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Abstract

Grammar compression is, next to Lempel–Ziv (LZ77) and run-length Burrows–Wheeler 

transform (RLBWT), one of the most flexible approaches to representing and processing highly 

compressible strings. The main idea is to represent a text as a context-free grammar whose 

language is precisely the input string. This is called a straight-line grammar (SLG). An AVL 

grammar, proposed by Rytter [Theor. Comput. Sci., 2003] is a type of SLG that additionally 

satisfies the AVL property: the heights of parse trees for children of every nonterminal differ by 

at most one. In contrast to other SLG constructions, AVL grammars can be constructed from the 

LZ77 parsing in compressed time: O zlogn  where z is the size of the LZ77 parsing and n is the 

length of the input text. Despite these advantages, AVL grammars are thought to be too large to be 

practical.

We present a new technique for rapidly constructing a small AVL grammar from an LZ77 or 

LZ77-like parse. Our algorithm produces grammars that are always at least five times smaller than 

those produced by the original algorithm, and usually not more than double the size of grammars 

produced by the practical Re-Pair compressor [Larsson and Moffat, Proc. IEEE, 2000]. Our 

algorithm also achieves low peak RAM usage. By combining this algorithm with recent advances 

in approximating the LZ77 parsing, we show that our method has the potential to construct a 

run-length BWT in about one third of the time and peak RAM required by other approaches. 

Overall, we show that AVL grammars are surprisingly practical, opening the door to much faster 

construction of key compressed data structures.
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1 Introduction

The increase in the amount of highly compressible data that requires efficient processing in 

the recent years, particularly in the area of computational genomics [3, 4], has caused a spike 

of interest in dictionary compression. Its main idea is to reduce the size of the representation 

of data by finding repetitions in the input and encoding them as references to other 

occurrences. Among the most popular methods are the Lempel–Ziv (LZ77) compression 

[32], run-length Burrows–Wheeler transform (RLBWT) [5, 16], and grammar compression 

[6]. Although in theory, LZ77 and RLBWT are separated by at most a factor of O log2n

(where n is the length of the input text) [15, 20], the gap in practice is usually noticeable 

(as also confirmed by our experiments). RLBWT is the largest of the three representations 

in practice, but is also the most versatile, supporting powerful suffix array and suffix tree 

queries [16]. LZ77, on the other hand, is the smallest, but its functionality includes only the 

easier longest common extension (LCE), random-access, and pattern matching queries [1, 7, 

12, 13, 21]. Grammar compression occupies the middle ground between the two, supporting 

queries similar to LZ77 [26]. Navarro gives a comprehensive overview of these and related 

representations [26, 27].

A major practical concern with these representations – RLBWT in particular – is how 

to construct them efficiently. Past efforts have focused on engineering efficient general 
algorithms for constructing the BWT and LZ77 [10, 18, 2, 17], but these are not applicable 

to the terabyte-scale datasets routinely found, e.g., in modern genomics [4]. Specialized 

algorithms for highly repetitive datasets have only been investigated recently. Boucher et 

al. [4] proposed a method for the efficient construction of RLBWT using the concept of 

prefix-free parsing. The same problem was approached by Policriti and Prezza, and Ohno 

et al. [29, 28], using a different approach based on the dynamic representation of RLBWT. 

These methods represent the state of the art in the practical construction of RLBWT.

A different approach to the construction of RLBWT was recently proposed in [20]. The 

idea is to first compute the (exact or approximate) LZ77 parsing for the text, and then 

convert this representation into an RLBWT. Crucially, the LZ77 → RLBWT conversion 

takes only O(z polylog n) time (where z is the size of the LZ77 parsing), i.e., it runs not 

only in the compressed space but also in compressed time.1 The computational bottleneck 

is therefore shifted to the easier problem of computing or approximating the LZ77, which 

is the only step taking Ω(n) time. Internally, this new pipeline consists of three steps: text 

→ (approximate) LZ77 → grammar → RLBWT, unsurprisingly aligning with the gradual 

increase in the size and complexity of these representations. Kosolobov et al. [24] recently 

proposed a fast and space-efficient algorithm to approximate LZ77, called Re-LZ. The 

second and third steps in the pipeline, from the LZ77 parse to the RLBWT, have not been 

implemented. The only known algorithm to convert LZ77 into a grammar in compressed 

time was proposed by Rytter [30], and is based on the special type of grammars called AVL 
grammars, whose distinguishing feature is that all subtrees in the parse tree satisfy the AVL 

1polylog n = logcn for some constant c > 0.
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property: the tree-heights for children of every nonterminal do not differ by more than one. 

The algorithm is rather complex, and until now has been considered impractical.

Our Contribution.

Our main contribution is a series of practical improvements to the basic variant of Rytter’s 

algorithm, and a fast and space-efficient implementation of this improved algorithm. 

Compared to the basic variant, ours produces a grammar that is always five times smaller, 

and crucially, the same holds for all intermediate grammars computed during the algorithm’s 

execution, yielding very low peak RAM usage. The resulting grammar is also no more 

than twice of the smallest existing grammar compressors such as Re-Pair [25]. We further 

demonstrate that combining our new improved algorithm with Re-LZ opens up a new path to 

the construction of RLBWT. Our preliminary experiments indicate that at least a three-fold 

speedup and the same level of reduction in the RAM usage is possible.

The key algorithmic idea in our variant is to delay the merging of intermediate AVL 

grammars as much as possible to avoid creating nonterminals that are then unused in the 

final grammar. We dub this variant lazy AVL grammars. We additionally incorporate Karp–

Rabin fingerprints [19] to re-write parts of the grammar on-the-fly and further reduce the 

grammar size. We describe two distinct versions of this technique: greedy and optimal, and 

demonstrate that both lead to reductions in the grammar size. As a side-result of independent 

interest, we describe a fast and space-efficient data structure for the dynamic predecessor 

problem, in which the inserted key is always larger than all other elements currently in the 

set.

2 Preliminaries

Strings.

For any string S, we write S[i...j], where 1 ≤ i, j ≤ |S|, to denote a substring of S. If i>j, we 

assume S i...j] to be the empty string ε. By [i...j) we denote [i…j − 1]. Throughout the paper, 

we consider a string (text) T [1...n] of n ≥ 1 symbols from an integer alphabet Σ = [0...σ). By 

LCE i, i′  we denote the length of the longest common prefix of suffixes T [i...n] and T i′...n .

Karp–Rabin Fingerprints.

Let q be a prime number and let r ∈ [0...q) be chosen uniformly at random. The Karp–Rabin 
fingerprint of a string S is defined as

Φ(S) = ∑
i = 1

S
S[i] ⋅ r S − i mod q .

Clearly, if T [i...i + ℓ) = T [j...j + ℓ) then Φ(T [i...i + ℓ)) = Φ(T [j...j + ℓ)). On the other hand, if 

T [i...i + ℓ) ≠ T [j...j + ℓ) then Φ(T [i...i + ℓ)) ≠ Φ(T [j...j + ℓ)) with probability at least 1 − ℓ/q
[9]. In our algorithm we are comparing only substrings of T  of equal length. Thus, the 

number of different possible substring comparisons is less than n3, and hence for any 
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positive constant c, we can set q to be a prime larger than nc + 4 (but still small enough to fit 

in O(1) words) to make the fingerprint function perfect with probability at least 1 − n−c.

LZ77 Compression.

An LZ77-like factorization of T  is a factorization T = F1⋯Ff into non-empty phrases such 

that every phrase F j with F j > 1 has an earlier occurrence in T , i.e., letting i = 1 + F1⋯F j − 1

and ℓ = F j , there exists p ∈ [1...i) satisfying LCE(p, i) ≥ ℓ. The phrase F j = T [i...i + ℓ) is 

encoded as a pair (p, ℓ). If there are multiple choices for p, we choose one arbitrarily. The 

occurrence T [p...p + ℓ) is called the source of F j. If ℓ = 1, the phrase F j=T [i] is encoded as 

a pair (T i , 0 . The LZ77-like parsing, in which we additionally require the phrase to not 

overlap its source, i.e., p + ℓ ≤ i, is called non-self-referential.

The LZ77 factorization [32] (or the LZ77 parsing) of a string T  is an LZ77-like factorization 

constructed by greedily parsing T  from left to right into longest possible phrases. More 

precisely, the jth phrase F j is the longest substring starting at position i = 1 + F1⋯F j − 1  that 

has an earlier occurrence in T . If there is no such substring, then F j=T i]. We denote the 

number of phrases in the LZ77 parsing by z. For example, the text bbabaababababaababa 

has the LZ77 parsing b ⋅ b ⋅ a ⋅ ba ⋅ aba ⋅ bababa ⋅ ababa with z = 7 phrases, and is encoded as a 

sequence (b,0),(1,1),(a,0),(2,2),(3,3),(7,6),(10,5).

Grammar Compression.

A context-free grammar is a tuple G = (N, Σ, R, S), where N is a finite set of nonterminals, Σ
is a finite set of terminals, and R ⊆ N × (N ∪ Σ)* is a set of rules. We assume N ∩ Σ = ∅ and 

S ∈ N. The nonterminal S is called the starting symbol. If (A, γ) ∈ R then we write A γ. 

The language of G is set L(G) ⊆ Σ* obtained by starting with S and repeatedly replacing 

nonterminals with their expansions, according to R.

A grammar G = (N, Σ, R, S) is called a straight-line grammar (SLG) if for any A ∈ N there is 

exactly one production with A of the left side, and all nonterminals can be ordered A1, ..., A|N|

such that S = A1 and if Ai γ then γ ∈ Σ ∪ Ai + 1, ..., A|N| *, i.e., the graph of grammar rules 

is acyclic. The unique γ such that A γ is called the definition of A and is denoted rhs(A). 
In any SLG, for any u ∈ (N ∪ Σ)* there exists exactly one w ∈ Σ* that can be obtained from 

u. We call such w the expansion of u, and denote it by exp(u). We define the parse tree 
of A ∈ N ∪ Σ as a rooted ordered tree T(A), where each node v is associated to a symbol 

sym(v) ∈ N ∪ Σ. The root of T(A) is a node v such that sym(v) = A. If A ∈ Σ then v has no 

children. If A ∈ N and rhs(A) = B1⋯Bk, then v has k children and the subtree rooted at the ith
child is a copy of T Bi . The parse tree T(G) is defined as T(S). The height of any A ∈ N is 

defined as the height of T(A), and denoted height(A).

The idea of grammar compression is, given a text T , to compute a small SLG G such 

that L(G)={T}. The size of the grammar is measured by the total length of all definitions, 

and denoted |G | : = ΣA ∈ N rhs(A) . Clearly, it is easy to encode any G in O( |G | ) space: pick 

an ordering of nonterminals and write down the definitions of all nonterminals, replacing 

nonterminal symbols with their numbers in the order.
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3 AVL Grammars and the Basic Algorithm

An SLG G = (N, Σ, R, S) is said to be in Chomsky normal form, if for every A ∈ N, it holds 

rhs(A) ∈ Σ or rhs(A) = XY , where X, Y ∈ N. An SLG in Chomsky normal form is called a 

straight-line program (SLP). Rytter [30] defines an AVL grammar as an SLP G = (N, Σ, R, S)
that additionally satisfies the AVL property: for every A ∈ N such that rhs(A) = XY , it holds 

|height(X) | − |height(Y ) | ≤ 1. This condition guarantees that for every A ∈ N (in particular for 

S ∈ N), it holds height(A) = O(log |exp(A) | ) [30, Lemma 1].

The main result presented in [30] is an algorithm that given a non-self-referential LZ77-like 

parsing of a length-n text T  consisting of f phrases, computes in O(flogn) time an AVL 

grammar G generating T  and satisfying |G | = O(flogn). Rytter’s construction was extended 

to allow self-references in [20, Theorem 6.1]. Our implementation of the basic as well as 

improved Rytter’s algorithm works for the self-referential variant, but for simplicity here 

and in Section 4 we describe the algorithm only for the non-self-referential variant.

The algorithm in [30] works in f steps. It maintains the dynamically changing AVL 

grammar G such that after the kth step is complete, there exists a nonterminal Pk in G such 

that exp Pk = F1⋯Fk, where T = F1⋯Ff is the input LZ77-like factorization of the input. 

This implies that at end there exist a nonterminal expanding to T . The algorithm does not 

delete any nonterminals between steps. At the end, it may perform an optional pruning of the 

grammar to remove the nonterminals not present in the parse tree T Pf . This reduces the 

grammar size but not the peak memory usage of the algorithm.

The algorithm uses the following three procedures, each of which adds a nonterminal A
with a desired expansion exp(A) to the grammar G, along with a bounded number of extra 

nonterminals:

1. AddSymbol(c): Given c ∈ Σ, add a nonterminal A with rhs(A) = c to the grammar 

G.

2. AddMerged(X, Y ): Given the identifiers of nonterminals X, Y  existing in G, 

add a nonterminal A to G that satisfies exp(A) = exp(X)exp(Y ). The difficulty of 

this operation is ensuring that the updated G remains an AVL grammar. Simply 

setting rhs(A) = XY  would violate the AVL condition in most cases. Instead, 

the algorithm performs the procedure similar to the concatenation of AVL 

trees [22, p. 474], taking O(1 + ∣ height(X) − height(Y ) ∣ ) time, and introducing 

O( ∣ height(X) − height(Y ) ∣ ) extra nonterminals.

3. AddSubstring(A, i, j): Given the identifier of a nonterminal A existing 

in G, and two positions satisfying 1 ≤ i ≤ j ≤ |exp(A)|, add a nonterminal 

B to G that satisfies exp(B) = exp(A)[i...j]. To explain how this is 

achieved, we define the auxiliary procedure Decompose(A, i, j) that given the 

same parameters as above, returns the sequence B1, ..., Bq of nonterminals 

satisfying exp(A)[i...j] = exp B1 ⋯exp Bq . The nonterminals Bi are found by 

performing two root-to-leaf traversals in the parse tree T(A). This takes 
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O(1 + height(A)) = O(1 + log |exp(A) | ) time and ensures q = O(log |exp(A) | ). It is 

easy to see that given B1, ..., Bq, we can now obtain B in O 1 + log2 | exp(A)|

time using AddMerged. In [30], it was however shown that if we always 

choose the shortest nonterminal to merge with its neighbor, the total runtime 

is O(1 + log |exp(A) | ) and only O(log |exp(A) | ) extra nonterminals are introduced.

Using the above three procedures, the algorithm in [30] works as follows. Suppose we have 

already processed the leftmost k − 1 phrases. The step begins by creating a nonterminal 

Ak satisfying exp Ak = Fk. If Fk = 1, it uses the procedure AddSymbol Fk . Otherwise, Ak is 

obtained as the output of AddSubstring Pk − 1, p, p + ℓ − 1 , where ℓ = Fk  and T [p...p + ℓ) is the 

source of phrase Fk. Finally, Pk is obtained as the output of AddMerged Pk − 1, Ak . A single 

iteration thus takes O 1 + log F1⋯Fk − 1 = O(logn) time and adds O(logn) extra nonterminals, 

for total of O(flogn) nonterminals over all steps.

4 Modified Algorithm

Lazy Merging.

We start by observing that the main reason responsible for the large final grammar produced 

by the algorithm in Section 3 is the requirement that at the end of each step k ∈ [1...f], there 

exist a nonterminal Pk satisfying exp Pk = F1⋯Fk. We relax this requirement, and instead 

require only that at the end of step k, there exists a sequence of nonterminals R1, ..., Rm such 

that exp R1 ⋯exp Rm = F1⋯Fk. The algorithm explicitly maintains these nonterminals as a 

sequence of pairs ℓ1, R1 , ..., ℓm, Rm , where ℓj = ∑i = 1
j exp Ri . The modified algorithm uses 

the following new procedures:

1. MergeEnclosed (i, j): Given two positions satisfying 1 ≤ i ≤ j ≤ F1⋯Fk − 1 , 

add to G a nonterminal R satisfying exp(R) = exp Rx ⋯exp Ry , where 

x = min t ∈ [1...m]:ℓt − 1 ≥ i − 1  and y = max t ∈ [1...m]:ℓt ≤ j . The positions 

x and y are found using a binary search. The pairs of the sequence 

ℓ1, R1 , ..., ℓm, Rm  at positions between x and y are then removed and replaced 

with a pair ℓy, R . In other words, this procedure merges all the nonterminals 

from the current root sequence whose expansion is entirely inside the given 

interval [i...j]. Merging of Rx, ..., Ry is performed pairwise, using the AddMerged 

procedure. Note, however, that there is no dependence between heights of the 

adjacent nonterminals (in particular, they do not form a bitonic sequence, like 

in the algorithm in Section 3), and moreover, their number m: = y − x + 1 is not 

b bounded. To minimize the number of newly introduced nonterminals, we thus 

employ a greedy heuristic, that always chooses the nonterminal with the smallest 

height among the remaining elements, and merges it with a shorter neighbor. We 

use a list to keep the pointers between neighbors and a binary heap to maintain 

heights. The merging thus runs in O(mlogn) time.

2. DecomposeWithRoots (i, j): Given two positions satisfying 1 ≤ i ≤ j ≤ F1⋯Fk − 1 , 

this procedure returns a sequence of nonterminals A1, ..., Aq satisfying 

F1⋯Fk − 1 [i...j] = exp A1 ⋯exp Aq . First, it computes positions x and y, as defined 
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in the description of MergeEnclosed above. It then returns the result of 

Decompose Rx − 1, i − ℓx − 2, ℓx − 1 − ℓx − 2 , followed by Rx, ..., Ry, followed by the 

result of Decompose Ry + 1, 1, j − ℓy  (appropriately handling the boundary cases, 

which for clarity we ignore here). In other words, this procedure finds the 

sequence of nonterminals that uses as many roots from the sequence R1, ..., Rm, 

as possible, and runs the standard Decompose for the boundary roots. Letting 

m = y − x + 1, it runs in O(m + logn) time.

Using the above additional procedures, our algorithm works as follows. Suppose that we 

have already processed the first k − 1 phrases. The step begins by computing the sequence of 

nonterminals A1, ..., Aq satisfying exp A1 ⋯exp Aq = Fk. If ∣ Fk ∣ = 1, we proceed as in Section 

3. Otherwise, we first call MergeEnclosed (p, p + ℓ − 1), where ℓ = Fk  and T [p...p + ℓ) is the 

source of Fk. The sequence A1, ..., Aq is then obtained as a result of DecomposeWithRoots 

(p, p + ℓ − 1). Finally, A1, ..., Aq, is appended to the roots sequence.

The above algorithm runs in O flog2n  time. To see this, note that first calling 

MergeEnclosed ensures that the output size of DecomposeWithRoots is O(logn). Thus, each 

step appends only O(logn) nonterminals to the roots sequence. The total time spend in 

MergeEnclosed is thus bounded by O f log2n , dominating the time complexity.

To prove the correctness of the modified algorithm, we need to prove that: (1) every 

nonterminal in the new algorithm satisfies the AVL property, and (2) after iteration 

k ∈ [1...f], the invariant exp R1 ⋯exp Rm = F1⋯Fk holds. To show (1), we note that in 

the above algorithm, the nonterminals are only created by the MergeEnclosed procedure. 

Internally, this procedure calls AddMerged, which guarantees that the newly created 

nonterminal satisfies the AVL property (see Section 3). To show (2), we first note that, 

by definition, MergeEnclosed does not change exp R1 ⋯exp Rm  (although it may change 

m). The expansion of the roots sequence changes only after appending the sequence of 

nonterminals A1, ..., Aq returned by DecomposeWithRoots (p, p + ℓ − 1). Since T [p..p + ℓ) is 

the source of Fk, we thus have exp A1 ⋯exp Aq = F1⋯Fk − 1 [p...p + ℓ) = T [p...p + ℓ) = Fk.

Utilizing Karp–Rabin Fingerprints.

Our second technique is designed to detect the situation in which the algorithm adds a 

nonterminal A to G, when there already exists some B ∈ N such that exp(A) = exp(B). For 

any u ∈ (N ∪ Σ)*, we define Φ(u) = Φ(exp(u)). Let us assume that there are no collisions 

between fingerprints.2 During the algorithm, we maintain a collection of fingerprints 

Φ(A):A ∈ N′ , where N′ ⊆ N is some subset of nonterminals. Assume, that given a 

nonterminal A ∈ N, we can quickly compute Φ(A), and that given some x ≥ 0, we can check, 

if there exists B ∈ N′ such that Φ(B) = x. There are two places in the above algorithm (using 

lazy merging) where we utilize this to reduce the number of nonterminals:

2Although such an assumption can be ensured with probability 1 − n−c for any constant c > 0, it cannot be easily guaranteed. This 
turns our algorithm into a Monte Carlo randomized algorithm.
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1. Whenever during the greedy merge in MergeEnclosed, we are about to call 

AddMerged for the pair of adjacent nonterminals X and Y , we instead first 

compute the fingerprint x = Φ(XY ) of their concatenation, and if there already 

exists A ∈ N′ such that Φ(A) = x, we use A instead, avoiding the call to 

AddMerged and the creation of extra nonterminals.

2. Before appending the nonterminals A1, ..., Aq to the roots sequence at the end of 

the step, we check if there exists an equivalent but shorter sequence B1, ..., Bq′, 

i.e., such that exp A1 ⋯exp Aq = exp B1 ⋯exp Bq′  and q′ < q. We utilize that 

q = O(logn), and run a quadratic algorithm (based on dynamic programming) 

to find the optimal (shortest) equivalent sequence. We then use that equivalent 

sequence in place of A1, ..., Aq.

Observe that the above techniques cannot be applied during AddMerged, as the equivalent 

nonterminal could have a much shorter/taller parse tree, violating the AVL property. Note 

also that the size and contents of N′ do not affect the correctness or the time complexity 

of the algorithm. To determine the set N′, our implementation uses a parameter p ∈ [0...1], 
which is the probability of adding A to N′, whenever a new nonterminal A is created. 

The value of p is one of the main parameters controlling the time-space trade-off of the 

algorithm, as well as the size of the final grammar. To check if there exists A ∈ N′ such 

that Φ(A) = x, for a given x ≥ 0, we maintain a hash table that maps the values from the set 

Φ(A):A ∈ N′  to the corresponding nonterminals (each nonterminal is assigned a unique 

integer identifier).

5 Implementation Details

Storing Sequences.

Our implementation stores many sequences, where the insertion only happens at the end 

(e.g., the sequence of nonterminals, which are never deleted in the algorithm). A standard 

approach to this is to use a dynamic array, which is a plain array that doubles its capacity, 

once it gets full. Such implementation achieves an amortized O(1) insertion time, but suffers 

from a high peak RAM usage. On all systems we tried, the reallocation call that extends 

the array is not in-place. Since the peak RAM usage is critical in our implementation, we 

implemented our own dynamic array that instead of a single allocated block, keeps a larger 

number of blocks (we use 32). This significantly reduces the peak RAM usage. We found 

the slowdown in the access-time to be negligible.

Implementation of the Roots Sequence.

The roots sequence ℓ1, R1 , ..., ℓm, Rm  undergoes predecessor queries, deletions (at arbitrary 

positions), and insertions (only at the end). Rather than using an off-the-shelf dynamic 

predecessor data structure (such as balanced BST), we exploit as follows the fact that 

insertions happen only at the end.

All roots are stored as a static sequence that only undergoes insertions at the end (using 

the space efficient dynamic array implementation described above). Deleted elements are 
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marked as deleted, but remain physically in the array. The predecessor query is implemented 

using a binary search, with skipping of the elements marked as deleted. To ensure that the 

predecessor queries are efficient, we keep a counter of accesses to the deleted elements. 

Once it reaches the current array size, we run the “garbage collector” that scans the whole 

array left-to-right, and removes all the elements marked as deleted, eliminating all gaps. This 

way, the predecessor query is still efficient, except the complexity becomes amortized.

Computing Φ(A) and |exp(A)| for A ∈ N.

During the algorithm, we often need to query the value of Φ(A) for some nonterminal A ∈ N. 

In our implementation we utilize 64-bit fingerprints, and hence storing the value Φ(A) for 

every nonterminal is expensive. We thus only store Φ(A) for A ∈ N satisfying |exp(A) | ≥ 255. 

The number of such elements in N is relatively small. To compute Φ(A) for any other A ∈ N, 

we first obtain exp(A), and then compute Φ(A) from scratch. This operation is one of the 

most expensive in our algorithm, and hence whenever possible we avoid doing repeated Φ
queries.

As for the values |exp(A)|, we observe that in most cases, it fits in a single byte. Thus, we 

designate only a single byte, and whenever |exp(A) | ≥ 255, we lookup |exp(A)| in an array 

ordered by the number of nonterminal, with access implemented using binary search.

6 Experimental Results

Algorithms.

We performed experiments using the following algorithms:

• Basic-AVLG, our implementation of the algorithm to convert an LZ-like parsing 

to an AVL grammar proposed by Rytter [30], and outlined in Section 3. Self-

referential phrases are handled as in the full version of [20, Theorem 6.1]. The 

implementation uses space-efficient dynamic arrays described in Section 5. This 

implementation is our baseline.

• Lazy-AVLG, our implementation of the improved version of Basic-AVLG, 

utilizing lazy merging and Karp–Rabin fingerprints, as described in Section 4. 

This is the main contribution of our paper. In some of the experiments below, 

we consider the algorithm with the different probability p of sampling the 

Karp–Rabin hash of a nonterminal, but our default value (as discussed below) 

is p = 0.125. Our implementation (including also Basic-AVLG) is available at 

https://github.com/dominikkempa/lz77-to-slp.

• Big-BWT, a semi-external algorithm constructing the RLBWT from the input 

text in Ω n  time, proposed by Boucher et al. [4]. As shown in [4], if the 

input text is highly compressible, the working space of Big-BWT is sublinear 

in the text length. We use the implementation from https://gitlab.com/manzai/

Big-BWT.

• Re-LZ, an external-memory algorithm due to Kosolobov et al. [24] that given 

a text on disk, constructs its LZ-like parsing in Ω n  time [24]. The algorithm 
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is faster than the currently best algorithms to compute the LZ77 parsing. In 

practice, the ratio f/z between the size f of the resulting parsing and the size 

z of the LZ77 parsing usually does not exceed 1.5. Its working space is fully 

tunable and can be specified arbitrarily. We use the implementation from https://

gitlab.com/dvalenzu/ReLZ.

• Re-Pair, an O(n)-time algorithm to construct an SLG from the text, proposed by 

Larsson and Moffat [25]. Although no upper bound is known on its output size, 

Re-Pair produces grammars that in practice are smaller than any other grammar 

compression method [25]. Its main drawback is that most implementations need 

Θ(n) space [11], and hence are not applicable on massive datasets. The only 

implementation using o(n) space is [23], but as authors note themselves, it is not 

practical. There is also work on running Re-Pair on the compressed input [31], 

but since it already requires the text as a grammar, it is not applicable in our case. 

In our experiments we therefore use Re-Pair only as a baseline for the achievable 

grammar size. We note that there exists recent work on optimizing Re-Pair by 

utilizing maximal repeats [11]. The decrease in the grammar size, however, 

requires a potentially more expensive nonterminal encoding that includes the 

length of the expansion. For simplicity, we therefore use the basic version of 

Re-Pair.

All implementations are in C++ and are largely sequential, allowing for a constant number 

of additional threads used for asynchronous I/O.

We also considered Online-RLBWT, an algorithm proposed by Ohno at al. [28], that given a 

text in a right-to-left streaming fashion, construct its run-length compressed BWT (RLBWT) 

in O(nlogr) time and using only O(rlogn) bits of working space (the implementation is 

available from: https://github.com/itomomoti/OnlineRlbwt). In the preliminary experiment 

we determined that while using only about a third of the memory of Big-BWT (on the 

16GiB prefix of the kernel testfile), the algorithm was about 10x slower than Big-BWT. We 

also did not include [14], since in the preliminary experiments we found it to be slower 

(usually by about 5–10%) than Big-BWT, while using about 1.8x more RAM.

Experimental Platform and Datasets.

We performed experiments on a machine equipped with two twelve-core 2.2GHz Intel Xeon 

E5–2650v4 CPUs with 30MiB L3 cache and 512GiB of RAM. The machine used distributed 

storage achieving an I/O rate >220MiB/s (read/write).

The OS was Linux (CentOS 7.7, 64bit) running kernel 3.10.0. All programs were compiled 

using g++ version 4.8.5 with -O3-DNDEBUG-march=native options. All reported runtimes 

are wallclock (real) times. The machine had no other significant CPU tasks running. To 

measure the peak RAM usage of the programs we used the /usr/bin/time -v command.

The statistics of testfiles used in our experiments are shown in Table 1. Shorter version of 

files used in the scalability experiments are prefixes of full files. We used the files from the 

Pizza & Chili repetitive corpus available at http://pizzachili.dcc.uchile.cl/repcorpus.html. We 
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chose a sample of 8 real and pseudo-real files. Since all files are relatively small (less than 

512MiB), we additionally include 2 large repetitive files:

• chr19.1000, a concatenation of 1000 versions of Human chromosome 19. The 

sequences were obtained from the 1000 Genomes Project [8]. One copy consists 

of ∼58×106 symbols.

• kernel, a concatenation of ~10.7 million source files from over 300 versions of 

the Linux kernel (see http://www.kernel.org/).

Karp–Rabin Sampling Rate.

The key parameter that controls the runtime, peak RAM usage, and the size of the 

grammar in our algorithm is the probability p of including the Karp–Rabin fingerprint 

of a nonterminal in the hash table. In our first experiment, we study the performance of 

the Lazy-AVLG algorithm for different values of the parameter p. We tested all values 

p ∈ 0, 0.1, 0.2, ..., 1  and for each we measured the algorithm’s time and memory usage, and 

the size of the final grammar. The results are given in Figure 1.

While utilizing the Karp–Rabin fingerprints (i.e., setting p > 0) can notably reduce the final 

grammar size (up to 40% for the cere file), it is not worth using values p much larger than 

0.1, as it quickly increases the peak RAM usage (e.g., by about 2.3x for the sources.001.2 

testfile) and this increase is not repaid significantly in the further grammar reduction. The 

bottom right panel in Figure 1 provides some insight into the reason for this. It shows 

the percentage of cases, where during the greedy merging of nonterminals enclosed by the 

source of the phrase, the algorithm is able to avoid merging two nonterminals, and instead 

use the existing nonterminal. Having some fingerprints in the hash table turns out to be 

enough to avoid creating between 4–14% of the new nonterminals, but having more does 

not lead to a significant difference. We also observe that if a larger grammar is acceptable, 

disabling the use of Karp–Rabin fingerprints entirely (i.e., setting p = 0) can lead to a 

significant speed-up (the top right panel in Figure 1) and a small saving in the RAM usage 

(note, that it also makes the algorithm deterministic). We choose to use p > 0, however, 

since in our main application (BWT construction), the final grammar is subject to further 

processing, and since this processing may dominate the RAM usage, we prefer to keep the 

grammar as small as possible. Since peak RAM usage is the likely limiting factor for this 

algorithm – a slower algorithm is still usable, but exhaustion of RAM can prevent it running 

entirely – we chose p = 0.125 as the default value in our implementation (and use in the next 

two experiments).

Grammar Size.

In our second experiment, we compare the size of the grammar produced by Lazy-AVLG 

to Basic-AVLG and Re-Pair. In the comparison we also include the size of the grammar 

obtained by running Basic-AVLG and removing all nonterminals not reachable from the 

root. We have run the experiments on 8/10 testfiles, as running Re-Pair on the large files is 

prohibitively time consuming. The results are given in Figure 2.
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Lazy-AVLG produces grammars that are between 1.59x and 2.64x larger than Re-Pair 

(1.95x on average). The resulting grammar is always at least 5x smaller than produced by 

Basic-AVLG, and also always smaller than Basic-AVLG (pruned). Importantly, the RAM 

usage of our conversion is proportional the size of the final grammar, whereas the algorithm 

to compute the pruned version of Basic-AVLG must first obtain the initial large grammar, 

increasing peak RAM usage. This is a major practical concern, as described in the next 

experiment. In conclusion, Lazy-AVLG compresses only slightly worse than Re-Pair, but its 

construction requires much less working space.

Application in the Construction of BWT.

In our third experiment, we evaluate the potential of the method to construct the RLBWT 

presented in [20], which works by first computing/approximating the LZ77 parsing of the 

text in Ω(n) time, and then converting the resulting compressed representation of T  into the 

RLBWT in O(f polylog n) time (where f denotes the number of factors). We use Re-LZ 

to implement the first step. As for the second step, we note that the conversion from the 

(approximate) LZ77 to RLBWT internally consists of two steps: (2a) (approximate) LZ77 

→ grammar, and (2b) grammar → RLBWT. In this experiment, we use Lazy-AVLG to 

implement step (2a). We have not implemented the step (2b), and leave it as a future work. 

The results reported here are therefore only a preliminary indication of what is achievable 

with the approach of [20]. Our baseline for the construction of RLBWT is the Big-BWT 

algorithm [4].

We evaluated the runtime and peak RAM usage of Big-BWT, Re-LZ, and Lazy-AVLG with 

p = 0.125 (the default value) on successively longer prefixes of the large testfiles (chr19.1000 

and kernel). The RAM use of Re-LZ was set to match the RAM use of Big-BWT on 

the shortest prefix we tried. To allow a comparison with different methods in the future, 

we evaluated Lazy-AVLG on the LZ77 parsing rather than on the output of Re-LZ. Thus, 

to obtain the performance of the pipeline Re-LZ + Lazy-AVLG, one should multiply the 

runtime and RAM usage of Lazy-AVLG by the approximation ratio f /z of Re-LZ. The 

value f /z did not exceed 1.05 on any of the kernel prefixes, and 1.27 on any of the 

chr19.1000 prefixes (with the peak reached on the largest prefixes). This puts the RAM use 

of Lazy-AVLG on the output of Re-LZ still below that of Re-LZ. The results are given in 

Figure 3.

The runtime of Re-LZ is always below that of Big-BWT. The reduction is by a factor of at 

least three for all prefixes of chr19.1000, and by at least 25% for all prefixes of kernel. The 

runtime of Lazy-AVLG stays significantly below that of both other methods. Importantly, 

this also holds for Lazy-AVLG’s peak RAM usage. Given these results, we conclude that 

the construction of the RLBWT via LZ parsing has the potential to achieve at least a 

three-fold speedup and reduction in the RAM usage. We also point out that the construction 

of RLBWT has received much attention in recent years, whereas the practical approximation 

of LZ77 is a relatively unexplored topic, and hence significant speedup may be possible, 

e.g., via parallelization. The intuition for this is that, unlike in the case of BWT construction, 

LZ approximation algorithms need not be exact.
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Figure 1. 
Performance of the Lazy-AVLG algorithm for different values of the parameter p
(probability of storing Karp–Rabin fingerprint in the hash table) on the files from Pizza 

& Chili corpus. The graphs in the top row show the normalized RAM usage (in bytes per 

phrase of the LZ77 parsing) and the runtime (in ns per symbols of the input text). The 

bottom row shows the resulting grammar size (the total length of right-hand sides of all 

productions) divided by z, and the percentage of merges avoided during the greedy merge 

procedure (in %).
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Figure 2. 
Comparison of the size (measured as the total length of the right hand sides of all 

nonterminals) of grammars produced by the Basic-AVLG, Lazy-AVLG (p = 0.125), and Re-

Pair algorithms on the files from the Pizza & Chili corpus. Basic-AVLG (pruned) denotes 

the size of grammar produced by Basic-AVLG with all nonterminals not reachable from the 

root removed. All sizes are normalized with respect to the size of the LZ77 parsing (z).
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Figure 3. 
Scalability of Big-BWT compared to Re-LZ and Lazy-AVLG. The graphs on the right show 

the normalized runtime in ns/char. The graphs on the left show the RAM usage in GiB.
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Table 1

Statistics of files used in the experiments, with n denoting text length, σ denoting alphabet size, r denoting the 

number of runs in the BWT, and z denoting the number of phrases in the LZ77 parsing. For convenience, we 

also show the average BWT run length n/r and the average LZ77 phrase length n/z. Each of the symbols in the 

input texts is encoded using a single byte.

File name n σ r n/r z n/z
cere 461 286 644 5 11 574 640 39.85 1 700 630 271.24

coreutils 205 281 778 236 4 684 459 43.82 1 446 468 141.91

einstein.en.txt 467 626 544 139 290 238 1611.18 89 467 5 226.80

influenza 154 808 555 15 3 022 821 51.21 769 286 201.23

dna.001.1 104 857 600 5 1 716 807 61.07 308 355 340.05

english.001.2 104 857 600 106 1 449 518 72.33 335 815 312.24

proteins.001.1 104 857 600 21 1 278 200 82.03 355 268 295.15

sources.001.2 104 857 600 98 1 213 427 86.41 294 994 355.45

chr19.1000 59 125 116 167 5 45 927 063 1287.37 7 423 960 7964.09

kernel 137 438 953 472 229 129 506 377 1061.25 30 222 602 4547.55
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