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Abstract

The enormous social and economic cost of Alzheimer’s disease (AD) has driven a number 

of neuroimaging investigations for early detection and diagnosis. Towards this end, various 

computational approaches have been applied to longitudinal imaging data in subjects with Mild 

Cognitive Impairment (MCI), as serial brain imaging could increase sensitivity for detecting 

changes from baseline, and potentially serve as a diagnostic biomarker for AD. However, current 

state-of-the-art brain imaging diagnostic methods have limited utility in clinical practice due to the 

lack of robust predictive power. To address this limitation, we propose a flexible spatial-temporal 

solution to predict the risk of MCI conversion to AD prior to the onset of clinical symptoms 

by sequentially recognizing abnormal structural changes from longitudinal magnetic resonance 

(MR) image sequences. Firstly, our model is trained to sequentially recognize different length 

partial MR image sequences from different stages of AD. Secondly, our method is leveraged 

by the inexorably progressive nature of AD. To that end, a Temporally Structured Support 

Vector Machine (TS-SVM) model is proposed to constrain the partial MR image sequence’s 

detection score to increase monotonically with AD progression. Furthermore, in order to select 

the best morphological features for enabling classifiers, we propose a joint feature selection 

and classification framework. We demonstrate that our early diagnosis method using only two 

follow-up MR scans is able to predict conversion to AD 12 months ahead of an AD clinical 

diagnosis with 81.75% accuracy.
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I. INTRODUCTION

Alzheimer’s disease (AD) is often primed by isolated memory dysfunction referred to as 

Mild Cognitive Impairment (MCI), followed by progressive decline in general cognitive 

abilities, altered behavior, loss of functional independence, and eventually death (Grimmer 

et al., 2009; Lam et al., 2013; Loewenstein et al., 2006). Although AD cannot be stopped 

or cured, the most effective way to treat AD patients is to slow AD progression in the early 

stage (Chetelat & Baron, 2003; Filley, 1995; Gauthier, 2005). Therefore, detecting the early 

onset of AD symptom is critically important for the success of AD treatments in clinical 

practice. The structural and functional loss involved in AD are known to have dynamically 

evolving morphological patterns (Duchesne et al., 2008; C. R. Jack et al., 2003; Klöppel 

et al., 2008; Vemuri et al., 2009; Whitwell et al., 2008). These dynamic brain structural 

changes can be captured by noninvasive longitudinal MR imaging data. Therefore, early AD 

diagnosis using longitudinal imaging has been documented in previous work with special 

attention to MCI (Cummings et al., 2007; M. Ganguli et al., 2010; Mary Ganguli et al., 

2004; Johnson et al., 2009; Li et al., 2012; Petersen, 2000; Reisberg et al., 2008; Winblad 

et al., 2004). MCI entails noticeable and measurable cognitive changes that are not severe 

enough to interfere with daily life or independent function, and carries an increased risk of 

developing AD or other type of dementia.

A growing body of research has set focus on attempting to predict if and when MCI 

patients will convert to AD. For example, tensor-based morphometry (Hua et al., 2011; Hua 

et al., 2010) is used to identify brain atrophy patterns in 91 AD patients and 189 MCI 

subjects scanned at baseline, 6, 12, 18, and 24 months. Since the hippocampus is a primary 

locus of early AD pathologic changes, many studies have investigated structural changes 

involving the hippocampal region. For example, Lee and colleagues employed a linear 

regression model to predict MCI conversion using hippocampus surface morphology and 

several clinical indices (Lee et al., 2015). Examining longitudinal changes in hippocampal 

volume (Chincarini et al., 2016) and cortical thickness (Li et al., 2012) are other approaches 

that have been used in an attempt to identify predictor variables of MCI conversion to AD.

A major general limitation of computer-assisted longitudinal AD diagnostic methods is 

the scanning protocol used with respect to the timing and number of scans obtained. For 

example, many longitudinal approaches assume the number of time points is equal, albeit 

implicitly. In clinical practice, however, patients will have a variable number of scans, often 

fewer than are obtained in longitudinal studies, and typically not done more frequently 

than annually. Moreover, each subject recruited in the Li and colleagues study (Li et al., 

2012) should have at least 5 time-points at 6-month intervals, and should develop AD at 

least 12 months after the baseline scan. Hence, existing methods typically require a large 

number of MRI scans in order to be robust. Regarding the time window prior to the onset 
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of AD clinical symptoms, conventional methods can only support predictive modeling over 

a relatively short time frame, even when a number of longitudinal scans are available. For 

instance, the imaging classification method used by Li and colleagues (Li et al., 2012) 

accurately predicted MCI to AD conversion only 6 months before the clinical expression 

of AD symptoms. Although the short-term prediction result seems promising, signaling 

conversion to AD only 6 months before the clinical syndrome appears would have limited 

impact on clinical practice based on convergent evidence that early and continuous treatment 

confers a therapeutic advantage relative to patients for whom treatment initiation is delayed 

for disrupted (Gauthier, 2005).

Several works utilizing computer vision have shown promise in early activity detection 

(Hoai et al., 2011; Hoai & Torre, 2014; Huang et al., 2014). Early activity detection in 

these works involves first training detectors to specifically recognize any small partial 

activities from the complete activities. The detection score of those partial activities are 

then constrained to increase monotonically along with time since those partial activities 

are conducted continuously. Inspired by the success of early activity detection in computer 

vision, we propose a long-range AD early detection approach that requires only a few MR 

scans.

The goal of our approach is to detect AD associated brain changes before the clinical 

diagnosis of AD. Accordingly, we regard the problem of AD early diagnosis as a binary 

classification task between MCI converters (MCI-C for short) who convert from MCI to 

AD and MCI non-converters (MCI-NC for short) who do not progress to AD. We leverage 

the following facts to achieve long range early diagnosis with only a few longitudinal 

MR scans: (1) AD progression is irreversible (Filley, 1995), and (2) the disparity of 

morphological patterns between MCI-C and MCI-NC become more manifest with AD 

progression (Hua et al., 2011; Thompson et al., 2007). In light of this, we will provide 

a principled mechanism to achieve this monotonicity in AD early diagnosis, which is not 

obtained by any existing diagnostic approaches. The assumption of monotonicity on AD 

conversion score is based on AD progression model in [43], which shows that the AD 

progression begins at a stimulating time point where the brain structure start to changes from 

normal to abnormal monotonically follows a sigmoid shape curve. Moreover, the study in 

[43] also reveal that the brain structure changes measured by structural MRI is an earlier 

biomarker than clinical scores test. This finding suggests that longitudinal MRI data are 

better early AD diagnosis biomarker than clinical score based AD diagnosis. Therefore, we 

present to study the longitudinal MRI imaging data using a Temporally Structured SVM 

(TS-SVM) to capture the brain structural changes during AD progression. Our model is 

trained based on a set of partial MR image sequences at variable intervals, drawn from the 

complete longitudinal imaging data. Note, partial image sequencing not only augments the 

set of training samples but also harnesses the inclusion relationship within partial sequences 

to reflect the inexorably progressive nature of AD by requiring the risk of AD conversion to 

monotonically increase as AD progresses. Compared with conventional SVM, our TS-SVM 

has three major improvements to achieve long-range early AD detection with high accuracy:
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1. The classifier is trained to recognize all partial MR image sequences and 

is therefore not restricted by the number of available MR images or AD 

progression stage.

2. We require the AD conversion score to monotonically increase within each 

AD-converting MCI subject as more follow-up images are inspected. Thus, our 

early diagnosis method can avoid inconsistent prediction results

3. We balance the early prediction accuracy and prediction range of AD conversion. 

Since the monotonicity makes the risk of future AD conversion more predictable, 

we have greater confidence to signal the future conversion of AD much earlier 

than the onset of clinical symptoms. Another benefit is that we can reduce 

number of MR scans, which is very important for translation to routine clinic 

practice.

4. We further present a joint feature selection and classification framework in order 

to select suitable features that are in line with the learned TS-SVM and also 

improve early detection performance.

In the application stage, we can apply our learned TS-SVM right after the first follow-up 

scan. Given the longitudinal image sequence of new subjects with arbitrary time points, 

we sequentially examine the imaging patterns from the baseline scan and signal the AD 

conversion early as the detection of abnormal change is of high confidence in TS-SVM. 

Thus, our proposed AD early detection method is not dependent on a specific number 

of scans. We have evaluated the performance of AD early detection on more than 150 

longitudinal subjects from the ADNI dataset. Promising results have been achieved where 

our method can alarm the conversion of AD 12 months prior to the clinical diagnosis, with 

81.75% accuracy, using only two follow-up MR scans. The rest of this paper is organized 

as follows. We present our Temporal Structured-SVM with joint feature selection in Section 

II. Then, we present experimental results in Section III. Finally, we present conclusions in 

Section V.

II. METHODS

In this paper, the goal of classification is to determine (1) whether we can predict 

the conversion of AD on the new testing subject based on its MR image sequence 

Z = Z1, Z2, ⋯, ZTZ  up to the current time point Tz; and (2) whether we can predict the onset 

of AD symptom as early as possible, i.e., make Tz as close to baseline as possible. Thus, 

we regard the early detection of AD as a binary classification problem between MCI-NC 

and MCI-C subjects. Without loss of generality, we assign MCI-C with positive label and 

MCI-NC with negative label. Since MR image is non-invasive and widely used in routine 

clinic practice, we present a novel temporally structured-SVM on longitudinal MR image 

sequences. Note, considering the cost of healthcare and the availability of imaging hardware, 

our early diagnosis method is designed to use only MR images.
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A. Prepare the dataset

Morphological features in each cross-sectional brain image.—Suppose 

we have N training subjects. Each subject n has a MR image sequences 

In = It
n ∣ t = 1, ⋯, Tn (n = 1, ⋯, N) with totally Tn longitudinal scans. For each volumetric 

image It
n, we first register the AAL template image, which has 90 manually labeled ROIs 

(Regions Of Interest), to the underlying image It
n. Then we extract seven morphological 

features in each ROI where the first four features include tissue percentage of White Matter 

(WM), Gray Matter (GM), Cerebral-Spinal Fluid (CSF), and Background, and the last three 

features include the averaged voxel-wise Jacobian determinants in WM, and GM and CSF 

regions (Shen & Davatzikos, 2003). Therefore, the image feature f t
n for each volumetric 

image It
n is a 90 × 7 = 630 dimension column vector in this paper.

Construct spatial-temporal feature in partial image sequence.—In order to train 

a classifier which is able to recognize different number of MR images collected at different 

AD progression stage, we will extract different length partial sequences to cover different 

AD progression stage for each subject. We can decompose the complete longitudinal 

image sequence In into Tn − 1 of partial image sequences Xb
n, b = 2, ⋯, Tn where each 

Xb
n = It

n, t = 1, ⋯, b  is the partial image sequence with b − 1 time points from baseline to 

b − tℎ follow-up as shown in Fig. 1. (a). Of note, all partial image sequences extracted 

from the same complete sequence use the same label. For each Xb
n, we further extract 

longitudinal feature representations as Φ Xb
n . For each Xb

n, we further extract longitudinal 

feature representations as Φ Xb
n = ∑t = 1

b Xt
n/b, X1

n − Xb
n , where the first column vector is 

are the average of morphological features from baseline to last time point and the second 

column vector measures the longitudinal difference of morphological features from baseline 

to the last follow-up inside the partial image sequence. It is apparent that each feature 

representation Φ Xb
n  describes both the spatial and temporal morphological patterns. As we 

will explain in Section 3.4, feature selection is of necessity to remove data redundancy from 

such high dimensionality (d = 1260). It is worth noting that the partial sequence refers to 

variable number of consecutive follow up MRIs and did not consider necessarily missing 

MRIs or variable time sampling of the follow up MRIs. In our experiment, we only selected 

all subjects follow up MRI scans every 6 months from ADNI dataset.

B. Train Partial Sequences Using Classic SVM Model

We divide all morphological features extracted from the partial image sequences into two 

groups: positive sample set for MCI-C subjects and negative sample set for MCI-NC 

subjects. To recognize the longitudinal patterns involved in AD conversion, the naive way is 

to train a SVM by:

argmin
w, c, ϵ

1
2 w 2

2 + η
2 ∑

n
∑

b
ϵ2,

s. t. ∀ n, b,
f Φ Xb

n + ≥ 1 − ϵ

f Φ Xb
n − ≤ − 1 + ϵ

,
(1)
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Where f Φ Xb
n = wTΦ Xb

n + c is a linear detection score function, w is the support weight 

vector for separating MCI-C group and MCI-NC group, c is the bias term to normalize 

the data distribution to zero mean, η is a scalar balancing the regularization term and 

loss term, ϵ > 0 is the slack variable which compensates for the classification errors. 

The intuition behind two constraints in Eq. (1) is that the detection score f Φ Xb
n  for 

morphological pattern from each MCI-C subject is encouraged to be greater than 1 while the 

detection score f Φ Xb
n  for morphological pattern from MCI-NC subject is smaller than −1. 

Therefore, the MCI-C and MCI-NC groups are separated with a minimal margin of 2
w . In 

order to make the optimization adaptive to data distribution, we go one step further to jointly 

estimate the support vector w, slack variable ϵ, and the bias term c.

C. Long Range Early Diagnosis by Temporal Structured SVM

It is clear that there are strong temporal structural correlations along partial image 

sequences in each subject. However, the naive SVM solution shown in Eq. (1) treats 

each partial sequence equally and completely ignores the structural correlations. Thus, it 

is inevitable to have unrealistic inconsistent detection scores for MCI-C subject in the 

AD progression, although the structural change and AD progression are normally regarded 

as nonreversible. To alleviate this problem in the classic SVM method, we propose the 

following temporal structured-SVM method to achieve long range early diagnosis by 

leveraging the monotonicity of AD conversion risk, as described below.

Align spatial-temporal feature representations based on AD progression 
stage.—The partial image sequences extracted from each MCI-C subject cover different 

periods of AD progression which have different impact in recognizing the onset of AD 

symptom. To that end, we consider such impact is related with the AD progression stage 

τn for subject n. Specifically, τn is defined by (1) determining the actual time point of AD 

conversion in each MCI-C subject (the first time point that the MCI-C subject has been 

clinically diagnosed as AD, shown by the red line in Fig. 1(b) tracing backward or forward 

to the last time point in each partial image sequence such that the time offset toward the time 

point of AD conversion indicates the progression stage τn. Specifically, τn = 0 represents the 

exact time point diagnosed as AD. Negative stage degree denotes the time period prior to 

AD conversion and the positive stage value represents the time period after AD converting. 

We treat all partial sequences from MCI-NC subjects equally in the training stage just as 

conventional SVM method since the actual AD converting time is unknown yet.

Temporally Structured Support Vector Machine.—After we associate the positive 

training samples with AD progression stage and align them based on subject-specific AD 

convert time, the energy function of our TS-SVM is defined as:

argminw, c, ϵ
1
2 w 2

2 + η
2 ∑

n
∑

b
∑

a
ϵ2,

s. t. ∀ n, b, a,
f Φ Xb

n + ≥ 1 − ϵ&f Φ Xb
n + ≥ f Φ Xa

n + + Δ τa
n, τb

n

f Φ Xb
n − ≤ − 1 + ϵ

(2)
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Where τa
n, τb

n are the AD progression stage parameters for partial sequences Xa
n and Xb

n from 

subject n. Δ τa
n, τb

n  denotes the margin parameter which reflect detection score temporal 

changes between different partial sequences Xa
n and Xb

n. Δ .  can be any arbitrary non-

negative function, and in general, it should be a non-decreasing function in (0,1]. For 

simplicity, we use the following linear function:

Δ τa
n, τb

n = τa
n − τb

n

max(τ) − min(τ) , (3)

where max(τ) is the maximum value of τ in all training data and min(τ) is the minimum 

value of τ in all training data. Compared to the classic SVM in Eq. (1), our TS-SVM treats 

the partial sequences Xb
n and Xa

n(a < b) adaptive to the AD progression. The detection score 

f Φ Xb
n +  is constrained to be higher than f Φ Xb

n +  by a margin Δ τa
n, τb

n . As a result, the 

detection score is constrained to increase monotonically with the AD progression stage for 

each subject as shown in Fig. 1 (b). We treat partial image sequences from MCI-C and 

MCI-NC groups differently in training stage. Specifically, we keep using the same set of 

morphological features of MCI-NC group as negative training samples. However, we did 

not apply the temporal consistency constraints on the MCI-NC subjects since we do not 

have enough information on the AD progression of those MCI-NC subjects. Therefore, we 

treat those partial sequences from MCI-NC subjects equally just as classic SVM. It is worth 

noting that such monotonicity constraint is only used in the training stage to seek for the 

more reasonable hyperplanes in support vector machine. In the testing stage, we apply the 

same TS-SVM to unseen image sequences and predict the risk of AD conversion.

The benefit of our TS-SVM in AD early detection is illustrated in Fig. 2. Given the 

morphological features extracted from the partial image sequences, classic SVM trains the 

partial sequences at different AD progression stage equally, which leads to inconsistent 

detection score along with the AD progression as shown in Fig. 2 (a). On the contrary, 

our TS-SVM can leverage a sequence of monotonically increasing detection scores on 

positive samples to guide the optimization detection score function f Φ Xb
n +  such that 

the detection scores with each MCI-C subject can consistently increase as AD pathology 

progresses as shown in Fig. 2 (b). As an additional heuristics, the monotonicity constraint 

eventually enhance the capability of early AD detection. Our TS-SVM is able to find a 

better hyper-plane which assign higher detection score for MCI converters at early stage. 

Therefore, our method is more sensitive to early AD onset.

D. Joint Feature Selection for Early AD Diagnosis

Since the morphological features are in high dimension, feature selection is a standard 

procedure to remove the data redundancy (Xiaofeng Zhu et al., 2020; X. Zhu et al., 2017; 

Y. Zhu et al., 2014; Y. Zhu et al., 2016; Y. Zhu et al., 2019). Usually feature selection 

is independently applied prior to train the classifiers. In order to make the selected best 

features eventually optimal for using TS-SVM, we proposed to jointly select best features 

and train the classifiers by further introducing a L2, 1 norm for group-wise sparsity on the 

classification vector w:
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argminw, c, ϵ
1
2 w 2, 1 + η

2 ∑
n

∑
b

∑
a

ϵ2,

s. t. ∀ n, b, a,
f Φ Xb

n + ≥ 1 − ϵ&f Φ Xb
n + ≥ f Φ Xa

n + + Δ τa
n, τb

n

f Φ Xb
n − ≤ − 1 + ϵ

(4)

where the group-wise sparsity constraint on w selects a small number of features which 

are effective to suppress noisy patterns and reduce redundancy. Here the group sparsity 

strategy constrains that each ROI is either selected or discarded for all feature measurements 

(GM, WM, CSF, Background and Jacobian value). The learned w can be regarded as 

both a classifier for classification and a coefficient matrix for supervised feature selection 

because, first, L2, 1 norm minimizes the energy for w, so that the classification margin 
2
w  is maximized; secondly, L2, 1 norm selects discriminative ROIs separating MCI-C and 

MCI-NC groups to remove the redundant features. Therefore, our TS-SVM model turns into 

a simultaneous supervised feature selection and classification scenario.

E. Optimization

Although Equation (4) is a convex problem, it is hard to optimize it directly due to a large 

number of linear inequality constraints. To solve this problem efficiently, we reformulate 

it as an unconstrained problem which falls into the framework of Alternating Direction 

Method of Multipliers (ADMM) (Boyd et al., 2011a, 2011b; Nie et al., 2014).

F. Long Range Early Detection of AD on Longitudinal Image Sequence

In the application stage, we assume subjects keep taking the longitudinal MR image scans. 

For each subject, we can apply the learned TS-SVM after the first follow-up scan. At each 

time point, our AD detection/prediction process consists of two main steps, (1) estimate the 

AD conversion score using currently all available longitudinal information, and (2) analyze 

the risk of AD based on the historical prediction scores. The detail of each step is given 

below.

• Step 1. Estimate the AD convert score. Suppose that the longitudinal image 

sequence Z = Z1, Z2, ⋯, ZTZ  currently has Tz longitudinal scans so far. The 

estimation of AD convert score consists of two steps: (1.a) Extract the 

longitudinal features Φ(Z) from longitudinal image sequence Z; (1.b) Compute 

the AD convert score by letting f wTΦ(Z) .

• Step 2. Analyze AD risk and early alarm of AD conversion. There are two 

criteria to trigger the alarm of AD convert: (1) the AD convert score γTZ is higher 

than 1, i.e., γTZ > 1; and (2) the increase of from previous AD convert score γTZ − 1

(using Z1, Z2, ⋯, ZTZ − 1 ) to current AD convert score γTz is greater than another 

threshold ℎ, i.e., γTz − γTz − 1 > ℎ(ℎ > 0). We label the test subject as MCI-C cohort 

only if the trajectory of AD convert scores matches both two above criteria. 

Otherwise, we record the current AD convert score γTz and wait for the future 

MR scan. It is worth noting that the threshold ℎ can be learned on a validation 
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fold (completely separate from both training and testing dataset) by exhaustive 

search.

III. EXPERIMENTS

A. Subject Information

In this paper, 151 subjects in total are selected from ADNI dataset for performance 

evaluation, which consists of 70 MCI-C and 81 MCI-NC subjects. Detailed demographic 

information is summarized in Table 1. Based on the statistics of phenotype data (e.g., 

Mini-Mental State Examination (MMSE) score), it is clear that the phenotype data is not 

sufficient to distinguish MCI-C and MCI-NC subjects. MMSE is a clinical score used 

broadly in clinical and research to measure cognitive impairment. The range of MMSE is 

0 to 30. The cutting off point of MMSE for AD is <25, MCI is 25–27, normal control is 

28–30. Among all longitudinal subjects, the distribution of the number of longitudinal scans 

is shown in Fig. 3 (a) where most of subjects have at least 5 follow-up scans (excluding 

baseline scan). Specifically, we further inspect the duration between baseline scan and AD 

conversion in 70 MCI-C subjects. As shown in Fig. 3 (b), the AD convert occurs randomly 

after the baseline scan in our MCI-C training subjects.

B. Image Processing

We downloaded raw digital imaging and communications in medicine (DICOM) MRI scans 

from the ADNI website http://www.adni-info.org/. All MR images have been reviewed for 

quality, and automatically corrected for spatial distortion caused by gradient nonlinearity 

and bias field inhomogeneity. The data are 1.5 T MRI data and all from ADNI1.

As displayed in Fig. 4, image processing was conducted by the following steps:

1. Anterior commissure-posterior commissure correction using MIPAV software for 

all images;

2. Correct intensity inhomogeneity using N4 bias correction algorithm (Tustison et 

al., 2010);

3. Extract brain using a robust skull-stripping method (Fennema-Notestine et al., 

2006);

4. Image segmentation by using the FAST program in FSL package (Zhang et al., 

2001) to obtain the whole brain tissue segmentation of GM,WM, and CSF;

5. Parcellate whole image into 90 regions of interest (ROIs) by registering the 

AAL template (Kabani et al., 1998) (with manually labeled 90 ROIs) to each 

longitudinal image sequence via a longitudinal image registration method (Wu et 

al., 2012);

Calculate the tissue percentages of the GM, WM, CSF, background and the mean Jacobian 

values of displacements (estimated in Step 5) for each ROI.
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C. Experiments Setup

Counterpart methods under comparison.—We compare our proposed TS-SVM 

based early detection method with classic SVM which is referred as SVM in the following 

experiments. Furthermore, we evaluate the impact of feature selection in both classic SVM 

and our TS-SVM, which are referred as SVM+FS and TS-SVM+FS, respectively. We use 

two types of data for the classic SVM method with L2, 1 feature selection penalty. Firstly, 

we apply single MR images to classic SVM with joint feature selection (denoted as SVM-S 

& SVM-S+FS); then, the novel extracted partial sequences are applied to SVM and joint 

feature selection (denoted as SVM-P & SVM-P+FS). It is worth noting that the partial 

sequences enables the classic SVM model be trained for different MR images automatically. 

Therefore, the early detection performance of classic SVM model using partial MR image 

sequences are improved a lot compared with using multiple MR images because it is trained 

for recognizing small partial sequences from different AD progression stage. Furthermore, 

we also selected a dataset with the partial sequences extracted from baseline to the early 

detection time scans by our TS-SVM method. We use this dataset to train classic SVM 

model with feature selection (denoted as SVM-EP & SVM-EP+FS). This is to evaluate the 

importance of the earliest detection time scans for classic SVM model.

Evaluation measurements.—We use several quantitative measurements to evaluate not 

only the classification accuracy but also the early detection range AD conversion. Besides 

the widely used Accuracy (ACC), Sensitivity (SEN) and Specificity (SPEC), we also employ 

F1-score which is defined as the harmonic mean of precision and recall values (Hoai et al., 

2011; Hoai & Torre, 2014; Huang et al., 2014):

F1 − score = 2 Precision × Recall
Precision + Recall

Where Precision = # TruePositive
#TruePositive+#FalsePositive  and Recall = #TruePositive

#TruePositive+#FalseNegative , 

#TruePositive represents the number of accurately detected positive samples (MCI-C), 

#FalseNegative represents the number of positive samples which are not detected, 

#TrueNegative represents the number of negatives which are classified correctly and 

#FalseNegative represents the number of negative samples which are not assigned with 

correct labels by our classifier. Of note, high F1 − score indicates not only better performance 

in AD early detection but also the Precision and Recall are well balanced. We report the 

F1-score of our method compared with competing methods with respect to early detection 

time in order to show all competing methods dynamically.

Parameter selection.—We used ten-fold cross-validation strategy to evaluate the 

classification performance. In all experiments, we split the data into 10 non-overlap folds, 

where one fold is used as the testing data and the remaining nine folds are used for training 

at each time. We repeat the whole process for ten times to avoid any possible bias caused by 

dataset partition. The final classification accuracy is reported by averaging the classification 

results from cross validations. To learn the best parameters, we use five-fold inner cross 

validation strategy. We spilt the training data into five non overlap folds and use one fold 
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data as the parameter validation data. The parameters are tuned using grid search strategy in 

the validation dataset (completely separated from testing dataset and training dataset).

D. Performance Evaluation on AD Early Detection

In each cross validation case, we train our TS-SVM on the training data and sequentially 

apply the trained classifier to the testing subject image sequence after the first follow-up. 

Since the month of converting to AD after baseline scans varies across MCI-C subjects, we 

show the detection Accuracy (ACC) and Accuracy Under ROC curve (AUC) for MCI-C 

subjects converting to AD in 18 months, 24 months, and 30 months after the baseline 

scan in Table 2, Table 3 and Table 4, respectively. It is clear that the SVM-P (partial MR 

images sequences) achieves highest accuracy compared to SVM-S (single MR images) and 

SVM-EP (earliest partial MR image sequences by TS-SVM). The partial sequences enable 

the SVM-P to recognize dynamic structure changes at any scanning time or AD progression 

stage. Therefore, SVM-P is more sensitive to different dynamic structure changes involved 

in AD progress. Our TS-SVM outperforms the SVM-P with more than 10% improvement in 

terms of ACC, which suggests the advantage of using temporal consistency and monotony 

constraints in our proposed method. Also, feature selection is very important to improve 

the detection accuracy. In average, our full method (TS-SVM+FS) can detect AD 6 

months earlier than clinical diagnosis with 86.76% accuracy, 12 months earlier than clinical 

diagnosis with 82.5% accuracy, and 18 months earlier than clinical diagnosis with 76.53% 

accuracy.

Furthermore, Fig. 5 shows the F1-scores in long-range early detection, short-range early 

detection, and AD diagnosis applications by four AD early detection competing methods: 

SVM-P, SVM-P+FS, TS-SVM, TS-SVM+FS. We only show the performance of SVM-P 

since it achieves best performance among the above competing methods using classic SVM. 

As displayed in the bottom of Fig. 5, AD diagnosis at clinical onset uses the longest 

longitudinal image sequence (baseline to clinical diagnosis time). In this scenario, our 

method can be used to provide imaging-based validation in clinical practice. On the contrary, 

long-range early diagnosis uses shortest longitudinal image sequence and detect early AD 

onset 12 months or 18 months earlier than the clinical diagnosis time. The accuracy of 

long-range early diagnosis is lower than short range early detection since less longitudinal 

images are used. However, our AD early detection method (TS-SVM+FS) can achieve 

F1-score = 0.720 18 months prior to clinical diagnosis time. This is comparable to the 

performance of classic SVM-P+FS at AD clinical diagnosis time (F1-socre = 0.725).

Discussion.—We found that high detection performance is achieved in detecting AD 6–12 

months prior to AD conversion time, but the performance drops dramatically in detecting 

AD for longer periods prior to AD conversion time. One explanation for this decrement in 

detection performance is bias inherent in the longitudinal data we used. In this dataset, for 

subjects that converted to AD after 6–12 months from the baseline scan, we have 2 or 3 

follow up time points, therefore, there were enough follow ups in the training data for the 

detector. However, for MCI subjects that converted to AD 18 months from the baseline scan, 

there was only one follow up. Due to the lack of follow-up data points for these subjects, 

the training data is severely biased. We believe that if enough follow-ups are provided for 
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subjects that convert to AD after 18 months since the baseline scan, the performance of 

TS-SVM will improve.

In our full method (TS-SVM+FS), there is only one regularization parameter η (Eq. (3)) 

which balances the sparsity of the learned support vector w and the inequality constraints. 

It is worth noting that other important parameters such as adaptive margin δ(b) and training 

classification error ε are optimized in the training stage. Here we evaluate the sensitivity 

of parameter in AD early detection. Specifically, we set the value for η from 0.01 to 50.0 

and evaluate the classification accuracy on the validation dataset. Fig. 6 shows the detection 

accuracy vs. the value of parameter η with different detection ranges. It is straightforward to 

determine the optimal parameter η = 0.1 which is very consistent in either short term or long 

term early detection applications.

Another important parameter related to temporal dynamics in AD progression is h. A large 

value of h indicates individual is developing from MCI/NC to AD quickly. It is especially 

important for early AD diagnosis. We set the optimal value for h based on an independent 

validation dataset. We show the detection accuracy vs. the value of parameter ℎ in Fig. 7 

computed on our validation dataset. The optimal value for ℎ in our experiments is set to be 

0.01.

Convergence analysis.—We display the averaged convergence curve on the ten cross 

validation folds of training dataset. All the parameters involved are fixed using the best value 

obtained by grid search. Fig. 8 shows the convergence curves by TS-SVM and TS-SVM+FS 

methods. It can be seen that the value of objective functions (Eq. (2) by TS-SVM and Eq. (3) 

by TS-SVM+FS) converges after 100 iterations for both methods.

E. Depict Critical Brain Regions Intensively Involved in AD Progression

Since our method jointly selects morphological features during training TS-SVM, it 

is possible to visualize the predictive impact of each brain region by examining the 

contribution of morphological features computed from each ROI in our early AD detection 

method. Intuitively, the higher the overall weight of the morphological patterns extracted 

from a particular brain region, the greater role this region has in predicting AD conversion. 

In Fig. 9, we visualized the top 20 brain regions with largest overall weights after 

feature selection, which are strongly associated with AD progression. The brain regions 

highlighted include neocortical and paralimbic areas (medial/lateral temporal lobe, medial/

lateral parietal lobe, and occipito-frontal cortex) that are selectively affected in AD. A few 

subcortical regions including the hippocampus, caudate nucleus, putamen, and thalamus 

were also implicated to predict conversion to AD, likely reflecting striato-thalamic nodes 

in cortical-subcortical functional networks (Hoesen et al., 2000; S. Risacher & A. Saykin, 

2013; S. L. Risacher & A. J. Saykin, 2013).

Furthermore, we separate the training image sequences into three AD conversion groups 

based on the time course of progression: Group 1 (conversion to AD 12 months post-

baseline), Group 2 (conversion to AD 18 months post-baseline, and Group 3 (conversion 

to AD > 24 months post-baseline). For each group, we apply our TS-SVM+FS method 
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separately. The goal of this experiment is to investigate the association of each brain region 

to AD progression. We map the contribution of each anatomical region onto the brain 

surface displayed in Fig. 10, where red and blue denote a strong or weak relationship to 

AD conversion, respectively. Of note, the significance score in each region is measured 

by the normalized feature selection weights of all morphological patterns extracted from 

the underlying region. It is clear that (1) some subcortical regions such as hippocampus, 

putamen, amygdala, and thalamus are always active during AD progression; (2) left and 

right cerebral hemispheres are differentially associated with AD progression. Due to the 

limited number of training samples in each group, it is difficult to interpret the feature 

selection results for each brain region in the cortical area. Instead, we examine the 

impacts of L/R frontal lobe, L/R parietal lobe, L/R temporal lobe, and L/R occipital lobe, 

respectively. We display the most active lobe in Fig. 11, the selected top four lobes are 

colored by light blue and other regions are colored by gray. As displayed in Fig. 11, it is 

clear that selective temporal lobe changes are the primary locus associated with earlier AD 

conversion, whereas the occipital lobe is relatively spared in early AD converters. However, 

over longer observation periods (>12 months), the relative weights of temporal and occipital 

lobe involvement in conversion to AD begin to converge.

Discussion.—Our novel analytical method robustly detects AD at time points 6 or 12 

months prior to conversion from MCI. By contrast, performance for predicting conversion 

drops markedly at 18 months. One reason for this drop-off in performance is an inherent bias 

in the ADNI dataset. Whereas subjects converting to AD at 12 or 18 months from baseline 

had three or four follow-up scans, the majority of MCI subjects that converted to AD 24 

months out from baseline scan had only one subsequent scan. This difference in available 

training data imposes a significant limitation. We believe that the performance of our TS-

SVM can be improved by having data from more time points. Our current work only uses 

single-modality data to classify MCI converters from MCI non-converters with accuracy > 

80% using two MR images. We believe that performance can be significantly improved if 

this model can be trained using multiple modality data. Furthermore, in real-world clinical 

applications, our method would have to account for more groups than just MCI converters 

and MCI non-converters, the binary classification approach used in this study. Future work 

will explore the multiple-class classification problem to make this method suitable for real 

clinical applications.

F. Performance Evaluation in the Real Clinic Setting

In the previous experiments, we do not consider the factor of number of MR scans used 

in early diagnosis, as show in Table 2–4. However, in general clinical practice, it is very 

different to have elderly people scanned more than three times, even on a yearly basis. 

Hence, we specifically report the prediction accuracy in terms of alarm window and number 

of MR images. As shown in Fig. 12, the prediction accuracy consistently increases when 

more longitudinal MR scans are used for prediction. Our early diagnosis method is able to 

predict AD conversion 12 months ahead of clinic diagnosis with 81.75% accuracy using 

just two follow-up MR scans, which indicates the realistic potential to apply our computer 

assisted early diagnosis method to the clinic arena.
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G. Performance Evaluation of Our Method with Demographic and Clinical Data Included

Although the focus of our work is to show that the temporal morphologic structure changes 

captured in longitudinal MR images are discriminative biomarkers for identifying the MCI 

subtypes: MCI converters vs. MCI non-converters, the AD risk factors in demographic data 

should not be ignored. Our model is very flexible to combine this demographic information 

to improve the performance. In this section, we add the AD risk factors including gender, 

education level, date of birth, APOE4 allele count (a gene which increases the risk for 

AD), APOE2 allele count ( a gene which enhances neuroprotection against AD) as the 

input feature of our model(Altmann et al., 2014; Chiang et al., 2010).Similarly, we use 

10-fold cross-validation strategy and vary the available MR Images (2, 3, 4) for testing 

subjects. Table 5 shows the mean AD diagnosis accuracy with 0, 1 (baseline), 2, 3 and 4 

MR images available at 0, 6, 12, 18, 24 months before clinical onset time. The demographic 

data increases the performance of our method substantially. For example, with 2 MR images, 

we can predict AD 12 month earlier at the accuracy of 87.2%, which increases about 10% 

compare to our model trained on MR images only. The improved model can predict AD 24 

months earlier than clinical diagnosis time with accuracy of 83.1%.

We added the results of our model using only the demographic data (gender, education, 

age) and genomics data: APOE2, APOE4 as one of our baseline model show in table 5 

(0 MR Image). We also add the results on using only one baseline MR image along with 

all demographic data and APOE2, APOE4 as shown in table 5 (1 MR image). With only 

the demographic and gene data, our model shows accuracy at 68.1% to predict the AD 24 

month earlier than clinical diagnosis time (drops about >4.5%) compared to using 1 MR 

image. With only baseline MR image, our model shows accuracy at 73.2% (decreased >8% 

compared to using 2 MRI scans) to predict AD 24 months before clinical diagnosis time.

This result in Table 5 demonstrated that the neuroimaging features are very important for 

the prediction of AD. It has been shown by neuroscientist that the brain structure starts 

to change from normal to abnormal first during the AD developing process (C. R. Jack, 

Jr. et al., 2010). The memory and cognitive ability starts to changes to abnormal after 

the brain structure changing. Since the neuroimaging data (MRI) can capture the brain 

morphological structures and clinical test only capture the cognitive and memory ability 

changes, the neuroimaging data will capture the early brain changes than cognitive test. 

Therefore, using neuroimaging data are more informative than cognitive test especially for 

early AD diagnosis. Furthermore, with two MRI scans compared to one MRI scan, our 

model shows a large improvement (>8%) on early AD prediction, which demonstrated 

that the longitudinal/temporal morphological structures measured by MRI scan is a crucial 

biomarker for successful AD prediction (early diagnosis).

Discussion.—This is an extended work of the paper (Y. Zhu et al., 2016)[40], we have 

extended the paper in several aspects: Firstly, we analysis the structural SVM with temporal 

monotonicity constraints with more details on F1 score of AD prediction at different time 

frame (18, 12, 6 months before clinical diagnosis time), optimization, parameter sensitivity 

and algorithm convergence. Secondly, we also added more detail information on the dataset 

such as the distribution of visiting number, disease status (NC, MCI converter, MCI non-
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converter and AD) and clinical scores. Thirdly, we add the demographic information and 

genetic data as the input of our model and show that it can consistently improve AD 

diagnosis and prediction performance. Fourthly, we analyzed the selected brain regions by 

our model in right and left brain at different time (6 months, 12 months and 18 months 

before clinical diagnosis time). At last, we discussed the scenario of applying this method 

in clinical practice and show the prediction accuracy at different disease stage (12, 6 and 0 

months before clinical diagnosis) with different number (2, 3, 4) of longitudinal MRI scans 

available.

IV. CONCLUSION

In this paper, we present a novel method for predicting conversion from MCI to AD using a 

minimal number of MR images (2 MR images) based on a Temporally Structural-SVM (TS-

SVM) and joint feature selection framework. In order to allow our model to accommodate 

fewer MR images during the testing process, we extract different length partial MR image 

sequences at different time points for each subject in the training data. Furthermore, to 

avoid inconsistent and unrealistic detection results, we enforce monotony on the output of 

SVM since AD progression is generally inexorable (Durrleman et al., 2009). In order to 

achieve early alarm of the onset of AD symptom, we propose to constrain the score of 

MCI converters to increase monotonically with AD progression (more follow-up scans are 

examined). Furthermore, we jointly perform feature selection and classification of TS-SVM, 

yielding promising results in terms of MCI-converters/MCI-Non-Converters classification 

accuracy using a lower number of MR images compared to the standard SVM approach.

Appendix – Optimization

Optimization:

Eq. (4) is a special case of convex problem with global minimum since the objective 

function is a semi-positive definite quadratic problem with linear constraints. However, 

it is hard to optimize Eq. (4) directly due to the large number of linear inequality 

constraints (several inequality constraints for each subject in the training data). To solve this 

problem efficiently, we introduce the hinge loss function to measure the error of inequality 

constraints (Hoai et al., 2011; Hoai & Torre, 2014; Huang et al., 2014), a dummy variable 

v to separate the group sparsity constraint from other inequality constraints and use the 

Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011a) to remove the 

inequality constraints. Now, we reformulate it as an unconstrained convex problem by 

rewriting Eq. (4) as,

argminw, c, ϵ
1
2 w 2, 1 + η

2 ∑
n

∑
b

∑
a

ϵ2 + μ
2 w − v 2

2 + λT(w − v) + ∑
n

∑
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where ⋅ ℎ is a hinge loss function used to measure the error of inequality constraints with 

the quadratic loss: x ℎ = max(0, x) 2
2, μ is the penalty parameters for the constraint w = v. 

and λ is the Lagrange Multiplier for the equality conraint w = v.

Eq. (5) can be solved by alternatively updating the gradient of the overall energy 

function with respect to w, v, ϵ and c until the overall energy function converges. The 

Lagrange parameters λ and the penalty parameter μ can be estimated in the iteration. 

At k‐tℎ iteration, the Lagrange Multiplier λ and penalty parameter μ are updated as: 

λk = λk − 1 + μk − 1 wk − 1 − vk − 1 , μk = μk − 1ρ, where ρ is a learning step parameter usually set to 

be slightly more than 1. In this way, the penalty value μ for equality constraint is increased 

gradually in each iteration. We set ρ = 1.1 in our experiment.
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Fig. 1. 
Prepare the training dataset. (a) We extract partial sequences of different length (from 

baseline to b − tℎ follow-ups, b = 2, 3, ⋯) for each subject. (b) We align the extracted partial 

MR image sequences of each subject based on the AD progression stage τ before training 

TS-SVM.
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Fig. 2. 
Comparison of classic SVM and our temporal structured-SVM. The classic SVM treats each 

partial image sequences equally, even from the same subject. Since no temporal constraint is 

used in training classic SVM, the detection scores of classical SVM for MR image sequence 

are inconsistent along time as shown in (a). Our TS-SVM measures the impact of each 

partial image sequence based on the AD progression stage. Since our TS-SVM fully utilizes 

temporal consistency heuristics, the detection score of TS-SVM for MR image sequence is 

much more consistent than classic SVM as shown in (b).
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Fig. 3. 
The distribution of the longitudinal MR image sequences for MCI-NC and MCI-C subjects 

in our dataset.
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Fig. 4. 
The images pre-processing and feature extraction step
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Fig. 5. 
Averaged F1-score in AD diagnosis, short-range early diagnosis, and long-range early 

diagnosis by SVM-P (Magenta) and SVM-P+FS (green), our TS-SVM (blue) and our full 

method TS-SVM+FS (red). The SVM-P+FS (green) achieves best performance for classic 

SVM models.
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Fig. 6. 
The valuation of parameter sensitivity for variable η which balances the sparsity constraint 

and inequality constraints in Eq. (4).
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Fig. 7. 
The valuation of parameter sensitivity for variable ℎ for evaluate the monotonicity of testing 

subjects.
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Fig. 8. 
The cost function values vs. iteration numbers by TS-SVM and TS-SVM+FS methods.
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Fig. 9. 
The top 20 selected ROIs by the proposed TS-SVM+FS method which are highly involved 

in early detection of AD progression. We repeat ten In each test, we select top 20 ROIs. 

This figure shows the frequency of ROIs selected in those ten-fold cross validation. Different 

color indicates different selection frequency.
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Fig. 10. 
Visualization of impacts of each brain region in AD progression. We color-code all ROIs 

by their respective selected frequency in our experiments at different AD progression stage: 

18 Months, 12 Months and 6 Months before AD conversion. (red: high impact; blue: low 

impact).
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Fig. 11. 
Visualization of impacts of each brain lobe in AD progression. The light blue colored lobes 

are the top selected lobes. We show the top four selected lobes at different AD progression 

stage. At the early AD progression stage (18 Months before converting to AD) the temporal 

lobes, partial lobe and the frontal lobe are selected; The occipital lobe and the temporal lobe 

are selected at the late AD progression stage (i.e. 6 Months before convert to AD).
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Fig. 12. 
The performance of AD early diagnosis in the real clinic setting where we use no more than 

three follow-up MR scans including baseline scan.
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Table 1.

Demographic information of the MCI-C and MCI-NC subjects.

Female/Male Age MMSE

MCI-NC 56/25 75.93±6.41 26.67± 3.69

MCI-C 52/18 74.70±4.75

Before diag. diagnosed After diag.

26.57±2.86 26.71±3.14 26.85±4.26
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Table 2.

Accuracy of AD detection at 6 and 0 months earlier than AD clinical diagnosis for the MCI-C subjects who 

converted to AD in 18 months after baseline scan.

Method

18 
Earlier

Months 12 
Earlier

Month 6 
Earlier

Months 0 
Earlier

Months

AC
C

AU
C

AC
C

AU
C

AC
C

AU
C

AC
C

AU
C

SVM-S - - - - 0.6 653 0.7 153 0.6 826 0.7 241

SVM-
S+FS

0.6 713 0.7 175 0.6 943 0.7 382

SVM-EP - - - - 0.6 821 0.7 336 0.6 924 0.7 315

SVM-
EP+FS

0.6 961 0.7 452 0.7 065 0.7 482

SVM-P 0.7 110 0.7 612 0.7 345 0.7 937

SVM-
P+FS

- - - - 0.7 557 0.7 862 0.7 735 0.8 237

TS-SVM - - - - 0.8 816 0.9 327 0.8 975 0.9 431

TS-
SVM+FS

- - - - 0.9 025 0.9 649 0.9 075 0.9 776
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Table 3.

Accuracy of AD detection at 12, 6 and 0 months earlier than AD clinical diagnosis for the MCI-C subjects 

who converted to AD in 24 months after baseline scan.

Method

18 
Earlier

Months 12 
Earlier

Month 6 
Earlier

Months 0 
Earlier

Months

AC
C

AU
C

AC
C

AU
C

AC
C

AU
C

AC
C

AU
C

SVM-S - - 0.6 285 0.6 634 0.6 324 0.6 782 0.6 805 0.7 215

SVM-
S+FS

0.6 325 0.6 702 0.6 573 0.6 923 0.6 951 0.7 411

SVM-EP - - 0.6 452 0.6 837 0.6 612 0.7 024 0.6 923 0.7 351

SVM-
EP+FS

0.6 535 0.6 921 0.6 761 0.7 155 0.6 987 0.7 438

SVM-P - - 0.7 325 0.7 822 0.7 455 0.7 917 0.7 535 0.8 223

SVM-
P+FS

- - 0.7 537 0.7 912 0.7 685 0.8 123 0.7 725 0.8 314

TS-SVM - - 0.8 425 0.8 851 0.8 593 0.9 042 0.8 635 0.9 128

TS-
SVM+FS

- - 0.8 475 0.8 932 0.8 720 0.9 277 0.8 812 0.9 216
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Table 4.

Accuracy of AD detection at 18, 12, 6 and 0 months earlier than AD clinical diagnosis for the MCI-C subjects 

who converted to AD in 30 months after baseline scan.

Method

18 
Earlier

Months 12 
Earlier

Month 6 
Earlier

Months 0 
Earlier

Months

AC
C

AU
C

AC
C

AU
C

AC
C

AU
C

AC
C

AU
C

SVM-S 0.5
534

0.5
913

0.5
541

0.5
953

0.5
954

0.6
315

0.6
152

0.6
551

SVM-
S+FS

0.5
672

0.6
127

0.5
723

0.6
157

0.6
053

0.6
421

0.6
356

0.6
735

SVM-EP 0.5
623

0.6
034

0.5
716

0.6
125

0.6
039

0.6
452

0.6
241

0.6
645

SVM-
EP+FS

0.5
742

0.6
151

0.5
821

0.6
261

0.6
145

0.6
603

0.6
365

0.6
803

SVM-P 0.6
016

0.6
542

0.6
025

0.6
677

0.6
325

0.6
712

0.6
515

0.6
931

SVM-
P+FS

0.6
557

0.6
862

0.6
735

0.6
127

0.6
675

0.6
983

0.6
464

0.6
926

TS-SVM 0.7
345

0.7
734

0.7
675

0.8
116

0.7
805

0.8
334

0.7
875

0.8
503

TS-
SVM+FS

0.7
653

0.7
983

0.8
125

0.8
434

0.8
345

0.8
672

0.8
431

0.8
894
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Table 5.

Accuracy of AD diagnosis including gender, education, APOE 4, APOE2, age and baseline cognitive score 

(MMSE) by our method, at 24, 18, 12, 6 and 0 months earlier than AD clinical diagnosis for the MCI-C 

subjects with 0, 1, 2, 3 and 4 MR Images including baseline scan.

Early Diagnosis Time

4 
Images

MR 3 
Images

MR 2 
Images

MR 1 
Images

MR 0 
Images

MR

A
CC

A
UC

A
CC

A
UC

A
CC

A
UC

AC
C

AU
C

AC
C

AU
C

0 months earlier 0.952 0.962 0.931 0.953 0.914 0.928 0.843 0.862 0.772 0.787

6 month earlier 0.931 0.949 0.916 0.925 0.895 0.911 0.812 0.824 0.755 0.762

12 month earlier 0.905 0.917 0.887 0.903 0.872 0.893 0.772 0.793 0.731 0.753

18 month earlier 0.873 0.891 0.862 0.879 0.854 0.862 0.750 0.762 0.712 0.728

24 month earlier 0.854 0.865 0.839 0.851 0.822 0.831 0.735 0.747 0.681 0.713
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