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INTRODUCTION

Deep learning (DL), a type of artificial intelligence (AI), 
is increasingly used in radiology and clinical practice [1]. 
The effectiveness of DL methods in classifying images and 
detecting pathological lesions in a supervised manner 
has been successfully demonstrated in various fields 
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of medicine [2-11]. Numerous studies have focused on 
developing and validating DL models in radiology, which 
includes neurological, thoracic, abdominal, and breast 
imaging. With an accuracy comparable to that of human 
experts, convolutional neural networks (CNNs) [12,13] and 
transformer networks [14] typically classify images based 
on the presence or absence of disease. In addition, from 
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A Quick Primer before We Start

Representation Learning
The concepts of representation learning, autoencoder, 

encoder, decoder, and latent space are presented in Figure 1 
using an example. Representation learning allows a model 
to automatically map the representation space (z) needed 
for detection or classification of raw data (x). z is a vector 
in the latent space with smaller dimensions than the input 
(x). In this example, the model was trained to differentiate 
between the X-ray images of different body parts, including 
those of the head, chest, abdomen, spine, pelvis, and upper 
and lower extremities. Therefore, after training, the model 
can be used as an encoder to map the input modality (X-ray 
images, denoted as x) into different latent spaces, where 
the locations represent the X-ray images of different body 
parts (Fig. 1A). An early example of representation learning 
is auto-encoder. An autoencoder is composed of two 
components—an encoder and a decoder—and can be used 
to generate synthetic data. For instance, the encoder maps 
the input modality into the latent vector (z), and then, 
based on the vector z, the decoder generates a synthetic 
sample X-ray image of the input body part (Fig. 1B) [30].

Generative Models
Various types of generative models exist, such as 

generative adversarial networks (GANs), variational 
autoencoders (VAEs), flow-based models, and diffusion 
models, which are a class of machine learning algorithms 
that aim to learn the underlying data distribution of a given 
dataset, enabling them to generate new data samples that 
resemble the original data (Fig. 2) [31-36]. Each model is 
based on different theories—such as adversarial training 
[31,32,36], maximization of the variational lower bound 
[35], invertible transformation of distribution [34], and 
mimicking the Markov chain of diffusion steps to slowly 
add random noise to the data—and then the models learn 
to reverse the diffusion process to construct the desired 
data samples from the noise [33]. Among them, the GAN 
and diffusion models have been successfully applied in 
radiology research, such as image denoising [37-39], image 
reconstruction [40-42], intermodality image synthesis 
[43-45], improved image segmentation [46-49], image 
registration [50,51], classification [52,53], anomaly 
detection [54-61], and disease progression modeling [62]. 

previously diagnosed lesions, CNNs can extract information 
regarding morphological characteristics of the lesion, such 
as size, shape, or outline, as in the case of breast lesions 
or chest nodules [15-18]. Therefore, many computer-
aided diagnosis (CADx) and detection (CADe) software that 
utilize DL methods have received approval from the Food 
and Drug Administration (FDA) and have been successfully 
commercialized [19]; moreover, the software can offer other 
advantages, including speed, efficiency, low cost, increased 
accessibility, and the upkeep of faithful behavior in clinical 
practice. In prospective studies, early-career radiologists and 
physicians have noted performance improvements using DL 
models [20-23]. Despite the promising results of current AI 
technology, numerous challenges exist in the development 
and deployment of supervised learning-based AI systems. 
First, a major obstacle is the requirement of a huge volume 
of high-quality medical imaging data to achieve good AI 
performance [24]. This demanding requirement can be 
attributed to the high-dimensional nature of the data and 
the presence of noise and irrelevant information [25], which 
pose challenges in extracting high-level features. Even 
expert physicians may encounter difficulties in labeling data 
with high quality owing to the high cost involved, occasional 
ambiguity in the ground truth information, tedious nature 
of the labeling task, and risks to patient privacy. Secondly, 
although numerous radiologic tasks are performed in actual 
clinical settings, most radiologic applications are designed 
for specific clinical situations, and consequently, broad-
range radiologic tasks are overlooked. Third, DL models 
often overfit training data, leading to poor performance 
when applied to new data [26,27]. Specifically, variations in 
imaging protocols, manufacturers, and patient populations 
can lead to significant variability in the appearance and 
semantics of images [24], making it difficult to develop 
robust models in response to these variations. In general, 
most radiology datasets are long-tailed, which can lead 
to underrepresented classes and biases in the trained 
model [28]. Fourth, DL models are often considered as 
“black boxes” [29] regarding model interpretability, which 
may negatively affect the use of AI in clinical decision-
making. Radiology is a rapidly evolving field, and DL models 
require frequent retraining to keep pace with the latest 
advancements in imaging techniques and new types of data 
[24]. This review presents and discusses various potential 
solutions for addressing the challenges of supervised AI.
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Fig. 2. Typical examples of generative models include generative adversarial networks, variational auto-encoder, flow-based models, 
and diffusion models with different theories—such as adversarial training, maximization of the variational lower bound, invertible 
transformation of distribution, and mimicking the Markov chain of the diffusion steps to slowly add random noise to data—and then the 
models learn to reverse the diffusion process to construct desired data samples from the noise. 

A

B

Fig. 1. A conceptual diagram of representation learning and auto-encoder. A: Representation learning implies training an encoder to 
automatically map into the representations space, z, needed for detection or classification from input modality (e.g., X-ray images), x, 
where z is a vector in the latent space with smaller dimensions than those of input modality, x. This model was trained to differentiate 
X-ray images of different body parts, including those of the head, chest, abdomen, spine, pelvis, and upper and lower extremities. B: 
Auto-encoder is mainly composed of two components: an encoder and a decoder. The encoder maps the input modality into a latent 
vector, z, and then, based on the vector z, the decoder generates a novel sample of the target modality.
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Overcoming the Challenges

Longitudinal and Multi-Modal Dataset
In real-world radiology settings, images are acquired via 

multiple modalities and time points that can be combined 
and analyzed. For example, a multiscale and multimodal 
deep neural network classifier built with a combination of 
fluorodeoxyglucose-positron emission tomography (FDG-PET) 
and structural magnetic resonance imaging (MRI) showed 
performance improvement [63]. Moreover, a disease progression 
model using longitudinal data with varying time intervals can 
improve robustness against missing data and performance in 
Alzheimer’s disease [64]. Multiple follow-ups with repeated 
measurements are the norm in clinical practice, thereby 
affecting an increase in the statistical power [65,66]. In 
the event of incomplete data and/or limited knowledge 
of the disease and pathogenesis, multimodal data, such 
as various types of imaging modalities, demographics, 
laboratory tests, and electronic medical records (EMRs), 

may prove crucial to achieve an improved diagnosis [67,68]. 

Therefore, for better applicability in clinical settings, 

longitudinal and multimodal datasets should be considered 

when training AI-based models. However, it is important 

to acknowledge that although these datasets can enhance 

model performance, they do not eliminate the need to 

address the inherent challenges of DL models, such as 

handling long-tailed distributions and improving model 

explainability. In addition, the utilization of these datasets 

can present significant risks to patient privacy. Therefore, it 

is crucial to utilize these datasets in conjunction with the 

following strategies aimed at addressing the fundamental 

challenges of DL models.

Dense Training with Multi-Task Learning and Multi-Modal 
Learning

Dense training with multitask learning (MTL) and 
multimodal learning offers several notable advantages, 
particularly in the field of radiology. Multimodal learning 
enables the integration of diverse data sources such as 
clinical information, imaging modalities, and patient 
demographics, potentially enhancing the overall predictive 
power of AI models [69-75]. By collectively incorporating 
multiple factors, the accuracy and reliability of the diagnoses 
can be improved. Furthermore, joint training of models 
on various tasks using MTL can facilitate the learning of 
shared representations and leverage correlations among 

different modalities, which may contribute to improved 
performance across multiple domains [76]. Additionally, 
dense training with MTL can offer regularization effects, 
which helps to prevent overfitting and potentially enhances 
the generalization capability of the model [77], thereby 
encouraging the network to learn relevant and robust 
features simultaneously for multiple tasks, which may 
translate into better performance on individual tasks. 
Moreover, this approach may improve the interpretability 
and explainability. When models are trained to perform 
multiple tasks, they are forced to capture meaningful 
and discriminative features, potentially enhancing the 
transparency of the decision-making processes. Such 
transparency can be valuable in building trust among 
radiologists and other healthcare professionals, as it enables 
them to understand and interpret the underlying factors 
contributing to the model’s predictions. Recently, different 
MTL architectures have emerged, and based on where 
information or features are exchanged within a network, 
encoder-focused [78-81] and decoder-focused [82-84] 
designs, among others, are utilized. Many studies have 
focused on AI in radiology because of the complexities 
involved in training owing to high-dimensional data and 
the limitations of data acquisition. These radiology studies 
demonstrated the superiority of the MTL over other models; 
for instance, MTL has shown better performance than 
alternative approaches in various tasks, such as segmenting 
thoracic organs from computed tomography (CT) slices [85]; 
object detection, segmentation, and classification in breast 
cancer diagnosis using full-field digital mammogram datasets 
[86]; identification and segmentation of coronavirus disease 
2019 (COVID-19) lesions from chest CT images [87]; and 
identification of hemorrhage and segmentation in head and 
neck CT images [88] (Fig. 3). However, the extent to which 
multimodality enhances the robustness to distribution shifts, 
promotes patient privacy, and addresses other limitations 
remains a topic of ongoing research.

Vision-language (VL) multimodal learning—a prominent 
area of multimodal research that utilizes radiographic 
images and their associated free-text descriptions, such as 
chest radiographs (CXRs) and their reports—is becoming 
increasingly significant [12,89] (Fig. 4). Images and paired 
radiology reports provide mutually beneficial semantic 
information to enhance the training quality of various tasks 
such as diagnosis classification and report generation in 
radiology. However, significant technical challenges are 
encountered in processing both images and clinical reports 
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to learn joint representations. These challenges arise from 
differences in the high dimensionality, heterogeneity, and 
systemic biases of multimodal datasets. Recent progress 
in VL multimodal learning was achieved by extending 
bidirectional encoder representations from transformer-based 
architectures (BERT) [90]. Previous studies can be broadly 

categorized into vision-language understanding (VLU) tasks, 
which include visual question answering, text-conditioned 
image retrieval, diagnosis classification, and vision-language 
generation (VLG) tasks such as image captioning and report 
generation [91,92]. Numerous studies have explored the 
applications of VL multimodal learning in radiology. Hsu et 

Fig. 3. A typical case of hemorrhage detection with multi-task learning in head and neck computed tomography images, including 
classification, segmentation, and reconstruction with consistency loss. Modified from Kyung et al. Med Image Anal 2022;81:102489 [88], 
under the permission from Elsevier. SEG = segmentation, REG = registration, ICH = intracerebral hemorrhage

Fig. 4. Multi-modal learning using chest X-ray images and clinical reports for visual language understanding or visual language generation 
tasks. Modified from Moon et al. IEEE J Biomed Health Inform 2022;26:6070-6080 [91], under the permission from IEEE.
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al. [93] focused on a VLU task, specifically, image report 
retrieval, using both supervised and unsupervised methods. 
Liu et al. [94] focused solely on the VLG task of radiology 
reports by implementing a CNN-recurrent neural network 
(RNN) architecture and a hierarchical generation strategy. 
Liu et al. [95] proposed a transformer encoder-decoder-
based approach that uses prior and posterior knowledge of 
distillation techniques using different modalities. Wang 
et al. [96] introduced a self-boosting framework with 
various modules using images and reports based on the 
collaboration of a primary generation task and an auxiliary 
image-report matching task. Yang et al. [97] developed 
MedWriter, which integrates a hierarchical retrieval 
mechanism to automatically extract reports and sentence-
level templates. Recently, large language models (LLMs), 
such as BERT [90] and generative pre-trained transformer 
(GPT) [98], have been used to embed high-level semantics 
or generate expert-level reports in the near future.

Self-supervised Learning with Contrastive Learning as a 
Foundation Model

A foundation model is any model trained on a broad 
dataset, typically using large-scale self-supervision. It 
can consolidate information from various modalities and 
can subsequently be adapted, for example, through fine-
tuning, for a wide range of downstream tasks. Examples of 
foundation models include the BERT, GPT, and contrastive 
language–image pre-training (CLIP) [99].

In general, contrastive learning (CL) is an approach 
used to learn representations in an unsupervised or self-
supervised manner with the aim of bringing similar samples 
closer together while pushing dissimilar ones farther apart 
in the latent space (Fig. 5A). Automatic labeling without 
human effort is one of the most powerful approaches to 
unsupervised or self-supervised CL [100,101]. In medicine, 
CL can help train an encoder with large-scale medical 
images or other data, particularly in a self-supervised 
learning (SSL) manner, because SSL can automatically 
generate pseudo-labels based on different augmentations 
of the same or other images without human-annotated 
labels (Fig. 5B). The encoder can help differentiate between 
healthy and unhealthy individuals or identify specific 
diseases or conditions using transfer learning with a 
relatively small amount of annotated data. This approach is 
particularly useful for applications, such as CAD and image 
segmentation, which can assist radiologists in disease 
diagnosis by analyzing medical images and providing a list 

of potential diagnoses [102,103]. 
Using CL, a neural network can identify abnormal brain 

structures on MRI scans, which can aid in the diagnosis of 
Alzheimer’s disease, differentiate between different types of 
images even in the case of image overlap, and improve the 
accuracy and efficiency of diagnosis by reducing the amount 
of time and effort required for manual interpretation of 
images [104]. This technique can aid in the early detection 
of diseases and provide timely treatment to patients. For 
medical image segmentation, to separate and identify 
different structures or tissues within an image, CL can be 
used to accurately detect segment-specific structures, such 
as the heart, head, and neck, in CT scans, thereby improving 
the accuracy of measurements and identifying abnormalities 
[105,106]. Additionally, contrastive unpaired image 
translation [107] can be used to synthesize pediatric CXRs, 
which can help improve the diagnosis of diseases within 
specific structures based on CT images [108]. Overall, CL has 
shown great promise as a tool for improving the accuracy 
and reliability of image analysis and diagnosis in a variety of 
medical settings.

Denoising, Fast Image Reconstruction, Inter-Modality 
Synthesis, and Synthetic Data Generation Using 
Generative Models

In radiology, the use of generative models have shown 
promising results, improving various aspects such as the 
image quality, reduction of radiation exposure, and shortened 
acquisition times. GANs have been particularly effective in CT 
applications such as denoising [37,38] and metallic artifact 
removal [39]. In addition, GANs have been explored as a 
means for artifact correction in accurate radiation therapy 
planning and as an image guide in cone-beam CT images 
[109,110]. In MRI, DL techniques have been employed to 
accelerate image acquisition and improve the image quality. 
Notably, GANs have demonstrated their superiority over 
traditional methods, such as compressed sensing MRI, in 
terms of faster reconstruction and enhanced image quality 
[40-42]. GANs have also been utilized to convert low-
magnetic-field MRI into high-magnetic-field MRIs [111], 
enabling the generation of high-quality images, even with 
lower magnetic field strengths. This conversion has the 
potential to reduce the cost and complexity of the MRI 
systems. Generative models that facilitate the intermodality 
synthesis offer several advantages. This approach streamlines 
imaging workups, reduces radiation exposure, and lowers 
costs by synthesizing images from safer and more cost-
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effective alternatives such as ultrasound or MRI [44,112,113]. 
Moreover, intermodality synthesis enhances model 
performance by enabling training on multiple modalities 
[114] and fills gaps by imputing missing sequence data [115]. 
Synthetic CT images generated from MRI data can be used 
for attenuation correction of PET images [45]. In addition, 
the use of synthetic data to balance medical datasets is 
widely recognized as a means of enhancing the performance 
of models in detecting, segmenting, and predicting medical 
conditions [116-119]. However, it is crucial to assess whether 

synthetic samples accurately capture the complexities and 
variations in real-world medical data. Further evidence is 
required to establish the substitutability of synthetic data 
for real data.

Anomaly Detection Using Generative Models
Anomaly detection—a technical term implying the 

identification of data points in data that do not fit normal 
patterns—is gaining attention in radiology, because it can 
identify abnormal lesions on images by learning the data 

A

B

Fig. 5. A typical example of contrastive learning of supervised and self-supervised learning. A: Supervised contrastive learning with 
positive pairs of follow-up images of the same patient (red dots) and negative pairs of different patients (blue dots). B: Two different 
augmentations of medical images are randomly performed. Their embedding vectors are obtained through an image encoder to encourage 
a model to learn similar representations in the same class and dissimilar representations in different classes with similarity loss in a self-
supervised manner.
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distribution of normal images in semi-supervised learning 
[120,121] (Fig. 6). It is noteworthy that while anomaly 
detection can potentially encompass non-pathological 
findings, such as congenital anomalies, the term is generally 
used in the medical field to specifically refer to the detection 
of pathological or clinically significant abnormalities. 
Therefore, anomaly detection in radiology focuses primarily 
on identifying abnormal findings that are clinically relevant 
and may require further investigation or intervention. These 
algorithms offer several advantages that make them an 
attractive option, because anomaly detection can be trained 
without the need for high-quality annotated data, which 
can be time-consuming and expensive to obtain. This makes 
anomaly detection a more efficient alternative to supervised 
learning methods applied to rare or less frequently occurring 
diseases, which have not been collected enough to train a 
model in a supervised manner. This approach makes them 
more clinically applicable, as it helps to detect several 
conditions rather than just focusing on one or a few specific 
diseases. Anomaly detection in medical imaging can be 
approached using various training methods, including 
supervised, semi-, and un-supervised learning, with several 
popular network architectures, such as VAEs [122-131], GANs 
[55-61], and diffusion models [54]. Because GANs have the 
potential to generate high-resolution medical images, GAN-
based anomaly detection can reconstruct the closest normal 
image to a pathologic input image by leveraging normal data 
from healthy individuals. The reconstruction error between 
the input (real images) and output (synthetic images) 
helps to evaluate the anomaly scores for the input data and 
enables the identification of pathologic anomalies. In the 
field of radiology, anomaly detection models have been used 
in various modalities, including CXRs [55,56,122,132,133], 
mammography [123,124,134], breast ultrasound [57], 
cardiac CT [135], brain PET-CT [136], brain CT [58,125,126], 

and brain MRI [59-61,127-131,137]. Notably, these studies 
have proposed the potential utility of anomaly detection for 
various medical images.

Better Explainability and Validation of Artificial 
Intelligence 

DL networks have remarkably improved their performance 
with multiple hidden layers of non-linear activation 
functions; however, this occurs at the cost of interpretability 
and explainability, thereby aptly earning the nickname of 
“Black box” [138]. For adequate patient communication 
and rapport, providing the reasons for decision making 
in medicine using AI is important. The European Union’s 
General Data Protection Regulation recommends that 
automated individual decision-making should be based 
on the explicit consent of the patient, and meaningful 
information about the algorithms should be provided to 
them [139]. However, one atudy [140] pointed out that 
there can be a “level of opacity” in explainability (i.e., 
whether the explanations cannot be shared according to 
the nature of the algorithm or the explanations will not 
be shared by the developer). Contacting all the authors of 
individual DL studies and asking them to propose a clear 
mechanism of action is infeasible and impractical. As 
the mechanisms underlying some medical discoveries are 
unclear, further studies are needed to confirm their safety 
and utility (e.g., the mechanism of action of metformin 
has not yet been clearly revealed [141], but its safety and 
utility have been confirmed [142]). Nevertheless, there is 
still an increasing demand for the explainability of the “black 
box” in medicine [143].

Medical AI researchers attempt to explain the performance 
of their models in many ways. Traditional machine learning 
methods, such as linear regression, support vector machines 
[144], and tree-based models [145,146], are explainable 

Fig. 6. Anomaly detection with an encoder to map images into a latent space (z), with the data (blue dots) classified as normal or 
abnormal boundary (red dashed line).
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models. Some algorithms provide textual explanations 
directly, such as medical visual question answering [147]. 
However, most researchers in medical DL favor visual 
explanations such as class activation maps (CAMs) [148] 
and gradient-weighted CAM (Grad-CAM) [149]. In addition, 
a local interpretable model-agnostic explanation (LIME) 
[150] method can be applied to explain the results visually. 
A review article [151] has shown an increasing trend in the 
use of explainable AI (XAI) in medical image analyses. 

The performance of medical DL should be validated and 
reported using a more standardized study design, regardless 
of whether the model is explainable. In particular, handling 
confounding variables to isolate causality and associations 
is important in medical research [152-154]. Confounding 
variables should be considered when developing and 
validating medical DL models. However, exploiting these 
important confounding variables while developing the DL 
model can induce shortcut problems [155], because such 
confounding variables may already be reflected in the results 
as radiomic features. The identification and exploitation 
of these shortcuts should be considered when developing 
robust medical DL models [156]. Nevertheless, exploiting 
confounding variables to develop DL models and handling 
them in statistical models may induce overadjustment issues 
[157]. In addition, factors such as anatomical side markers 
and image quality can act as confounding variables, which 
may negatively affect the generalizability and credibility of 
the research [158]. Furthermore, similar to the comparison 
of intention-to-treat and per-protocol analyses in clinical 
research [159], a comparative study on exploitation vs. no 
exploitation of confounding variables can provide better 
perspectives for research on DL in medical image analysis. 
Reporting guidelines for studies on AI in medicine have 
been developed and registered in the EQUATOR (Enhancing 
the QUAlity and Transparency Of health Research) Network 
Library [160,161]. These guidelines include the Consolidated 
Standards of Reporting Trials–Artificial Intelligence 
(CONSORT–AI), Standard Protocol Items: Recommendations 
for Interventional Trials–Artificial Intelligence (SPIRIT–AI), 
Standards for Reporting of Diagnostic Accuracy Studies–
Artificial Intelligence (STARD–AI), Transparent Reporting of 
a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis–Artificial Intelligence (TRIPOD–AI), Developmental 
and Exploratory Clinical Investigation of DEcision-support 
systems driven by Artificial Intelligence (DECIDE-AI), 
and Clinical Artificial Intelligence Model (CLAIM). These 
guidelines aimed to improve the transparency, quality, and 

reproducibility of research in the field of AI in medicine. 
A recent article pointed out that most research on the use 
of AI in medical imaging lacks standardized study designs 
appropriate for real-world clinical settings [162], whereas 
another study put forth relevant methods for evaluating the 
clinical performance of medical DL [163]. 

Causal Learning 
Causal learning is an emerging field of machine learning 

that focuses on the causal relationships between variables 
in a system [164,165]. The goal of causal learning is to 
understand the underlying mechanisms governing a system 
and predict how changes in one variable affect another. 
Recently, causally-enabled methods for medical analysis 
that use imaging data have garnered increasing interest 
[166]. These methods aim to address the challenges 
in medical imaging using causal inference to better 
understand and analyze data. Wang et al. [166] proposed a 
normalizing flow-based causal model, similar to the study 
by Pawlowski et al. [167] to harmonize heterogeneous 
medical data. This method was applied to T1 brain MRI 
to classify Alzheimer's disease to infer counterfactuals, 
which were then used to harmonize medical data. Pölsterl 
et al. [168] circumvented the identifiability condition, 
which states that all confounders should be known; they 
leveraged the dependencies between causes to determine 
substitute confounders. This method has been applied in 
brain neuroimaging to detect Alzheimer’s disease. Zhuang 
et al. [169] also proposed an alternative to expectation 
maximization for the dynamic causal modeling of functional 
magnetic resonance imaging brain scans. They developed an 
approach based on a multiple-shooting method to estimate 
the parameters of ordinary differential equations under the 
noisy observations required for brain causal modeling. They 
suggested augmentation of the multiple-shooting adjoint 
method to calculate the loss and gradients of their model. 
Clivio et al. [170] proposed a neural score-matching method 
for causal inference in high-dimensional medical images 
to avoid preprocessing them into a lower-dimensional 
latent space. da Silva et al. [171] used a generative model 
to synthesize MR images of brain atrophy to examine and 
investigate various hypotheses regarding the causes of brain 
growth and atrophy. Overall, these studies demonstrated the 
potential of causally enabled methods for medical analysis 
that utilize imaging data. Causal learning can provide novel 
insights into the obstacles in machine learning for medical 
imaging, including the dearth of high-quality annotated data 



1070

Hong et al.

https://doi.org/10.3348/kjr.2023.0393 kjronline.org

and the mismatch between the training and target datasets. 
Further research in this field could lead to novel and improved 
methods for analyzing medical images and provide a better 
understanding of the underlying causes of diseases.

Federated Learning for Overcoming Privacy Concerns
Federated learning presents a promising solution for 

training models with large and diverse datasets, while 
preserving patient privacy [172,173]. Enabling multisite 
collaboration improves generalizability and fosters research 
on rare diseases that require collective effort for data 
curation. In federated learning, the weights and parameters 
of the global model are sent to the different participating 
institutions. Each institution trains the local AI models 
using local data and updates the model weights accordingly. 
After completion of local training, these updated weights 
are sent back to a central server to coordinate a global AI 
model. This procedure is repeated until the global model 
achieves a specific target (Fig. 7). Despite its advantages, 
federated learning in clinical settings faces several 
challenges in effective implementation [174]. The primary 
obstacle is data heterogeneity in each institution. Variations 
in data types, formats, acquisition protocols, annotation 

formats, and terminologies across institutions can hinder 
effective collaboration. Standardization agreements among 
the institutions involved can help overcome this challenge. 
Another challenge is technical limitations, such as different 
computational infrastructures across institutions. Federated 
learning is a fundamental technique in the future of digital 
health. Further research and development in federated 
learning and a concentrated effort in addressing these 
challenges will contribute to unlocking its full potential in 
radiology and medical imaging. 

Additional Paradigms

Predictive Imaging Biomarkers
Several studies have focused on the extraction of 

predictive biomarkers from medical images using DL. The 
development of predictive imaging biomarkers from medical 
imaging can be approached using various training methods, 
including supervised, semi-, self-, and un-supervised learning, 
with several popular network architectures such as CNNs, 
VAEs, and GANs. Some studies [175-177] showed that DL can 
extract prognostic information from medical images. As these 
images contain age and sex information, DL-based models 

Fig. 7. A conceptual diagram of federated learning with training global and local artificial intelligence (AI) models. The weights and 
parameters of the global model were sent to the different participating institutions. Each institution trains local AI models using local 
data and updates the model weights accordingly. After completion of local training, these updated weights are sent back to a central 
server to coordinate a global AI model. This procedure is repeated until the global model achieves a specific target. 
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can learn demographic information [178-181]. Studies have 
shown that neuroimaging-derived age prediction corresponds to 
the influences of other disorders, such as cognitive impairment 
and Alzheimer’s disease, and age and sex per se [182-184], 
which have been explored in several brain illnesses. The 
disparities between predicted and chronological ages may be 
attributed to the accumulation of age-related alterations in 
pathological circumstances [185-187] or protective factors 
in brain aging [188,189]. Furthermore, CXR-derived age can 
be used as an imaging biomarker to indicate the state of 
the thorax or metabolism [175-177] and successfully predict 
lifespan, mortality, cardiovascular risk, and heart failure 
prognosis [175,177,190], providing a solid foundation 
for the imaging biomarker concept. Another approach for 
extracting relevant prognostic imaging biomarkers involves 
training a deep survival model using staged binary classifiers 
of death or incident cancer [175,191,192].

Digital Twin
As simulations have become more prevalent in medicine, 

the future of precision medicine includes providing tailored 
diagnoses and treatments for each patient through the 
development of digital twin (DT) technology. Recently, 
several studies on DTs in medicine have been published 
[193-202], including a wide range of applications such as 
healthcare management [193], fitness [194], simulating 
viral infections [195], smart city well-being [196], remote 
surgery [197], and cardiovascular diseases [200-202]. 

DTs based on image data have significant potential 
for revolutionizing radiology. These virtual replicas 
provide radiologists with a comprehensive and dynamic 
representation of a patient’s anatomy, physiology, and 
pathology, thereby enabling improved treatment planning 
and decision-making. By leveraging a patient's radiological 
imaging data, such as personalized anatomy and imaging 
biomarkers, DTs offer several benefits in various medical 
fields. For instance, in orthopedic surgery, DTs created 
using CT or MRI scans allow surgeons to simulate surgery 
in advance [203,204]. This enables them to tailor the 
procedure to the patient's unique anatomy, potentially 
improving surgical outcomes. By visualizing the joint in 
a virtual environment, surgeons can plan surgery more 
accurately, assess different approaches, and anticipate 
potential complications. In cancer treatment planning, DTs 
created from a patient's radiological imaging data, such as 
MRI, PET, or CT scans, can provide a detailed representation 
of the anatomical and biological characteristics of a 

tumor [205,206]. This allows medical professionals to test 
different treatment modalities, such as radiation therapy or 
chemotherapy, for DTs. By simulating the effects of various 
treatments, DTs can be used to predict potential effectiveness 
and side effects. This information aids in the selection of the 
most suitable and least harmful treatment plan for patients, 
thereby optimizing the chances of successful outcomes. 
Similarly, the DTs of a patient's cardiovascular system can be 
created based on imaging data obtained from angiography, 
echocardiography, or MRIs, among others [207-209]. 
These DTs can predict the progression of conditions such 
as atherosclerosis or the risk of events such as myocardial 
infarctions. They can also be utilized to simulate the effects 
of interventions, such as stent placement, enabling doctors 
to plan surgeries more effectively and make informed 
decisions regarding patient care.

Additionally, DTs offer potential solutions to existing 
challenges in the AI field. They enable the generation 
of synthetic yet realistic data through simulations, the 
augmentation of real-world data, and the enhancement of 
the robustness of AI training. By incorporating DTs into AI 
models, the predictive capabilities can be enhanced, because 
these twins have the potential to dynamically simulate 
future outcomes based on changing conditions. Furthermore, 
DTs are based on established physics and human anatomy 
and provide a more interpretable framework for AI models. 
This interpretability fosters trust and understanding among 
healthcare professionals, facilitating AI-driven decision-
making.

SUMMARY AND CONCLUSION

Many CADx and CADe software packages with DL 
methods have received clearance from regulatory agencies 
and have been successfully commercialized; they offer 
advantages, including speed, efficiency, low cost, increased 
accessibility, and the upkeep of faithful behavior in clinical 
practice. Despite these achievements, several challenges 
must be addressed in the deployment and development of 
AI in healthcare; these include ensuring patient privacy, 
obtaining access to large volumes of high-quality data, 
achieving generalizability of AI models, and establishing the 
explainability of the decision-making process. To overcome 
these issues, some of the various possible solutions are 
as follows: inclusion of training with longitudinal and 
multimodal datasets, dense training with multitask and 
multimodal learning, new generative models including 



1072

Hong et al.

https://doi.org/10.3348/kjr.2023.0393 kjronline.org

anomaly detection, XAI, self-supervised contrastive and 
federated learning with large-scale data, causal learning, 
and DTs. For instance, MTL allows a single AI model to 
perform multiple tasks simultaneously, thereby increasing 
its efficiency and adaptability. DL can be used with multi-
modality (different types of data) and longitudinal data (data 
collected over time) to enhance AI's capacity to handle 
complex medical data. This helps to reduce false positives, 
leading to more accurate diagnoses and treatments. 

Recently spotlighted techniques, such as generative models 
and federated learning, can provide excellent strategies for 
improving healthcare outcomes while maintaining patient 
privacy and data security. Synthetic medical data generated 
using generative models, such as GANs, can create realistic 
data samples without compromising patient privacy. 
Federated learning also allows multiple organizations to 
collaboratively train a shared AI model without directly 
sharing sensitive patient data and ensures privacy while still 
benefiting from a larger, more diverse dataset. In addition, 
generative models can significantly contribute to radiology 
by improving various aspects of image processing. These 
models can aid in fast image acquisition, robust denoising 
(reducing noise or artifacts), and image reconstruction, 
resulting in higher-quality images for analysis. Furthermore, 
generative models can be applied to other research areas in 
radiology, thereby expanding the possibilities of AI-driven 
advancements. Semi-supervised and unsupervised learning 
approaches can save time in AI development and enable 
broader coverage of various diseases. Specifically, anomaly 
detection using semisupervised learning can help identify 
unusual patterns in data and facilitate early diagnosis and 
intervention for patients. Finally, XAI focuses on developing 
AI models that provide understandable explanations of 
predictions and decisions. This approach is crucial for 
building trust of medical professionals in implementation 
of AI in clinical practice, to improve their understanding, 
and to allow the validation of AI-driven recommendations. 
By enhancing trust and transparency, XAI can accelerate DL 
research in the medical field, thereby paving the way for 
more effective and widely adopted solutions. DTs and virtual 
replicas of real-world objects, systems, or processes can 
be used to simulate patient conditions, predict treatment 
outcomes, and optimize clinical decision-making.

More robust technological advancements suggest that 
significant changes can occur in radiology. Nonetheless, 
with the integration of better AI into medical imaging, 
we envision these technological breakthroughs as better 

cooperative mechanisms designed to alleviate workload and 
minimize distractions. Currently, DL is used in radiology 
during the early stages of adolescence. LLMs, such as GPT 
v4, have recently created a strong impact. However, a 
crucial factor for AI development and clinical integration 
into radiology is fostering a comprehensive understanding 
of the technology, radiology practice, and clinical workflow. 
Furthermore, the active participation of radiologists, 
scientists, engineers, and commercials is vital for creating a 
wide range of radiological applications.
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