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Neuronal progenitor cells‑based 
metabolomics study reveals 
dysregulated lipid metabolism 
and identifies putative biomarkers 
for CLN6 disease
Corina‑Marcela Rus 1,2*, Daniel L. Polla 1, Sebastiano Di Bucchianico 2,3,4, Steffen Fischer 1, 
Jörg Hartkamp 1, Guido Hartmann 1, Yunus Alpagu 1, Claudia Cozma 1, Ralf Zimmermann 2,3,4 & 
Peter Bauer 1,5

Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily 
affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene 
for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed 
the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for 
diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast 
lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess 
the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive 
and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, 
glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, 
and fifteen metabolites were identified that differed significantly between both groups, including the 
sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of 
note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first 
to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and 
to provide insights into their metabolomic alterations. This could allow for the development of novel 
biomarkers for monitoring CLN6 disease.

Neuronal ceroid lipofuscinoses (NCLs) are among the most frequently encountered groups of rare, inherited 
neurodegenerative lysosomal storage disorders in children1–3. The worldwide prevalence of NCLs varies based 
on the region and the variant type. Their frequency is estimated at 0.01 to 9 per 100,000 live births4,5. NCLs are 
caused by mutations in one of the thirteen CLN genes (CLN1-CLN8, CLN10-CLN14)6,7 that impact different 
proteins, one of which is the transmembrane protein CLN66. Neuronal ceroid lipofuscinosis—type 6 (CLN6) 
[OMIM# 601780] is an autosomal recessive disease caused by pathogenic mutations in the CLN6 gene that 
encodes for the CLN6 protein, whose function is not yet fully understood8,9. The CLN6-affected subjects develop 
symptoms between 18 months and 8 years of age, and among the first clinical signs are ataxia, seizures, and 
progressive mental deterioration10,11.

Early diagnosis of CLN6 is essential for developing treatment and managing disease prognosis10,12. However, 
diagnosis is based on combined clinical symptoms and genetic testing and is often made at an advanced disease 
stage, which brings an unfavorable prognosis. Research on CLN6 has intensified over the past decade as exten-
sive attempts were made to develop therapies and understand the disease pathology12–14. Even so, the disease 
mechanism underlying CLN6 pathogenesis remains unclear, and the development of an appropriate treatment 
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is pending. Among the clinical needs awaiting to be achieved is the discovery of specific biomarkers for disease 
screening, prognosis, and monitoring15,16.

Liquid chromatography-mass spectrometry (LC–MS) is a robust platform that may uncover intricate meta-
bolic pathways, deepen our understanding of the biochemical processes, and aid in biomarkers discovery in 
clinical and translational research17,18. Likewise, non-targeted metabolite profiling is a valuable tool for comparing 
metabolic changes between pathological and non-affected subjects. These together may assist in identifying a 
wide range of critical metabolites whose changes are linked to specific diseases19,20.

Only a few LC–MS-based metabolomics studies in NCLs have been conducted to identify potential biomark-
ers of disease progression21,22. Furthermore, CLN6 disease metabolomics studies are scarce and mainly related 
to animal models23,24. Hence, this implies that the metabolome of human CLN6 disease in neuronal-like cells 
is largely unexplored.

Here, we sought to compare the metabolomic profile in neuronal-like cells generated from fibroblasts of 
CLN6-affected and unaffected subjects (wild type). First, we set out to differentiate human CLN6 fibroblast lines 
into chemical-induced neuronal progenitor cells (ciNPC). Next, this model was used for biomarker discovery, 
which may aid in a rapid and inexpensive diagnosis and prognosis of the neurodegenerative disease25.

Considering that no human CLN6 studies have been published that addressed the metabolomic changes in cell 
lines of CLN6 patients, we aimed to analyze and compare the changes in the global metabolome of the induced 
neuronal-like cell lines from subjects with CLN6 disease to that of healthy subjects. The present cell-based study 
employed an untargeted LC–MS approach that, combined with in-depth data analysis, helped identify metabolic 
alterations linked to CLN6 disease.

Results
The study was based on cell lines derived from subjects with CLN6 disease (carrying bi-allelic pathogenic vari-
ants, n = 3) and controls (wild type, n = 3). Inclusion criteria for the CLN6 subject were: (1) diagnosis of CLN6 
based on genetic analysis, (2) both male and female subjects, (3) under 18 years at the time of sampling, and (4) 
unrelated individuals. The only difference in the inclusion criteria for control subjects was that they must not be 
diagnosed with any NCL disease and should not have any pathogenic or potentially harmful genetic variations. 
Detailed information about the included subjects is provided in Table 1.

Generation of neuronal progenitor cells (NPCs) from human dermal fibroblasts
We used a simple and previously reported technique introduced by Dai et al. to directly generate ciNPCs from 
fibroblasts26. Figure 1a visually presents the sequential stages of the differentiation process using a cocktail of six 
small molecules, as outlined in the aforementioned protocol. As early as day 9 of differentiation, neuronal-like 
cell clusters were observed, and the small colonies of ciNPCs were depicted by day 20 post-induction (Fig. 1b). 
Three weeks after differentiation, the cells were harvested and checked for NPC markers via immunofluorescence 
staining (GABA, GFAP, TUJ1, and MAP2) and the metabolites extracted for LC–MS analysis. The differentiation 
resulted in the expression of neuronal markers, such as GABA (GABAergic neuron marker), GFAP (glial fibril-
lary acidic protein), TUJ 1 (Neuron-specific class III beta-tubulin), and MAP-2 (Microtubule-associated protein 
2), as confirmed by immunofluorescence (Fig. 2). The CLN6 and WT NPCs had similar expression levels of the 
neuronal markers listed above. Immunofluorescence images revealed that ciNPCs express neuronal markers at 
day 20 of neuronal differentiation.

Table 1.   Clinical and genetic characteristics of subjects used in this study. WT wild type/control, ayear, 
bhomozygous, NA not applicable.

Group Cell line Sex
aAge at onset| 
sampling bcDNA protein Predicted effect Type on DNA Coding effect

Clinical 
significance Evidence ACMG

Clinical 
symptoms

CLN6

I M 5|16 c.-158_83del p.? Deletion Gross deletion Effect unknown Likely patho-
genic

PVS1_S, PM2_P, 
PM3_P

Movement dis-
orders, epilepsy, 
cognitive impair-
ment

II F 5|5½ c.896C>T 
p.Pro299Leu Missense Substitution Probably damag-

ing Pathogenic PP3, PS3_P, 
PM2_P, PM3_S

Behavioural 
abnormalities, 
weight loss, cog-
nitive regression, 
pyramidal and 
extrapyramidal 
signs, myoclonus, 
focal motor 
seizures

III F 4|5 c.794_796del 
p.Ser265del In-frame Deletion In-frame Likely patho-

genic
PM2_P, PP1, 
PM3, PM4

Movement dis-
orders, epilepsy, 
cognitive impair-
ment

WT

I M –|8 NA

II M –|1 NA

III F –|11 NA
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Metabolomics analysis reveals distinct metabolic profiling in CLN6 subjects
Global metabolomic profiling of fibroblast-derived ciNPCs from CLN6 and healthy subjects was performed 
using a non-targeted mass spectrometry (MS) approach. After conducting the sample quality check, two repli-
cates from each group [CLN6-1 (b3-t1, b3-t2) and control-3 (b2-t1; b2-t2)] were excluded from the batch. The 
exclusion was necessary because there was no signal in the total ion chromatogram, likely caused by sample 

Figure 1.   (a) Scheme of direct conversion of human dermal fibroblasts into neuronal-like cells. The experiment 
starts by plating the fibroblasts in the DMEM medium, which was designated as "Day”0." After 1 day, the cells 
were transferred to an induction medium containing chemical compounds and supplementary chemicals to 
promote differentiation into neuronal progenitor cells. (b) Representative microscope images of human ciNPCs 
morphologies at day 20 of development in the induction medium: (a) CLN6 group and (b) wild type/control 
group.

Figure 2.   Immunofluorescence staining of neuronal cultures with anti-MAP2 antibody (mature neurons), anti-
GABA (GABAergic neurons), anti-TUB βIII (immature neurons), and anti-GFAP antibody (astrocytes). Nuclei 
were stained with DAPI (blue). Scale bars = 50 μm. MAP, microtubule-associated protein 2; GFAP, glial fibrillary 
acidic protein; DAPI, 49,6-diamidino-2-phenylindole.
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evaporation prior to the LC–MS measurement. As a result, 16 replicates (data points) per group were available 
for further data analysis.

There were 2720 spectral features detected (Supplementary Table 1) and defined as molecular entities with 
a unique retention time (RT) and mass value (m/z). The coefficient of variation (CV) across all cell lines and 
cohorts was under 30% for more than 64% of the variables, meaning that both groups have a similar degree of 
variability in their concentration across all cell lines and cohorts.

The datasets were then subjected to univariate and multivariate data analysis to assess the spectral features’ 
alteration in the two groups. Based on the entire metabolome datasets, we generated a principal component 
analysis (PCA) score plot that revealed a significant separation between CLN6 and the control group. As depicted 
in Fig. 3, PC1 contains the metabolites responsible for most between-group variations (36.8%), followed by PC2 
(12.4%). As indicated by their high loadings in PC1, the glycerophospholipids such as PG 40:6, PG 40:7, PG 34:2, 
PG 32:1, and PG 40:4 contributed significantly to the overall variance captured by PC1.

The individual selection of discriminating metabolites associated with CLN6 disease was based on folds 
change of at least two and p ≤ 0.05. Figure 4a displays the volcano plot depicting the fold changes in metabolites’ 
abundance and highlights the most significantly altered metabolites in terms of fold change and discriminatory 
power between the two groups. This analysis used the comprehensive dataset from Supplementary Table 1, incor-
porating the raw data obtained through LC–MS. The compounds chosen for further analysis were limited to the 
top 20 from the list of upregulated and downregulated compounds shown in the volcano plot. They were selected 
based on their intensity and discriminative power to differentiate between groups. It should be emphasized that 
the selected compounds were exclusively downregulated upon this features screening.

The metabolites were putatively annotated, which involved matching their mass-to-charge ratio (m/z) and 
retention time (RT) values to internal and external databases. Supplementary Table 2 lists the fold changes and 
Student’s t-test p-values (not adjusted) for these metabolites. Additionally, the metabolites with a fold change 
threshold of at least two are shown in a heatmap colored based on the actual peak intensity values to delineate 
the differences between the two groups (Fig. 4b, Supplementary Table 3).

Two additional multivariate analyses were conducted to investigate the differences between the CLN6 and 
control subjects: unsupervised hierarchical cluster analysis (HCA) and ortho partial least squares-discriminant 
analysis (OPLS-DA). The unsupervised hierarchical clustering analysis based on the HCA technique was per-
formed to group the data into clusters (Fig. 5a). The OPLS-DA analysis, on the other hand, was carried out to 
differentiate between the two cohorts and identify CLN6 dysregulated metabolites (Fig. 5b).

The metabolites with the highest discriminating power were chosen according to the Variable Importance 
in Projection (VIP). A VIP score ≥ 1.00 from PLS-DA was considered significant. Fifteen metabolites, all down-
regulated in the CLN6 group, were differentially expressed in the CLN6 with significant discriminative power 
from the control group (Fig. 6, Supplementary Table 2).

Five of all metabolites analyzed, met the stringent quality and quantity criteria in our detection process, as 
depicted in Fig. 7. These criteria entail a significant difference between the control and targeted disease group, 
a minimum fold change of twofold, and a high median normalized abundance. Furthermore, the compounds 
were ranked based on ion alignment, peak picking inspection, chromatogram, and intensity visualization. Con-
sequently, these metabolites have been considered eligible in terms of quality and quantity for downstream 

Figure 3.   Principal component analysis (PCA) score plot of metabolites shows a separation of the CLN6 group 
from the control group, based on PC1 and PC2. The analysis was conducted using 16 data points (technical 
replicates) per group.
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characterization. The identified metabolites, likely biologically relevant within CLN6 disease, belong to the 
glycerophosphoglycerols and glycosphingolipids class. Specifically, they are represented by phosphatidylglycer-
ols PG (40:7) and PG (40:6), as well as glucosylceramides C16 GlcCer, C24 GlcCer, and C24:1 GlcCer. The key 
characteristics covered by these metabolites are listed in Table 2.

They were selected as potential candidate biomarkers due to their differentiating power between the CLN6 
disease and control groups (Fig. 8).

The five metabolites’ overlaid receiver operating characteristic (ROC) curves reveal that these compounds 
delineate between the two groups with high precision and accuracy, indicating that they could be potential 
biomarker candidates for the early disease prognosis of CLN6 disease (Fig. 9).

Pathway and network analysis of the differential expressed metabolites
To investigate the biological pathways and networks involved in the pathogenesis of CLN6 disease, we performed 
metabolomics data enrichment on selected metabolites using two software tools: MetaboAnalyst v. 5.027 and 

Figure 4.   (a) Volcano plot displays the metabolites with a significant threshold of at least 2 × difference. The 
values are log-transformed. The threshold is shown as a grey line. The metabolites highlighted in red are 
upregulated for the CLN6 group, in blue are downregulated, and in black are not significantly changed (p ≤ 0.05). 
(b) Heatmap showing the abundance levels of the 10% most distinct metabolites screened across the two groups. 
The colors indicate increased (red) and decreased (blue) abundance for each metabolite across the samples. The 
letters (bottom) represent the biological replicas (b) and the technical replicas (t). Total number of replicates 
(data points) per group (n) = 16. Observation: most of the metabolites are decreased in CLN6 samples.

Figure 5.   (a) Hierarchical clustering (Euclidean distance, Ward’s clustering algorithm) confirms the 
biochemical differences between the two groups. (b) Ortho partial least squares-discriminant analysis 
(OPLS-DA) score plot from CLN6 and control. The clear separation between the two groups indicates that their 
metabolomic profile is distinct.
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Figure 6 .   Variable importance in projection (VIP) score plot displays the metabolites with discriminating 
power derived from the PLS-DA model. Only the metabolites with the strongest discriminating power are 
represented here. These metabolites have contributed most to the variance between CLN6 and the control 
group. The non-annotated metabolites were named based on the retention time (rt) and m/z values; ‘arrows’ 
indicate the five most discriminating metabolites.

Figure 7.   Metabolomics data analysis scheme for biomarker identification.

Table 2.   Characteristics of the top five putatively annotated metabolites.

Class Synonim Mass (m/z, n) CCS (Å) RT (min) P value Fold change Adducts Formula

Glycerophosphoglyc-
erols

PG 40:7 819.5 m/z 294.9 4.88 1.02E−10 -8 M−H C46H77O10P

PG 40:6 822.5n 299.1 4.97 2.51E−11 -3 M−H, M+Cl C46H79O10P

Glycosphingolipids

C16 GlcCer 699.6n 285.0 5.31 1.39E−15 -3 M−H, M+Cl, 
[M+HCOO]- C40H77NO8

C24 GlcCer 811.7n 309.0 6.45 4.72E−06 -2 M−H, M+Cl C48H93NO8

C24:1 GlcCer 809.7 n 316.0 6.09 1.84E−13 -2 M−H, M+Cl, 
[M+HCOO]- C48H91NO8
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Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., https://​digit​alins​ights.​qiagen.​com/​IPA)28. The pathway analysis 
module in the MetaboAnalyst software illustrates the most affected metabolic pathways of the screened metabo-
lites, as shown in Fig. 10a, with the sphingolipid and glycerophospholipid metabolism pathways being the most 
significantly altered. Additionally, we utilized IPA to generate networks that allowed us to further explore and 
understand the biological networks involved in disease pathogenesis. The IPA analysis on differentiated neuronal-
like cells from CLN6 patients was performed with 298 mapped metabolites, of which 158 were downregulated, 
and 140 were upregulated. Among them, 39 molecules showed significant regulation when applying a cut-off 
of ± 1.5-fold changes and a p-value ≤ 0.05 (28 downregulated and 11 upregulated). The list of mapped molecules 
by IPA can be found in Supplementary Table 4, while a summary of the obtained results is presented in Table 3.

The NAD signaling pathway showed significant association with the differentially expressed metabo-
lites (p-value = 0.048, 5.3% overlap), and the deregulation of cyclic ADP-ribose (fold change = −  1.56, 
p-value = 0.00025). A regulator effect network was also identified (score 15) with associated cell signaling, 

Figure 8.   Potential metabolomic biomarkers for diagnosis of CLN6 disease. Representative Box plots showing 
the intensity of the top five metabolites in the two groups of neuronal-like cells [cell lines (n = 3) × biological 
replicas (n = 2–3) × technical replicas (n = 2)]. Whisker’s end = the 10th and 90th percentile, bars = min and max 
values, horizontal line in the boxes = median value, ‘+’ = mean. Dots represent the outliers.

Figure 9 .   The overlaid ROC (receiver operating characteristic) curves were used to visualize the metabolites 
with the maximum sensitivity for differentiating CLN6 disease subjects from controls. Four compounds had 
100% overlapping ROC curves.

https://digitalinsights.qiagen.com/IPA
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molecular transport, vitamin, and mineral metabolism functions (Fig. 10b). Causal relationships were con-
nected to the downregulated glucosylceramides via the upstream ORMDL1 (p-value 8.08E−05) and ORMDL2 
(6.33E−05) sphingolipid biosynthesis master regulators linked to annotated functions such as the quantity of 
ceramide (p-value 1.25E−14), and synthesis of lipid (p-value 2.73E−08). Furthermore, the master regulator 
EPAS1, a transcription regulator often known as HIF2A, was also identified by IPA (p-value 2.54E−03, z-score 
− 1.41) in participating to the accumulation of nitric oxide (p-value 1.56E−05) both via the downregulation of 
glucosylceramides and cyclic ADP-ribose leading to the regulation of functions annotation like propagation of 
signaling of Ca2+ (p-value 0.00261) with the predicted downregulation of quantity of Ca2+ (p-value 5.91E−14), 
mobilization of Ca2+ (8.53E−07), and release of Ca2+ (p-value 5.11E−11). The participation of several upstream 
regulators, including the transporter SCARB1 (p-value 0.0302), targeting the downregulated vitamin k1 in our 
dataset, the calcium and integrin binding 1 gene (CIB1, p-value 0.005), and the angiopoietin-2 protein coding 
gene (p-value 0.0252) have been identified by IPA as regulators of calcium homeostasis functions.

Discussion
To our knowledge, this study is the first to use neuronal progenitor-like cells differentiated from human CLN6 
fibroblast lines to identify differentiating metabolites that can distinguish CLN6 disease from the healthy control 
group.

Research on CLN6 disease aiming to understand the disease pathophysiology and develop therapies 
has expanded significantly over the past decade. However, according to a literature review survey on the 
PubMed® database (https://​pubmed.​ncbi.​nlm.​nih.​gov)29, few studies aimed explicitly at metabolomics inves-
tigation of CLN6 disease, and the ones reported were model organisms-based using, for example, sheep and 
mouse models23,24. Nevertheless, these used GC–MS and NMR platforms and discovered an alteration of the 

Figure 10.   (a) The affected pathway and (b) pathway analysis in CLN6 patient samples as determined by 
MetaboAnalyst and Ingenuity Pathway Analysis software. The analysis reveals significant alterations in 
sphingolipid and glycerophospholipid metabolism and provides a network visualization of the interactions 
between different metabolic pathways and networks. The ‘arrow’ points to one of the metabolites among the five 
differentially expressed that is interconnected within the network.

https://pubmed.ncbi.nlm.nih.gov
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glutamine-glutamate metabolism and a decrease of GABA in their quest for altered metabolic pathways that 
lead to neuronal degeneration.

Given that no human CLN6 studies have been published that addressed the metabolomic changes in the cell 
lines of CLN6 patients, we aimed to analyze and compare the changes in the global metabolome of the induced 
neuronal-like cell lines from humans with CLN6 disease to those of healthy subjects. For this, an LC–MS metabo-
lomics approach was employed to identify the metabolic pathways altered in CLN6 subjects and acquire further 
insights into potential markers of disease pathogenesis. The metabolic profiling analyses were performed on 
induced neuronal-like cell lines from subjects with CLN6 disease and human controls. Fifteen metabolites were 
markedly downregulated in CLN6 subjects and showed a robust discriminatory power between the CLN6 and 
the control group.

Results of pathway identification performed with the MetaboAnalyst v 5.0 software and IPA analysis revealed 
alterations in molecules relevant to sphingolipid and glycerophospholipid metabolism. Although no research has 
yet addressed the role of sphingolipids in the CLN6 disease, our findings imply that disruptions in sphingolipid 
metabolism are a feature of the CLN6 disease, which could represent a source for future biomarker discovery. 
Among the dysregulated metabolites related to CLN6 disease were five distinct metabolites with a VIP score 
greater than 1. They were represented by the two glycerophospholipids, PG 40:6 and PG 40:7, and the three 
sphingolipids, C16 GlcCer, C24 GlcCer, and C24:1 GlcCer.

Studies on Alzheimer’s disease subjects proved that altered glycerophospholipids levels might lead to neuronal 
damage, neuroinflammation30,31, and neurodegeneration32,33, features that resemble the NCL disorder3. Addi-
tionally, glycerophospholipids were proposed as putative biomarkers in neurodegenerative diseases34. Besides 
glycerophospholipids, dysregulated glucosylceramide levels have also been linked with neurodegeneration in 
lysosomal storage disorders (LSDs)35. Other investigations have shown a connection between increased gluco-
sylceramide levels, neuroinflammation, and neuronal loss36.

Similarly, our study identified two distinct glycerophospholipids components (PG 40:6 and PG 40:7) with 
statistically low abundance in the CLN6 group. Moreover, the compounds with the most discriminatory power 
between CLN6 and the control group were C24:1 GlcCer and C16 GlcCer, highlighting their distinctive impor-
tance in the dysregulation of the sphingolipid metabolic pathways for CLN6 disease. However, in contrast to the 
studies mentioned above, where the levels were elevated, our results showed that glucosylceramides were down-
regulated in CLN6 compared to the healthy control group. Equivalent results were reported in a CLN9-deficient 

Table 3.   Summary of IPA analysis.

Canonical pathway p-value Ratio

NAD signaling pathway 4.87E−02 0.0526

Master regulators p-value Target molecules in dataset Activation
Network bias-corrected
p-value

ORMDL2 6.33E−05
Glucosylceramide (d18:1/16:0) glucosyl-
ceramide (d18:1/20:0) glucosylceramide 
(d18:1/22:0)

1732 4.00E−04

ORMDL1 8.08E−05
glucosylceramide (d18:1/16:0) glucosyl-
ceramide (d18:1/20:0) glucosylceramide 
(d18:1/22:0)

1732 4.00E−04

EPAS1 2.54E−03 Glucosylceramide (d18:1/16:0) glucosyl-
ceramide (d18:1/22:0) − 1414 2.00E−04

SCARB1 3.02E−02 Vitamin K1 − 1 1.52E−02

ANGPT2 2.52E−02 Cyclic ADP-ribose − 1 6.60E−03

CIB1 5.05E−03 Cyclic ADP-ribose − 1 6.60E−03

acetylcholine 2.02E−02 Cyclic ADP-ribose − 1 6.60E−03

Functions annotation Molecules p-value

Quantity of ceramide Ca2+, EPAS1, GBA1, ORMDL1, ORMDL2, pal-
mitic acid, PSAP, SCARB1 1.25E−14

Quantity of Ca2+

Acetylcholine, ANGPT2, Ca2+, CIB1, cyclic ADP-
ribose, cyclic AMP, nicotinate adenine dinucleo-
tide phosphate, nitric oxide, palmitic acid, Ryr, 
RYR1, RYR2, vitamin K1

5.91E−14

Release of Ca2+
Ca2+, cyclic ADP-ribose, cyclic AMP, nicotinate 
adenine dinucleotide phosphate, nitric oxide, Ryr, 
RYR1, RYR2, TRPM2

5.11E−11

Mobilization of Ca2+
Acetylcholine, Ca2+, cyclic ADP-ribose, nicotinate 
adenine dinucleotide phosphate, palmitic acid, 
Ryr, SCARB1

8.53E−07

Synthesis of lipid
Acetylcholine, ANGPT2, Ca2+, cyclic AMP, GBA1, 
nitric oxide, ORMDL1, ORMDL2, palmitic acid, 
SCARB1

2.37E−08

Accumulation of nitric oxide Cyclic ADP-ribose, EPAS1 1.56E−05

Propagation of signaling of Ca2+ Cyclic ADP-ribose 2.61E−03
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cells-based study, where diminished levels of ceramide, glucosylceramide, and other sphingolipids components 
were observed37.

Concerning the NCLs group, perturbed sphingolipid metabolism was described in various NCLs forms. One 
of the first studies that mentioned dysregulation in phospholipid metabolism was done on CLN1 and CLN3 
disease patients38. Later investigations considered that the perturbed sphingolipid metabolism may represent a 
link between some forms of NCLs39. According to the study conducted in CLN3-defective cells, a decrease in 
various sphingolipids, such as lactosylceramides and glycosphingolipids, and up to a 60% reduction in the level 
of various HexCer components as compared to the control group was revealed40. A more recent study on CLN5 
disease reported a similar outcome by exploring the connection between CLN5 disease and the degradation of 
sphingolipid metabolism41. These findings infer that CLN3 and CLN5 play a critical role in the changes in sphin-
golipid metabolism. Altogether, several studies on infantile and late infantile variants mentioned abnormal lipid 
metabolism3, and others noted changes in the composition of various phospholipid and ceramides classes38,42,43 
(Table 4), yet our work is the first to link the sphingolipid metabolism to CLN6. Furthermore, the role of calcium 
signaling has been investigated in several models showing an important role of calcium homeostasis in NCL 
pathology44,45 and elevated calcium-binding protein calbindin 1 (CALB1) levels in cerebrospinal fluid from 
CLN2 and CLN3 disease patients46. Similarly, our study found that the downregulation of glucosylceramides, 
cyclic ADP-ribose, and vitamin K1 was associated with the inhibition of calcium signaling in CLN6 disease.

In summary, the current study compared the metabolomic profile of CLN6-neuronal progenitor-like cells 
derived from fibroblast to the control group. Our findings showed that five metabolites were significantly dys-
regulated in the cell lines from CLN6 subjects and may be considered potential candidate biomarkers for CLN6 
disease. Additionally, the metabolic pathway analysis suggests the involvement of the sphingolipid, glycerophos-
pholipid metabolic pathway, and calcium signaling in the mechanism behind the CLN6 disease progression, 
which is oriented toward the downregulation of sphingolipids and that of glycerophospholipids metabolism.

While our findings enhanced our understanding of the metabolomics of the CLN6 disease, scale-up research 
involving additional cell lines and diverse patient cohorts is needed to validate the observed pattern in our data. 
The corroboration of our findings would pave the way for advanced metabolomics studies of CLN6 disease that 
may uncover potential therapeutic targets of CLN6 disease.

Given the significant milestones achieved in our study, which underscore the potential of ciNPCs within an 
LC–MS-based metabolomics approach for biomarker discovery, we recognize the need to address the following 
key research directions: (i) expand and diversify the cohort to encompass a broader range of ages and genders 
to ensure a more comprehensive dataset and greater generalizability of our findings; (ii) incorporate additional 

Table 4.   List of lipid species involved in dysregulated lipid metabolism in NCL disease. Cer: ceramide; CholE: 
cholesterol Ester; dhCer: dihydroceramides; GD1: monosialoganglioside D1; GM3: monosialoganglioside 
GM3; GPE: glycerophosphoethanolamine; HexCer: hexosylceramide; LacCer: lactosylceramide; LBPA: 
lysobisphosphatidic acid; LPC: lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; LPI: 
lysophosphatidylinositol; PA: phosphatidic acid; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: 
phosphatidylglycerol; PI: phosphatidylinositol; PS: phosphatidylserine; SM: sphingomyelin.

NCL type Lipid class Lipid species Level Refs

CLN1

Phospholipids

LBPA (36:2; 34:1); PC (32:1, 34:1)

High
37–39,42

PC (32:1, 34:1); PI (36:3, 38:5, 38:3); PC (32:1, 34:1)

PE (38:5, 36:4, 38:5, 36:2, 34:1, 34:2)

PS (34:4, 38:3, 40:3, 34:1, 36:1, 36:2, 38:2)

LBPA (38:1); PC (38:4, 38:6)
Low

PE (40: 6, 38:4, 40:4); PI (38:4, 40:6); PS (40:6)

Sphingolipids
SM (16:0, 16:1, 18:1) High

38

SM (20:0) Low

CLN2 Phospholipids
GPE (18:1) High

43

GPE (16:0, 18:0) Low

CLN3

Phospholipids

LPE (20:3); PC (32:1, 34:1, 36:3)
High

37,40
PS (38:3); PI (38:3); PE (38:3, 40:3)

PA (36:1, 36:2); PC (38:4); LPI (18:0, 20:4); LPC (20:4)
Low

PG (34:2, 34:1); PE (40:4); PI (36:1, 36:2, 36:3, 36:4, 36:5)

Sphingolipids

Cer (16:0, 24:0, 24:1); SM (24:1)

High
39,40

GM3 (d18:1/24:1, d18:1/16:0, d18:1/24:0)

GM3 (d18:1/24:1, d18:1/16:0, d18:1/24:0)

GD1 (d18:1/25:0, d18:1/16:0, d18:1/22:0); SM (14:0, 15:0)
Low

HexCer (22:0, 20:0, 18:0, 23:0); LacCer (16:0, 24:0)

Sterols CE (18:2, 18:3) Low 40

CLN9 Sphingolipids
Cer (16:0, 24:0, 24:1)

Low 37,39

dhCer (16:0, 24:0, 24:1)
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NCL disease subtypes for comparative analysis thus assessing the specificity and relevance of potential biomarkers 
across diverse subtypes; (iii) undertake targeted MS/MS research, building upon the spectral features reported 
in this study to deepen our understanding of the involved metabolites and pathways, ultimately amplifying the 
precision and impact of our research.

The findings presented in this study offer valuable insights into the metabolic changes associated with CLN6 
disease. However, further research is recommended to understand our results’ broader implications fully. To this 
end, we propose several directions for future investigations:

1.	 Incorporating cellular vitality and stability assessments into upcoming research to enhance metabolomics 
data precision and the reliability of biomarker discovery studies. While the primary goal of this study was 
to assess the feasibility of ciNPC cells for identifying CLN6 biomarkers through metabolomics analysis, it is 
crucial to consider the potential impact of cellular vitality and health on metabolomics profiling, potentially 
affecting the detection of subtle disease- or treatment-related effects. Therefore, future study endeavors should 
expand their scope to include an assessment of cellular health and stability, such as assessing DAPI+ spots 
to evaluate vitality and cell death rates and employing Western blot analysis to evaluate protein expression 
changes as well as quantitative staining. These methods provide valuable insights into ciNPCs, ultimately 
enhancing understanding of cellular pathophysiology, particularly within the context of biomarker discovery.

2.	 Validation studies involving fibroblast cells under non-induced conditions are essential to ensure the reli-
ability of the identified metabolites in CLN6 disease. This additional validation step will offer valuable insights 
into the accuracy and specificity of the identified metabolites as potential biomarkers, both in cost-effective 
cells and in minimal-invasive specimens. Thereby, it will significantly enhance the potential of our research 
findings for future applications.

3.	 Conducting targeted experiments, such as mass spectrometry-based proteomics, to identify and validate 
the putative interactors and regulators predicted by in-silico analysis will yield robust evidence to support 
the functional significance in the context of CLN6 disease.

To conclude, this study is the first to examine the metabolome of human CLN6 ciNPCs, which provides 
metabolomics insight into the pathogenesis of CLN6 disease. Over 2700 spectral features were relatively quanti-
fied, two altered pathways were determined, and five putative biomarker candidates were identified. Altogether, 
this demonstrates a solid basis for the applicability of LC–MS-based metabolomics, which ultimately, could 
lead to an earlier diagnosis and prognosis of CLN6 disease and ease monitoring the effectiveness of upcoming 
therapeutic trials.

Materials and methods
Cell lines
The biobank “Cell Line and DNA Bank of Genetic Movement Disorders and Mitochondrial Diseases”, a member 
of the Telethon Network of Genetic Biobanks (project no. GTB12001), funded by Telethon Italy, and the Euro-
BioBank Network47 provided us with the CLN6 fibroblast lines [CLF064, CLF121, and CLF210]. The following 
cell lines (wild type) were obtained from the NIGMS Human Genetic Cell Repository at the Coriell Institute for 
Medical Research: [GM0839, GM0565, and GM0203].

Chemicals and reagents
Ultra-high-performance liquid chromatography (UHPLC), grade acetonitrile (ACN), formic acid (FA), and 
methanol (MeOH) were purchased from Biosolve (Dieuze, France). Water LC–MS grade was purchased from 
VWR (Darmstadt, Germany). DMEM high-glucose medium (Gibco, Grand Island, NY), DMEM/F12 medium 
(12634010, Gibco), neurobasal medium (21103049), fetal bovine serum (FBS) (26140079), and 1% penicil-
lin–streptomycin solution (15140122) were purchased from Thermo Fisher Scientific. Phosphate-buffered saline 
(10×) (PBS) (AM9624) was purchased from Invitrogen. B-27™ Supplement (50×) (10828010, Gibco), N2 Sup-
plement (100×) (17502048, Gibco), and l-Glutamine (100×) (25030081, Gibco) were obtained from Life Tech-
nologies (Grand Island, New York, USA). CHIR99021 (130106539), SB431542 (131106275) were from Miltenyi 
Biotec (Teterow, Germany) and PD0325901 (PZ0162), LDN193189 (SML0559), Pifithrin-a (P4359) and Forskolin 
(F3917) were all from Sigma Aldrich (Taufkirchen, Germany).

Cell culture
The fibroblast lines were maintained at 37 °C and 5% CO2 in high glucose Dulbecco’s modified Eagle medium 
(DMEM) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), supplemented with 10% fetal bovine serum 
(FBS) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), 100 U/mL penicillin, and 10 µg/ml streptomycin 
until they reached 90% confluence.

Generation of chemical‑induced neuronal progenitor cells
The direct chemical conversion of fibroblasts into neuronal-like cells was performed according to a previously 
published methodology by Dai et al.26. According to the protocol, once the cells reach the desired confluency, 
they are further switched into a neuronal medium made of a mixture of one-part DMEM/F12 (1% N2 supple-
ment, Gibco) and neurobasal medium (2% B27 supplement, Gibco), and another part was a cocktail made of six 
chemicals (v1: v1). The chemicals known to aid in the NPC differentiation were represented by SB431542 (2 μM, 
TGF-β inhibitor), CHIR99021 (1 μM, GSK3b inhibitor), PD0325901 (1 μM, MAPK inhibitor), LDN193189 
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(1 μM, BMP inhibitor), Pifithrin-α (5 μM, p53 inhibitor), and Forskolin (7 μM, cAMP activator). The cells were 
cultured until day 21, and the medium changed every third day.

Immunofluorescence
Cells were washed with PBS and fixed with 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) for 15 min, 
then permeabilized in PBS containing 0.3% (w/v) Triton X-100 for 10 min, lastly blocked in PBS containing 4% 
(w/v) BSA for 2 h. Cells were incubated with the following primary antibodies (1:250 dilution) for 2 h at room 
temperature): anti-βIII-tub (Biolegend, cat. 801201), anti-MAP2ab (Merck Millipore, cat. AB5622), anti-GFAP 
(Biolegend, cat. 83721), and anti-GABA (Sigma Aldrich, cat. A2052). Subsequently, the cells were rinsed three 
times with 0.1% (w/v) BSA in PBS-Tr and incubated with the secondary antibody (1:500 dilution) for 1 h at 
room temperature in the dark (Alexa Fluor 488 A11029, and Alexa Fluor 568, A11036, Invitrogen). Nuclei were 
counterstained with DAPI (Invitrogen, cat. 1:10000) for 45 min. Cell images were acquired using a Keyence 
fluorescence microscope BZ-X710E equipped with the BZ-X800 Analyzer software (Keyence, Osaka, Japan) with 
a 20X Plan-Apo Gamma NA 0.75 objective and fluorescence filter set for GFP, TRITC, and DAPI.

Sample preparation and metabolites extraction
While the adherent cell plates were kept on dry ice, the medium was removed, and the cells were quickly rinsed 
with 1 mL of 0.9% NaCl (4 °C) (Baxter, Sydney, Australia) to remove extracellular metabolites. A 600 µL extrac-
tion solvent (methanol: water, 3:1 v/v), prechilled in a − 80 °C freezer for at least 1 h, was added to the cells, and 
the cells detached using a scraper while the plates were kept on dry ice. The cell suspension was transferred into 
a 1.5 mL Eppendorf tube containing 10 µL internal standard prepared using 200 ng/mL Lyso-Gb2 (Matreya LLC, 
State College, PA, USA) dissolved in methanol. The mixture of cells, extraction solvent, and internal standard 
(IS) was vortexed vigorously. It was then centrifuged at 14,000×g for 20 min at 4 °C. A volume of 150 μL super-
natant was transferred into an LC–MS glass vial. The quality control (QC) was generated by pooling 5 μL of 
each sample. Blank samples consisted of 100% LC–MS water. Before injecting the standard samples, blank and 
pooled samples were injected five times each in the beginning to establish system equilibrium. Throughout the 
batch, 5 µL of the pool, blanks, and standard samples were injected intermittently during the run to ensure the 
stability of the LC–MS system.

Chromatographic and mass spectrometric conditions
Mass spectrometry was performed on a Waters® i-Class ACQUITY UPLC (Waters, Borehamwood, UK) coupled 
to a Vion™ IMS Q-Tof™mass spectrometer (Waters, Borehamwood, UK) equipped with an ESI ion source, system 
operating in negative (ESI −) ionization mode. The LC–MS method was previously reported48. It was based on a 
5 μL aliquot extract injected into a Kinetex EVO (C18, 2.1 × 150 mm, 5 μm) LC column (Phenomenex, Aschaf-
fenburg, Germany) preheated to 50 °C at a flow rate of 0.5 mL/min. Analytes were eluted using a linear gradient 
ranging from 1 to 100% B (50 mM formic acid in methanol: acetonitrile 1:1 v/v) and A (50 mM formic acid in 
water). The following settings were used for mass spectrometric acquisition: High Definition MSE (HDMSE), 
capillary voltage 1.2 kV, source temperature 150 °C, desolvation temperature 600 °C, desolvation gas 1000 L/h, 
cone gas 50 L/h, low collision energy 6 eV, high collision energy ramp 20–40 eV, scan mass 50–1000 m/z, scan 
time 0.5 s. Each signal had three identifiers: retention time in min (RT), ion mass (m/z), and CCS (collision 
cross-section). Leucine-enkephalin (Sigma-Aldrich, Taufkirchen, Germany) (1 ng/μL) was used as a lock mass 
reference compound ([M−H]− = 554.2615, negative ion mode).

Metabolomic data processing
The raw MS data were acquired using Unifi software v1.9 (Waters, Borehamwood, UK) and exported as Unify 
export packages (.uep). The generated datasets were imported to Progenesis QI software v 3 (Nonlinear Dynam-
ics, Newcastle upon Tyne, UK) for automatic data processing. The following steps were part of the data processing 
and analysis workflow: retention time correction, experimental design setup, peak picking, probabilistic quotient 
normalization (PQN)49, deconvolution, and compound identification. The metabolites were individually assessed 
for statistical relevance and robustness. Only the variables that met the following quality filters were selected: sig-
nificant difference between the control and CLN6 disease group (p ≤ 0.05), fold change at least twofold, charge ≤ 3, 
mass-to-charge ratio (m/z) ≥ 179, and a median normalized abundance ≥ 100 counts relative to the reference 
compound in at least one of the cohorts. The peak intensities of the selected compounds were transformed into 
.csv files and uploaded into the ‘Statistical Analysis’ toolbox of MetaboAnalyst v5.0 at http://​www.​metab​oanal​
yst.​ca27. Canonical pathway analysis was conducted using Ingenuity Pathway Analysis (IPA) software from QIA-
GEN (Ingenuity Systems, QIAGEN, Redwood City, CA, USA) with 298 mapped molecules by IPA using either 
Human Metabolome database (HMBD) or CAS registry number, or PubChem CIS IDs. A cut-off of ± 1.5-fold 
changes and p-value ≤ 0.05 was applied. The Euclidean distance metric and the ’Ward’ clustering algorithm were 
used to create dendrograms. Heatmap with enforced sample grouping displayed value distributions and ranges.

Metabolite database searching
Metabolites were identified based on monoisotopic mass, retention time, and collision cross-section. The obtained 
features were matched against several metabolite databases. Our in-house compound library, Human Metabo-
lome Database50, PubChem51, ChemSpider52, and LIPID MAPS® Structure Database (LMSD) were among the 
databases used in this study.

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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Statistical analysis
Multivariate analysis of LC–MS data and pathway analysis were performed using the open-source software 
MetaboAnalyst 5.027. The box-and-whisker plots, ROC, and volcano plots were generated using the GraphPad 
Prism (version 9.5.0) software (GraphPad Software, Inc., San Diego, CA, http://​www.​graph​pad.​com). A student’s 
t-test was applied to identify with a 95% confidence level and 5% false positive (false discovery rate, FDR). The 
level of significance was set at p ≤ 0.05.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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