatment (metronidazole, oral vancomycin, fidaxomicin, or linezolid), 
followed by another inpatient or outpatient C. diff. diagnosis code, were selected. Third, individuals with at least 
one C. diff. ICD-CM code combined with at least one affirmative mention (unqualified by negation, uncertainty, 
or historical reference) of C. diff. infection in a clinical progress note as identified through natural language 
processing (NLP), were selected. The C. diff. mentions used by the NLP algorithm are listed in Supplementary 
Table S1. Finally, individuals with two or more affirmative mentions of C. diff. infection on separate calendar 
days in clinical progress notes, identified by NLP, were selected. To exclude severely immune-compromised 
participants from the test population, participants meeting one of the four above criteria were excluded from 
being cases if they had a diagnosis of bone marrow cancer in the 2-year period prior to their C. diff. case index 
date (i.e., the first positive lab test, diagnosis code or progress note mention), or within 7 days following their 
index date. Participants were also excluded from being cases if they had received chemotherapy in the 180-day 
period prior to their C. diff. index date, or within 7 days following their index date. Using these criteria, 1598 
cases were selected.

Controls were selected from eMERGE participants two years of age or older who had no known test for and 
no diagnosis codes for C. diff. in their records. Since C. diff. toxin tests have sensitivities ranging from 60 to 70%62, 
a single test does not rule out disease, and multiple tests could signal a concern that disease exists. Additionally, 
controls must have had at least one hospital admission with a prior exposure to a high-or moderate-risk anti-
biotic (Supplementary Table S2) in the 7 to 62-day period before admission. Alternatively, they must have had 
exposure to a high or moderate-risk antibiotic and had 5 or more years of documented clinical visits following 
exposure with no mention of C. diff. infection in their progress notes. Participants meeting the control criteria 
were excluded if they had chemotherapy or bone marrow cancer in the 180-day period prior to the C diff. con-
trol index date (i.e., the earliest hospital admission with antibiotic exposure or earliest antibiotic exposure with 
5 years of follow-up), or within seven days following the index date. These criteria resulted in the selection of 
23,061 eMERGE participants as controls.

We excluded 202 cases and 2723 controls that were missing genotype data. An additional 31 cases and 889 
controls were excluded because the genotype imputation quality failed to meet our quality control (QC) threshold 
(mean R2 > 0.3)63.

Cryptic relatedness was assessed in all participants by calculating the probabilities of sharing alleles identical 
by descent (IBD), where Z0 is the probability of sharing zero alleles IBD and Z1 is the probability of sharing one 
allele IBD. Families were constructed when sample pairs had Z0 < 0.83 and Z1 > 0.163. When study participants 
were found to be in the same family, we prioritized the inclusion of cases. In situations where two or more cases 
or two or more controls were found to be in the same family, one participant was selected at random, and the 
others were excluded. For participants selected via the C. diff. phenotyping algorithm, 9 cases and 937 controls 
were excluded due to cryptic relatedness. Two-sample Z-tests were used to identify significant differences in the 
sample means of distributions for continuous variables (age and BMI) between cases and controls.
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Covariates identified for phenotyping algorithm sample
The following covariates were identified for all cases and controls using structured EMR data: 1. Age at index 
date (index age); 2. Body mass index (BMI); 3. Sex; 4. Genetically determined ancestry; 5. Nursing home status 
(y/n); 6. Chemotherapy (y/n); 7. Diabetes mellitus (y/n); 8. Human immunodeficiency virus (HIV) positive status 
(y/n); 9. Any transplant medications (y/n); 10. Any corticosteroid medications (y/n); and 11. Any medium or 
high-risk antibiotic exposure (y/n). We used the median BMI record for the age year that matched most closely 
to the participant’s index age. Nursing home status was determined either by structured data on skilled nursing 
facility residence, or by mentions of nursing home status in social work and case management notes, as identi-
fied by NLP (Supplementary Table S3). We flagged chemotherapy using Current Procedural Terminology (CPT) 
codes 96400, 96408, 96409, 96411–96425, 96520, and 96530. We flagged participants as having diabetes mellitus 
if they had at least two of the following three indications: 1. An ICD-CM code from ICD-9-CM 250.* or ICD-
10-CM E08-E13.*; 2. Prescriptions for diabetes medications including insulin (Supplementary Table S4); or 3. 
A hemoglobin A1C (HbA1C) reading > 6.5% or a glucose reading of > 200 mg/dL. Participants were flagged as 
having HIV infection if they had one instance of ICD-9-CM 042.*, ICD-10-CM B20-B24.* or Z21.*. Patients 
were flagged as having been exposed to transplant or corticosteroid medications if any medication listed in Sup-
plementary Table S4 was administered outside of the exclusionary time range.

Genotyping and imputation
Genotypes for all participant samples from eMERGE-I, eMERGE-II and eMERGE-III were imputed using the 
Michigan Imputation Server64. The server uses the Minimac3 algorithm to impute missing genotypes and uses 
the Haplotype Reference Consortium reference panels65 (HRC1.1) as the reference set. The majority of samples 
from the 13 eMERGE sites were genotyped on the Human 660 Quad (eMERGE-I). Other genotyping platforms 
included the CytoSNP-850K BeadChip, the OmniExpress chip, the Affymetrix 6.0 array, and the Illumina MEGA 
among others. In this analysis, variants with an allelic R2 ≥ 0.3 and minor allele frequency (MAF) ≥ 0.05 were 
included. Additional QC filters were applied as described in case–control selection.
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Genetically determined ancestry
The set of ~ 99,000 unique imputed samples was analyzed by Principal Component Analysis (PCA) using the 
PLINK 2.0 software66. Variants with ≥ 0.05 MAF, missingness of ≤ 0.1 and LD-pruned R2 threshold of 0.7 were 
included in the multisample analysis. K-means clustering of Principal Component (PC) 1 and PC2 identified 
three groups (corresponding to African ancestry, Asian ancestry and European ancestry) was used to find geneti-
cally determined ancestry of each sample. Genetically determined and self-identified ancestry were checked for 
concordance, and samples were ultimately grouped into African ancestry, Asian ancestry, and European ancestry 
clusters. IBD was calculated for all pairwise sample comparisons using the plink –genome function, and cryptic 
relatedness between samples was assessed as described in case/control selection.

GWAS
To identify genetic variants associated with CDI, we performed logistic regression-based association analyses 
for the case/control curated phenotype using PLINK 1.9067. All covariates and genotypes were used in the joint 
analysis of all participants, whereas the PC1 and PC2 covariates for the African and European ancestry-stratified 
analyses were derived from ancestry specific PCA analyses. An additive genotypic model of SNV genotypes coded 
as 0, 1 or 2 copies of the minor allele was used. The regional LD plots of the index SNV were created using the 
LocusZoom web-based tool68. Following the initial stratified analyses, an additional logistic regression-based 
association analysis was performed in the European sample using the index SNV as a covariate to determine 
whether this SNV was truly driving the risk association.

HLA association analyses
Classical HLA alleles were imputed against four ancestry-specific reference panels (African, Asian, European 
and Hispanic) using the HIBAG software69. HLA-DRB3, 4 and 5 gene dosages were inferred based on the HLA-
DRB1 alleles present in each individual, as described in Habets et al.70. Calls were quality-filtered for a HIBAG 
posterior probability of > 0.5.

To test for haplotype-specific effects of the most significantly associated SNVs, four overlapping participant 
subgroups were selected from the European ancestry sample based on the presence of at least one of the following: 
1. DRB3 gene; 2. DRB4 gene; 3. DRB5 gene; or 4. any of the above genes in each participant. Haplotype subgroups 
were further divided into DR15 and DR16 haplotype carriers (stemming from the DRB5 gene carriers, or DR51 
haplotype family), and DRB1*15:01 carriers (stemming from the DR15 haplotype). Logistic regression-based 
association analysis was performed separately in each haplotype subgroup, using the same covariates described 
in “Methods: GWAS” for the European ancestry sample.

To test for HLA alleles driving the association, case–control logistic regression-based association analysis 
was performed in the European ancestry population sample for 276 classical HLA alleles, using the same covari-
ates described in “GWAS” in “Methods” section for the European ancestry sample. The CEU Chromosome 6 
LD dataset from the HapMap 3 project was used to assess LD of the most significantly associated SNVs among 
classical HLA alleles.

Data availability
The imputed genotype array data and phenotype data used during the current study are available in the data-
base of Genotypes and Phenotypes (dbGaP) under accession number phs001584.v2.p2 (https://​www.​ncbi.​nlm.​
nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1584.​v2.​p2). Data is available through controlled-access 
dbGaP Authorized Access requests only. The ClinicalTrials.gov clinical trial registration number for eMERGE 
Phase III is NCT03394859 (https://​clini​caltr​ials.​gov/​ct2/​show/​NCT03​394859?​term=​elect​ronic+​medic​al+​recor​
ds+​and+​genom​ics).

Code availability
Sample code from this study can be publicly accessed at https://​github.​com/​kmuen​zen/​emerge_​cdiff. For more 
information, please contact the corresponding authors.
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