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Abstract

Estimating human exposure in the safety assessment of chemicals is crucial. Physiologically based kinetic (PBK) models which
combine information on exposure, physiology, and chemical properties, describing the absorption, distribution, metabolism, and
excretion (ADME) processes of a chemical, can be used to calculate internal exposure metrics such as maximum concentration and
area under the concentration-time curve in plasma or tissues of a test chemical in next-generation risk assessment. This article
demonstrates the development of PBK models for 3 UV filters, specifically octyl methoxycinnamate, octocrylene, and
4-methylbenzylidene camphor. The models were parameterized entirely based on data obtained from in vitro and/or in silico methods
in a bottom-up modeling approach and then validated based on human dermal pharmacokinetic (PK) data. The 3 UV filters are
“difficult to test” in in vitro test systems due to high lipophilicity, high binding affinity for proteins, and nonspecific binding, for
example, toward plastic. This research work presents critical considerations in ADME data generation, interpretation, and
parameterization to assure valid PBK model development to increase confidence in using PBK modeling to help make safety
decisions in the absence of human PK data. The developed PBK models of the 3 chemicals successfully simulated the plasma
concentration profiles of clinical PK data following dermal application, indicating the reliability of the ADME data generated and the
parameters determined. The study also provides insights and lessons learned for characterizing ADME and developing PBK models
for highly lipophilic and protein-bound chemicals in the future.
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UV filters are used in sunscreen products to prevent sunburn or
product photodegradation by inhibiting the infiltration of UV
light (Matta et al., 2020). Safety evaluation of their use is critical to
protect human health. A combination of consumer preference, a
desire for greater human relevance, and an increasing number of
bans on the animal testing of cosmetic ingredients and products
in different geographies has resulted in rapid developments in
non-animal approaches for safety assessment. Next-generation
risk assessment (NGRA) is human-relevant, exposure-led,
hypothesis-driven, and designed to prevent harm (Dent et al.,
2018). Estimating human exposure as early as possible in the
process of safety assessment of chemicals is crucial.
Physiologically based kinetic (PBK) models combine information
on exposure, physiology, and chemical properties, describing the
absorption, distribution, metabolism, and excretion (ADME) proc-
esses of a chemical, to estimate time-dependent concentration in
plasma and tissues (Paini et al., 2019; Rietjens et al., 2011). PBK
modeling can be used to calculate internal exposure metrics
such as maximum concentration (Cmax) and area under the
concentration-time curve (AUC) in plasma or tissues of a test
chemical, which can help to identify tissues/organs with the

highest exposure or accumulation (Li et al., 2021, 2022). These
data can further guide the design and rationale of in vitro tests
performed for risk assessment and derive a bioactivity:exposure
ratio (BER) for decision-making (Health Canada, 2021). Without
good quality PBK models describing internal exposure, safety
decision-making using new, nonanimal approaches is severely
limited.

Few clinical pharmacokinetic (PK) studies are available on
sunscreen ingredients to help validate the PBK models, and per-
forming such studies is expensive. When such human PK data
are available, the study design is often an evaluation of the
worst-case scenario, that is, an unrealistically high exposure is
used, rather than mimicking the in-use situation (Schauer et al.,
2006; Seirafianpour et al., 2022). For instance, a regulatory
requirement on 16 sunscreen ingredients was proposed by the
U.S. Food and Drug Administration, recommending assessment
of human systemic absorption with a maximal usage clinical trial
to ensure the safety of these ingredients, which are classified as
drugs in the United States (Matta et al., 2020). The systemic expo-
sure information obtained from these clinical trials could be of
use to substantiate the human safety evaluation in certain
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extreme situations. However, this type of data could not easily be
used to inform the safety decisions for any other realistic expo-
sure scenarios which have different doses, formulations, expo-
sure patterns or change of exposure settings in a quantitative
way. Generating human PK data to validate the output of every
PBK model for each cosmetic ingredient and for every exposure
scenario and formulation is simply not feasible. Therefore, it is
important to develop PBK models of sunscreen ingredients to
estimate internal concentrations in the absence of any human
data or for extrapolating existing PK data to other dose regimens
in risk assessment.

In NGRA, the challenge for the PBK modelling community is to
parameterize models partially or entirely based on data obtained
from in vitro and/or in silico methods, with limited or no availabil-
ity of in vivo kinetic data (especially for dermal absorption routes)
to calibrate the models and validate the model outputs. This
article discusses in vitro ADME data generation and PBK model
development for 3 UV filters, that is, octyl methoxycinnamate
(OMC), octocrylene, and 4-methylbenzylidene camphor (4-MBC),
with a focus on their highly lipophilic and highly protein-bound
characteristics. These types of chemicals exhibits different
kinetic behaviors compared with other types of chemicals where
human PK data are more common, such as drugs or pesticides
(Seirafianpour et al., 2022). We focus on critical considerations in
ADME data generation, interpretation, and parameterization to
ensure valid PBK model development, to increase the confidence
in using PBK modeling to help make safety decisions in the
absence of human PK data. This is crucial to enable their accept-
ance in a regulatory context. Furthermore, our research findings
may be important for understanding the kinetic behavior of other
similarly lipophilic and highly protein-bound chemicals.

Materials and methods
ADME characterization
To characterize the ADME profile of the 3 chemicals and for PBK
model parameterization, the following in vitro assays were con-
ducted: ex vivo human skin penetration assay, blood partitioning
assay for blood/plasma concentration ratio (Rbp), ultrafiltration
assay for fraction unbound (Fup), and hepatocyte stability assay
for hepatic intrinsic clearance (CLint).

Ex vivo skin penetration study

Literature data were available for the ex vivo skin penetration of
4-MBC (Sasson et al., 2009) and octocrylene (SCCS, 2021), this was
used to parameterize the dermal absorption of the compound.
For OMC, no useful ex vivo skin penetration data were found in
the literature. Therefore, new data were generated with the fol-
lowing methods, compliant with the requirements of Good
Laboratory Practice, OECD guidance (OECD, 2004) and the SCCS
Notes of Guidance (Bernauer et al., 2021). A summary of the
methods is provided next. The output obtained from the skin
absorption studies were kinetic data measured in receptor fluid
as well as distribution in vehicle (skin wash) and skin layers.

The rate and extent of the in vitro dermal absorption of radio-
labeled OMC in an emulsion formulation (the active ingredient
[OMC] concentration was 10%) was investigated as follows.
Thirty-seven samples of human abdominal skin were obtained
from 5 donors (4 female and 1 male) aged 34–60 years old who
gave informed consent (prior to undergoing routine surgery) for
their surgical waste skin to be taken for scientific purposes. The
skin was dermatomed to a thickness of 350–450 mm. Skin samples

were mounted in flow-through dynamic diffusion cells (1 cm2

dose application area) and the skin surface temperature was
maintained at 32�C 6 1�C, with a fixed water bath integrated in
the dynamic system. The receptor fluid (5% w/w bovine serum
albumin, 0.9% NaCl in water) circulated at 1.5 ml/h giving a total
volume of 36 ml for the volume obtained after dismantling 24 h
after application on skin (and 12 ml for dismantling 8 h after
application on skin). The solubility of the test item in the receptor
fluid indicated that infinite sink conditions would be maintained
throughout the experiment. Barrier integrity was assessed so
only the skin meeting the criteria was included for subsequent
absorption measurements. The test preparation was applied
homogeneously at 2 mg/cm2 (2 mg/cell) on each skin sample
using a positive displacement pipette. The donor chambers of the
cells were left unoccluded. The total experiment was stopped
24 h after application. Absorption of the test item was assessed
by collection of receptor fluid in hourly fractions from t¼ 0 until
the termination time point. Cells were washed at 30 min, 1 h, 2 h,
4 h, and 8 h (n¼ 5) and at 24 h (n¼ 12), respectively. The donor
and receptor chambers were dismantled, the skin removed, then
the chambers were each extracted with solvent. The stratum cor-
neum was removed with maximum 20 successive tape strips
(adhesive scotch Magic 3M); The epidermis of the exposed area
was separated from the dermis by heat treatment. Radioactivity
was determined by scintillation counting of each receptor solu-
tion fraction plus the receptor solution contained within the cell
at termination, skin rinse, skin swab, donor and receptor cham-
ber rinses, tape strip, epidermis, dermis, and flange skin.

The details of the ex vivo skin penetration study for octocry-
lene are reported in the literature (SCCS, 2021). Briefly, the
absorption of radiolabeled octocrylene into and through human
skin was assessed by single topical application of a target dose of
300 mg/cm2 of test substance, formulated in a market representa-
tive cosmetic formulation, to split thickness skin preparations
from 6 donors mounted in flow-through diffusion cells. The test
preparation was applied homogeneously at 3 mg/cm2 (3 mg/cell)
on each skin sample, The active ingredient (octocrylene) concen-
tration was 10%. Receptor fluid was collected from each cell in
fractions by continuous collection over defined intervals over
24 h. After the exposure time of 24 h, skin membranes were
washed with a mild soap solution followed by tap water and the
test substance was recovered from all compartments of each dif-
fusion cell.

The penetration of 4-MBC applied in an oil-in-water (O/W)
emulsion (containing 4% 4-MBC) was taken from a preexisting
in vitro (Franz cells) study found in the literature which used pig
ear skin as described in Sasson et al. (2009). It is important to
highlight that when conducting ex vivo skin penetration studies,
human skin was the preferred option. However, in the case of 4-
MBC, there is a lack of available data using human skin.
Consequently, published quality data utilizing pig skin was uti-
lized for dermal absorption model development as pig skin has
historically been shown to be a good model for human skin. The
20 6 0.2 mg/cm2 emulsion was applied to the skin for a period of
24 h. The 4-MBC was readily soluble in the receptor fluid. At 8 h of
experiment, the skin surface was washed with 3 ml of receptor
fluid and quantified by HPLC. At 24 h, the skin was removed from
the cells, stratum corneum (SC) was stripped with 640 adhesive
tapes (3M) that became in contact with methanol for 30 min in
ultrasound to break the cells. At 0, 5, 8, and 24 h, 1.5 ml of recep-
tor fluid was removed from the cell and analyzed by HPLC
(assessment of possible permeation of 4-MBC).
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Blood partitioning assay for determining Rbp

Whole blood (fresh, anticoagulant lithium heparin) was sourced
from humans (mixed gender, pooled). Plasma (¼blood superna-
tant) was separated by centrifugation from an aliquot of the
whole blood used (reference plasma). Test item (OMC, octocry-
lene, or 4-MBC at 5 mM) was incubated in parallel with whole
blood and reference plasma (n¼ 3). After 0 and 60 min of incuba-
tion at 37�C, reactions were stopped, and the Rbp was determined
by comparing the test item concentration in control plasma with
the test item concentration in the whole blood supernatant (LC-
MS/MS analysis). Chlorthalidone (5 mM) was used as a positive
control for the assay (expected high affinity to red blood cells).

Cross filtration for determining plasma protein
binding/Fup

In this modified ultrafiltration procedure described by Taylor and
Harker (2006), test chemical (10 mM of OMC, octocrylene, or 4-
MBC) was incubated with plasma from humans (pooled, mixed
gender) at 37�C for 60 min (n¼ 3), followed by ultrafiltration. In
parallel with each experimental plasma sample (incubated with
test chemical), a control plasma sample (blank) was also proc-
essed by ultrafiltration. The retentate from experimental and
control plasma samples were mixed back into the filtrate of the
partner sample. The resulting regenerated plasma samples, one
representing the experimental filtrate and one representing the
experimental retentate, were then analyzed by LC/MS/MS.
Warfarin (10 mM) was included as specific high plasma protein
binding (PPB) reference (positive control). The test item concen-
tration in the 60 min stability control sample was compared with
the nonincubated negative control sample concentration
(¼100%) to check test item plasma stability. The percentage of
compound bound to plasma proteins (% PPB) was calculated
using the following equations:

PPB %½ �¼100�
ðtest item concentrationplasma filtrate=RVÞ

mean test item concentrationincubated plasma
�100

Results are expressed as mean PPB value calculated from
plasma filtrate. In addition, the concentration of test item was
corrected for the specific test item recovery (RV):

RV ¼
ðconcentrationplasma filtrate þ concentration plasma retentateÞ

mean concentrationincubated plasma

Fup was then calculated as Fup (%) ¼ 100 � PPB (%).

Metabolic stability in primary human hepatocytes (PHH) in
suspension

Test chemical (0.1, 1, and 10 mM of OMC, octocrylene, or 4-MBC)
was incubated with cryopreserved suspensions of human hepa-
tocytes (0.8 � 106 cells/ml, 48-well format, 5 donor pool) in
Williams E medium (25 mM HEPES, 2 mM L-glutamine) at 37�C, at
6 time points (0, 15, 60, 90, 180, and 240 min) (n¼ 3). The final sol-
vent content was �0.5% DMSO or 1% ACN. Several controls were
included: (1) negative control 1: test item incubated without cells
(0 and 240 min); (2) negative control 2: test item incubated with
heat-inactivated (boiling in a water bath, 10 min) suspension cells
(0, 90, and 240 min); (3) in order to demonstrate adequate enzyme
activity of the suspension hepatocytes during the metabolic
stability assay, Naloxone (known intermediate CLint) was incu-
bated in parallel to test chemicals (0, 90, and 240 min) as

positive control. Test chemicals were analyzed by LC-MS to
determine the loss of parent compound and intrinsic clearance.
The in vitro CLint was calculated using �k * V, where k is the
slope from the linear regression of log [test compound] versus
time plot [1/min] and V is the ratio of incubation volume and
cell number.

PBK software and model structure
PBK modeling and simulations for the 3 chemicals were con-
ducted using GastroPlus 9.8 (Simulation Plus, Lancaster,
California). GastroPlus includes embedded databases for physio-
logical and anatomical parameter values and includes modules
to simulate several administration routes including dermal
absorption. In GastroPlus, the most extensive PBK model configu-
ration was chosen which is comprised of tissue compartments
representing most major tissues in the body including liver, kid-
ney, heart, and lungs, etc. Figure 1 shows the structure of the PBK
model for the 3 chemicals.

PBK model parameterization
Chemical-specific parameters

Briefly, physicochemical and ADME properties were either pre-
dicted in silico or determined using in vitro methods. Log P (loga-
rithm of octanol-water partition coefficient), pKa (logarithm of
acid dissociation constant), and Madin-Darby canine kidney
(MDCK) permeability were predicted with ADMET predictor
(v.10.2). With the predicted properties (log P, molecular weight,
pKa, and permeability), classification was conducted using the
Extended Clearance Classification System (ECCS), which provides
information about the dominant route of clearance from the
body (Varma et al., 2015). The sensitivity indices (see Sensitivity
analysis section), along with knowledge of the statistical per-
formance and the applicability domain (eg, chemical space,
parameter range, etc.) of the QSARs and ECCS classification, were
used to guide the decisions on the need for generation of in vitro
data. The other ADME parameters, that is, skin absorption, Fup,
Rbp, hepatic CLint, were obtained from the in vitro assays as
described in ADME characterization section. Tissue-to-plasma
partitioning coefficients (Kt:p) were calculated in Gastro-Plus
using the Berezhkovskiy method (Berezhkovskiy, 2004), assuming
chemical distribution into the tissues is perfusion limited. Kidney
clearance rate was then predicted by the formula GFR * Fup,
where GFR is the glomerular filtration rate (with 2.0 ml/s the
default value in GastroPlus 9.8).

Dermal absorption model

The dermal module (TCAT) in GastroPlus is a complex mecha-
nistic model of dermal absorption, which can simulate a vari-
ety of transdermal dosage forms, including liquid formulations
(solutions, lotions, suspensions) and semisolid formations
(gels, creams, lotions, pastes). The transdermal chemical deliv-
ery model represents the skin as a collection of the following
compartments (Figure 2): stratum corneum, viable epidermis,
dermis, subcutaneous tissue, sebum, hair lipid, and hair core,
to account for the chemical concentration gradient within each
compartment due to chemical diffusion under nonsteady-state
conditions. For the chemicals, key input parameters in the
TCAT module, that is, diffusion and partitioning coefficients of
the chemical in various skin layers (stratum corneum, epider-
mis, dermis, and sebum) are required. The dermal module also
has the capability to include formulation-related parameters,
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such as partitioning between vehicle and water, evaporation,

etc.
For all the chemicals, dermal transport was modeled through

the TCAT module in GastroPlus and parameterized using the ex

vivo skin penetration data. Diffusivity and partition coefficient

parameters were optimized from initially predicted values by fit-

ting an in vitro skin penetration model set up in GastroPlus to the

skin penetration data, that is, absorption into the receptor fluid

and/or distribution in different skin layers (adjusting parameters

until there is minimal difference between model output and the

experimental data). The partition coefficients and diffusivity

coefficient relevant to vehicle, stratum corneum, epidermis, and

dermis determined in this fashion were then used as inputs into

the human model of skin penetration.

Prediction of hepatic clearance
For the 3 chemicals, the liver compartment of the PBK model was

provided with input data on hepatic clearance (CLliver), which

was calculated in 2 steps.
First, the in vitro hepatic CLint (l/h/million cells) determined

from hepatocyte stability assay (Metabolic stability in primary

human hepatocytes (PHH) in suspension section) was scaled to

in vivo CLint (l/h), accounting for the hepatocellularity and liver

weight as described by Houston (1994):

in vivo CLint ¼ in vitro CLint � SF

where SF (scaling factor) represents the million cells per gram of

liver multiplied by the grams of liver weight. A hepatocellularity

of 120 million cells/g of liver (Bayliss et al., 1990) and correspond-

ing human liver weight of each clinical subject were used.
Second, the CLliver was calculated using the commonly used

equation of the well-stirred liver model.
Two variations of the well-stirred liver model for CLliver calcu-

lation were considered (Buck et al., 2007),

CLliver ¼
Qliver� in vivo CLint

Fuinc � Fup

Qliverþ in vivo CLint
Fuinc � Fup

Rbp

(1)

CLliver ¼ Qliver� in vivo CLint� Rbp
Qliverþ in vivo CLint

(2) (selected)

where CLliver is hepatic plasma clearance, Qliver is the hepatic

blood flow (human, 90 l/h), and Fuinc is unbound fraction in

Figure 1. Schematic diagram of the human PBK model structure for the 3 chemicals.
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hepatocyte incubation (Winiwarter et al., 2019). The first equation
provides an estimate of in vivo CL of the unbound chemical,
whereas the second equation describes the in vivo CL of the total,
that is, bound and unbound chemical. As for the 3 studied chemi-
cals, they are highly lipophilic and highly bound to plasma pro-
tein, the inclusion or exclusion of the fraction unbound
parameters will have a huge impact on the determined CLliver.
As there is no guidance on which liver model provides more
appropriate estimation on CLliver for this type of chemical, litera-
ture review on hepatic clearance for highly plasma protein bound
chemicals was conducted. The summarized findings could be
found in Results section, based on which the second equation
was selected for calculating the CLliver of all 3 chemicals.

Sensitivity analysis
To identify the parameters which have the biggest influence on
the output, a sensitivity analysis was performed. As described
previously (Moxon et al., 2020), this was carried out by adding a
perturbation (e) to one parameter (hi) at a time, whilst keeping all
the other parameters at the in silico predicted (nominal) values.

A sensitivity index (Si) was then calculated using the partial
derivatives based on the nominal values (Hamby, 1994):

Si ¼
yn � yi

hi � ehi

hi

yn

�
�
�
�

�
�
�
�

(3)

The sensitivity index is based on a certain endpoint y, here
representing Cmax and AUC with the subscript n representing the

endpoint when all parameters are at the nominal value and sub-
script i the endpoint when one parameter is perturbated. If the
sensitivity index of a parameter is close to zero then it has little
influence on the output (in the local parameter space), whereas a

parameter with a higher sensitivity index will have a greater
influence on the output even if small changes are made. The sen-
sitivity analysis was carried out using the GastroPlus parameter
sensitivity analysis function by calculating the effect of a param-

eter change (increase of 5% in parameter value) on the output
(eg, Cmax or AUC). Then the sensitivity indices were calculated
based on equation 3. Indices were normalized by the nominal
parameter value and the nominal output value, allowing the

Figure 2. Schematic diagram of the TCAT module in GastroPlus showing how the different compartments are connected to one another and the rest of
the body. N represents the number of sublayers divided in vehicle or each skin layer for better reflection of concentration gradient.
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effect of the variation of a parameter upon the output to be com-
pared directly.

Model simulation and performance
The GastroPlus built-in mathematical equations were used unal-
tered, and no additions were made to the modules available in
GastroPlus (eg, TCAT module for simulation of dermal route of
exposure). Besides, the model parameters and approach were
recreated by an internal independent expert for quality control
purpose.

Clinical PK data
Details of clinical PK studies following topical administration of
each chemical are given next. The observed PK data were used
for PBK model validation, and these studies were not used in
model building, OMC, and octocrylene: Clinical data from a study
assessing the systemic absorption and PK of UV filters was used
to validate the PBK models for octocrylene and OMC (Matta et al.,
2020). In the study, 12 healthy participants were randomized to 1
of 4 sunscreen products formulations. The PK data used for
octocrylene and OMC involved a lotion and/or a nonaerosol spray
applied at 2 mg/cm2 to 75% of body surface area at 0 h on day 1
and 4 times on day 2 through day 4 at 2-h intervals. These condi-
tions were replicated in the model and concentration-time pro-
files were simulated for comparison against observed data.

Four-MBC: The toxicokinetics of 4-MBC after dermal adminis-
tration were investigated in human subjects (Schauer et al., 2006).
Humans (3 male and 3 female subjects) were exposed to 4-MBC
by topical application of a commercial sunscreen formulation
containing 4% 4-MBC (w/w), covering 90% of the body surface
and resulting in a mean dermal 4-MBC dose of 22 mg/kg bw.
Concentrations of 4-MBC were monitored over 96 h in plasma
and urine.

Population simulation and validation of PBK
models
Once the in silico or in vitro parameters were obtained, population
simulations of plasma concentrations corresponding to the clini-
cal PK studies were then performed using GastroPlus. For OMC
and octocrylene, the mixed multiple doses profile in GastroPlus
was used to reflect multiple doses of specific amounts at varying
intervals to closely simulate the clinical study design. The pre-
dicted plasma concentration data were compared with the
observed PK data following dermal exposure. The Population
Estimates for Age-Related Physiology module was used to match
the exposure design-specific input parameter in GastroPlus to the
corresponding observations of reported clinical studies. The
built-in GastroPlus algorithm was used to account for sex, age,
and body weight-dependent changes in the physiological and
anatomical parameters, such as blood flow, cardiac output, and
organ/tissue volumes. To this end, a virtual population of 1000
subjects was generated via Monte Carlo simulations. The popula-
tion simulations incorporated 10%–30% variability on various
systems and certain chemical-specific parameters and 40% for
hepatic clearance, based on GastroPlus built-in values as well as
literature-reported variability values. For the most influential
parameters, that is, skin absorption-related diffusivity and parti-
tioning parameters, 100% variability was set to cover the wide
variability that was observed in the ex vivo skin penetration
assay. Tenth and 90th percentile values were generated for the
model-based population predictions on plasma concentration
(Cmax and AUC0�t) to compare with measured human data.

Results
ADME characterization and PBK model
parameterization
Physicochemical properties, ECCS classification, and ADME
properties
Physicochemical properties were derived using ADMET predictor,
including log P, ionization and MDCK permeability (Table 1). All 3
chemicals are highly lipophilic (log P: 4.63–6.17). Using the ECCS
classification based on the log P, MW, and permeability values,

all 3 compounds were predicted to be predominately cleared via
liver metabolism (Class 2). For renal clearance rate, Fup � GFR
were used to account for glomerular filtration.

Blood partitioning and plasma protein binding
The determined Rbp values were 0.73, 0.73, and 0.88 for OMC,
octocrylene, and 4-MBC, respectively (Table 1).

Overall, no significant degradation of the 3 chemicals was
observed during incubation with human plasma and they all
showed high binding to human plasma proteins, as indicated by
PPB values of 99.86 (octocrylene) and 99.96% (OMC and 4-MBC)

(Table 1). Based on the PPB values, the calculated fraction
unbound in plasma of all 3 chemicals are significantly low
(0.04%, 0.14%, and 0.04% for OMC, octocrylene and 4-MBC,
respectively).

Skin absorption
To aid parameterization of the skin absorption model (TCAT) in
GastroPlus, ex vivo skin penetration studies were either carried
out in the present study (OMC) or found in the literature (4-MBC

and octocrylene). The mean total recovery for each condition was
within the acceptance criteria (85%–115%) (OECD, 2004) for both
the literature and the newly generated data. Because the penetra-
tion of OMC and octocrylene through the skin is extremely low,
some large variances in the data at different time points in differ-

ent skin layers could be seen. The rate and extent of the in vitro
dermal absorption of radiolabeled OMC in an emulsion test for-
mulation at target dose of 200 mg/cm2 was investigated which
showed that the dermal delivered fraction of the applied OMC
was low, less than 0.5% of the applied dose for all the conditions

(Table 2). The absorption of octocrylene into and through human
skin was assessed by single topical application of a target dose of
300 mg/cm2 of test substance formulated in a representative cos-
metic formulation (SCCS, 2021). Under the test conditions used,
the absorbed dose of octocrylene into receptor fluid was negli-

gible (Table 3). The dermal delivered fraction of the applied octoc-
rylene was low, less than 0.4% of the applied dose for all the
conditions. The in vitro penetration of 4-MBC applied in a
sunscreen formulation of oil-in-water (O/W) emulsion as
reported from the literature showed that 24 h after application of

the product, 4-MBC was detected in receptor fluid, epidermis in
dermis. However, most was found in the stratum corneum
(Table 4) (Sasson et al., 2009).

The initial in silico derived skin penetration parameters were
refined by fitting the dermal kinetic model to the skin penetration
data, that is, time course absorption into the receptor fluid, if

available, and distribution in skin wash and different skin layers,
by adjusting parameters until there was minimal difference
between the model output and the experimental data. The
refined parameters (Table 5) were then used as dermal exposure
input in the PBK model for predicting clinical PK profile of the 3

chemicals following topically applied application in humans.
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Hepatic clearance
Assessment of the reliability of the hepatocyte stability
data

Metabolic experiments using suspension PHH were performed to
determine the hepatic clearance rate of the chemical. Due to the
chemical characteristics of these chemicals with high lipophilic-
ity and high protein binding, they could be considered as “difficult
to test” chemicals, in that they were expected to be prone to non-
specific binding in in vitro cell assays. This could impact both, the
acceptance of the assay data and interpretation of the results.
For these types of chemicals, the quality of the control data
played a significant role when assessing the reliability of the data
and interpretation of the results. As a reference, Naloxone was
investigated to monitor intermediate clearance in comparison
with the test chemicals. As expected, Naloxone was metabolized

with moderate in vitro CLint of 16.4 6 1.6 ml/min/million cells
(4.8 6 1.9% remaining after 240 min). To further assess the reli-
ability of the hepatocyte stability data, several criteria (Table 6)
were established for negative controls so that only data passing
the criteria were used to estimate a clearance rate. Considering
the type of controls used in the study is important, that is, we
found that data generated in media only (no cells) were not the
most appropriate control data for these chemicals as significant
losses were observed in the controls due to nonspecific binding
(data not shown), which did not occur in the presence of cells.
Heat-inactivated control was shown to be more suitable as nega-
tive control for these types of chemicals.

Hepatocyte stability results

Hepatic loss of OMC, octocrylene, and 4-MBC in human suspen-
sion hepatocytes assays are shown in Figure 3. It could be seen

Table 1. Physico-chemical properties, ADME properties, and ECCS predictions of dominant clearance mechanism

Compound MW g/mol Log Pa Ionizationa MDCK Permeability
cm/s 3 1027a

ECCS Classb Rbpc PPB%c Fup%c Renal Clearance
(l/h)d

OMC 290.4 5.7 Neutral 1369.9 Class 2 metabolism 0.73 99.96 0.04 0.003
Octocrylene 361.5 6.17 Neutral 1439.6 Class 2 metabolism 0.73 99.86 0.14 0.01
4-MBC 254.4 4.63 Neutral 801.6 Class 2 metabolism 0.88 99.96 0.04 0.003

a

Predicted using ADMET predictor 10.2 using the SMILES code for each structure as input.
b

The ECCS (extended clearance classification system) class as determined by the criteria in Varma et al. (2015).
c

Measured data.
d

Calculated by GFR * Fup.

Table 2. Distribution of 14C-OMC after application to human skin (% Mean and standard deviation [SD])

Test Item OMC

Six conditions:
application
terminated at:

30 min 1 h 2 h 4 h 8 h 24 h

n¼5 n¼5 n¼5 n¼5 n¼5 n¼12

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Total strips (1–20) 0.51 0.14 0.30 0.13 0.73 0.20 0.37 0.21 0.50 0.18 0.41 0.17
Skin excessa 91.04 3.62 112.02 5.78 89.22 6.47 100.26 10.39 113.76 7.10 100.26 10.53
Epidermis 0.07 0.02 0.04 0.02 0.06 0.03 0.05 0.02 0.10 0.09 0.21 0.16
Dermis 0.004 0.01 0.01 0.01 0.005 0.01 0.01 0.01 0.01 0.01 0.02 0.01
Receptor fluid 0.02 0.05 0.003 0.01 0.04 0.02 0.06 0.04 0.09 0.05 0.06 0.08
Dermal deliveryb 0.10 0.05 0.06 0.03 0.11 0.06 0.12 0.05 0.20 0.14 0.28 0.17
Total recovery 91.65 3.64 112.38 5.74 90.06 6.29 100.75 10.47 114.46 6.85 100.96 10.56

a

Skin excess corresponds to: Washing þ Donor compartment rinsing þ Remaining skin.
b

Dermal delivery is Epidermis þ Dermis þ Receptor fluid according to SCCS Notes of Guidance.

Table 3. Distribution of 14C-octocrylene after application to
human skin (%mean and SD) as reported in SCCS (2021)

Test item Octocrylene

Application terminated at: 24 h (n¼12)

Mean SD

Total strips (1–20) 0.69 0.31
Skin excessa 97.96 4.93
Epidermis 0.14 0.16
Dermis 0.012 0.016
Receptor fluid 0.0001 0.0003
Dermal deliveryb 0.15 0.17
Total recovery 98.8 4.92

a

Skin excess corresponds to: Washing þ Donor compartment rinsing þ
Remaining skin.

b

Dermal delivery is Epidermis þ dermis þ receptor fluid according to SCCS
Notes of Guidance.

Table 4. Distribution of 4-MBC after application to pig skin (%
Mean and SD) as reported in Sasson et al. (2009)

Test item 4-MBC

Application terminated at: 24 h (n¼5)a

Mean SD

Skin excessb 4.5 0.72
Total strips (1–40) 80.1 6.19
Epidermis þ Dermis 2.9 0.5
Receptor fluid 0.25 0.03
Dermal deliveryc 3.17 0.53
Total recovery 87.8 6.9

a

At 8 h of postdosing, the skin surface was washed.
b

Skin excess corresponds to: Washing þ Donor compartment rinsing þ
Remaining skin.

c

Dermal delivery is Epidermis þ dermis þ receptor fluid according to SCCS
guideline.
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that they all displayed medium to fast depletion in suspension
hepatocytes (they all have shown to have faster depletion rate
than the reference chemical Naloxone with known intermediate
CLint). Based on the assessment criteria, most of the treatment
data are acceptable, except for the 2 lowest concentrations of
OMC failing criterial 1 or 2 (Table 6). For both octocrylene and
4-MBC, the in vitro clearance values decreased with increasing
concentration, indicating saturated enzyme reactions at higher
concentrations. However, as the calculated mean in vitro CLint
was close to the clearance rate obtained at the 0.1 mM concentra-
tion which is a biologically relevant concentration for the 3
chemicals, the mean in vitro CLint data were used to scale to
in vivo CLint values.

Hepatic clearance for highly plasma protein-bound
chemicals and the determination of CLliver

After the in vitro CLint values were scaled to in vivo CLint values, 2
variations of the well-stirred liver model were considered to con-
vert the in vivo CLint to hepatic clearance (CLliver); the first equa-
tion provides an estimate of hepatic clearance of the unbound
chemical, whereas the second equation describes the hepatic
clearance of the total, ie, unbound and bound. As for the 3
studied chemicals, the inclusion or exclusion of the fraction
unbound parameters will have a huge impact on the determined
hepatic clearance. A literature review on hepatic clearance for
highly plasma protein-bound chemicals was conducted.

Buck et al. found that in vitro CLint may provide a better esti-
mate of in vivo liver clearance of total rather than unbound
chemical (Buck et al., 2007). Obach et al. found that for highly
bound compounds (free fraction in plasma below 0.1), clearance
can be severely underpredicted using a standard well-stirred

model (Equation 1) for the liver (Obach, 1999) and Poulin and

Hadded also suggested that more is available for metabolism

than the free concentration (Poulin and Haddad, 2021). Baker and

Parton also suggested that hepatic clearance was usually under-

estimated using scaled data obtained from hepatocytes and

microsomes and that this underprediction of clearance was most

common when the compound was highly bound (Baker and

Parton, 2007). The relationship between Fup and clearance was

Table 5. Skin absorption parameters as input in the PBK models

OMC Octocrylene 4-MBC Source

Vehicle/water partition coefficienta 1.5Eþ05 4.0Eþ05 4.0Eþ04 Fitted
Vehicle diffusivity (cm2/s) 7.0E�12 6.2E�09 7.8E�06 Fitted
Stratum corneum/water partition coefficient 4.5Eþ02 2.0Eþ03 1.0Eþ03 Fitted
Stratum corneum diffusivity (cm2/s) 2.0E�10 2.0E�11 6.1E�11 Fitted
Epidermis/water partition coefficient 2.0Eþ01 6.0Eþ02 1.0Eþ02 Fitted
Epidermis diffusivity (cm2/s) 3.0E�08 2.0E�08 1.9E�09 Fitted
Dermis/water partition coefficient 7.0E�01 7.0E�01 2.0Eþ00 Fitted
Dermis diffusivity (cm2/s) 1.0E�07 6.0E�08 3.0E�08 Fitted
Sebum/water partition coefficient 5.5Eþ04 1.5Eþ05 5.4Eþ03 Lian-Yangb

Sebum diffusivity (cm2/s) 5.3E�08 1.6E�08 1.1E�07 Lian-Yangb

a

Vehicle/water partition coefficient is vehicle/formulation specific that when a different vehicle/formulation is used, this parameter may differ accordingly.
b

Lian-Yang method from GastroPlus.

Table 6. Assessment criteria of the reliability of the hepatocyte
stability negative control data

Passing criteria Rationale

1 (a) t¼ 0 negative control
within 20% of nominal
concentration

(a) Reliability of quantification

and/or and/or
(b) t¼ 0 negative control

within 20% of t¼ 0 assay
concentration

(b) Representative negative
controls

2 Relative standard deviation
(or CV%) <20% for t¼ 0
negative control

Reliability of quantification

3 <20% change in negative
control over experiment

Negative control consistency,
nonmetabolic losses ruled
out

Figure 3. Hepatic loss of OMC, octocrylene, and 4-MBC in human
suspension hepatocytes assays. NC, heat-inactivated negative control.

8 | ADME characterization and PBK model development of UV filters



investigated by Pang et al., too. They found that the clearance of a

low extraction ratio chemical will be affected to a great extent by

the chemical’s plasma protein binding. On the other hand, the

clearance of highly extracted chemicals is unlikely to be affected

by plasma protein binding (Pang and Rowland, 1977). For exam-

ple, some chemicals may be eliminated or metabolized by mech-

anisms that have an even higher affinity for them than do the

binding sites on their plasma protein. This is what happens in the

case of propranolol, which is a highly bound chemical which is

metabolized by such a high affinity hepatic enzyme system that

its rate of clearance completely depends on the rate of its delivery

to the liver. Although the chemical is 90%–95% bound to plasma,

hepatic removal is so avid that both bound and free forms are

extracted. Consequently, hepatic elimination is unaffected by

chemical binding in blood (Shand, 1976). For the 3 tested UV fil-

ters, at biological relevant concentrations approximately 0.1 mM,

in vitro CLint values as determined in the hepatocyte stability

assay are high, indicating high affinity for hepatic enzymes.

Therefore, using the standard well-stirred equation including the

corrections for the unbound fraction in vitro and in plasma, the

in vivo hepatic clearance is very likely to be underestimated sig-

nificantly. Based on these findings, the nonrestrictive equation

(equation 2) was selected for calculating the liver clearance

(CLliver) of all 3 chemicals (Table 7) and used as input in the PBK

models in GastroPlus.

Prediction of tissue-plasma partitioning
The distribution of the 3 chemicals in each compartment was

modeled as perfusion limited. For calculating the tissue plasma

partition coefficients (Table 8), the method published by

Berezhkovskiy (2004) (an option available in GastroPlus) was

used, which has shown to be a high performing method for calcu-

lating partitioning of neutrals (Mathew et al., 2021).

Sensitivity analysis
Sensitivity analysis was performed to provide a quantitative eval-
uation of how input parameters influence the model output. The
normalized sensitivity coefficients for all chemical specific
parameters were generated to determine the influence of param-
eter variation on the model output. This showed that Cmax and
AUC values are sensitive to chemical-specific parameters, for
example, Rbp, Fup, skin absorption parameters, and liver clear-
ance (Figure 4).

Model evaluation
To evaluate the performance of the 3 human PBK models, which
were developed using parameter values derived from in silico and
in vitro data, the models were validated against independent
plasma PK data from clinical studies, which were not used for
model development. Figures 5–7 show the comparison of
observed and simulated plasma concentration-time profiles of
OMC, octocrylene, and 4-MBC following topical administration
from 3 individual clinical studies. The model’s predictive per-
formance was evaluated by calculating Cmax and AUC0�t ratios
for simulations over observations.

The simulated/observed ratios for Cmax and AUC0�t of all 3
clinical trials were well within 2-fold limit (Table 9) (only excep-
tion is for OMC 4-day AUC0�t, ratio was 2.7), indicating the model
predicted values are in good agreement with the respective
observed values, therefore the models were considered reason-
able and validated (Jones et al., 2015).

Discussion
Understanding the ADME and PK behavior of a chemical is crit-
ical for determining systemic exposure to enable safety decisions
to be made using NGRA without animal testing. To date, no PBK
models have been published on the 3 UV filters, OMC, octocry-
lene, and 4-MBC. This study for the first time provides a compre-
hensive collection of ADME data and a PBK modeling strategy for
topical application for these highly plasma protein bound chemi-
cals.

PBK modeling is a well-established tool for predicting the PK of
chemicals in various species, exposure routes and dose regimens,
the application of which can be traced back many decades
(Andersen, 1995; Chen and Gross, 1979; Himmelstein and Lutz,
1979). Depending on the goal of the modeling exercise as well as
the amount and quality of the available data, PBK models can be
built based mainly on the observed clinical data (“top-down”
approach) or based on the broader understanding of how a com-
pound behaves in the body mechanistically (“bottom up”
approach) (Jamei et al., 2009). Very few clinical PK studies are
available on cosmetic ingredients to help verify PBK models, and
performing such studies is expensive and time-consuming.
Therefore, the modeling strategy for cosmetic ingredients, when
human data are lacking, focuses on parameterizing models parti-
ally or entirely based on data from in vitro and in silico studies in a
bottom-up manner. It is therefore of importance to use relevant
and robust approaches for parameter determination to support
the reliability of input parameters and provide a sound biological
basis for the model structure.

The 3 UV filters in this work are highly lipophilic and have a
high binding affinity for proteins and plastic, which makes them
“difficult to test” chemicals. For these types of chemicals, the
ADME parameter generation becomes very challenging as experi-
mental data can be heavily impacted by the nonspecific binding.

Table 7. In vitro and in vivo clearance data

In vitro CLint

(ml/min/million cells)
In vivo CLint

scaled
(l/h/kg liver)a

CL liver
l/h/kg bwb

0.1 mM 1 mM 10 mM Mean

OMC — — 43.34 43.34 312.0 1.1
Octocrylene 27.8 15.23 7.6 16.9 121.7 0.9
4-MBC 34.0 32.2 23.8 30.0 216 1.0

a

in vivo CLint scaled from the mean in vitro CLint.
b

CLliver calculated based on equation 2. Assuming average body weight
70 kg with 1.5 kg of liver weight and 90 l/h of Qliver.
—Data didn’t pass acceptance criteria.

Table 8. Kt:p: Tissue-to-plasma partition coefficient

Tissue OMC Octocrylene 4-MBC

Lung 0.84 1.21 0.49
Adipose 28.77 128.16 2.18
Muscle 3.13 5.64 0.81
Liver 4.98 9.19 1.08
Heart 2.07 3.60 0.66
Brain 7.86 14.71 1.52
Kidney 3.10 5.56 0.81
Skin 3.77 6.89 0.89
RedMarrow 8.49 16.07 1.46
YellowMarrow 28.77 128.16 2.18
RestOfBody 3.15 5.66 0.83
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In this study, we demonstrated that the developed PBK models of
the 3 chemicals can successfully simulate the plasma concentra-
tion profiles obtained from dermal clinical studies. Except for the
human studies that are used for model verification, no other
human PK data were used for model development/calibration,
indicating the reliability of the ADME data generated and the
parameters determined. This was achieved through careful fit for
purpose study design, using assays/parameterization methods

that have the suitable applicability domain and mechanistic rele-
vance for the chemicals of interest, and establishment of accept-
ance criteria to ensure the quality/relevance of the generated
data.

Capturing appropriate absorption in a PBK model is crucial,
especially when human data for validating skin absorption model
are unavailable. Depending on the context, the modeling strategy
can range from describing percentage absorption to complex

Figure 4. Illustration of the output of sensitivity analysis of PBK model. A sensitivity coefficient of 1 implies that a 1% change in parameter value (ie,
input) leads to a 1% change in output (ie, Plasma Cmax and AUC predictions) of the model, indicating that the output is sensitive to that input parameter
under the evaluated conditions. V, vehicle; SC, stratum corneum; E-epidermis, D-dermis, SB-sebum, PC-partition coefficient and W-water.
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Figure 5. For OMC, comparison between observed (dots, different color represents different subject data) (Matta et al., 2020) and PBK simulated (solid
curve, mean) plasma concentration time profiles, for day 1 (A) and the entire study duration (B, 21 days) after dermal application of a nonaerosol Spray
sunscreen product containing 7.5% OMC. The study product was applied 1 time on day 1 (0 h) and 4 times per day for the remaining 3 days. The shaded
area represents the 90th percentiles interval of human population simulation.

Figure 6. For octocrylene, comparison between observed (dots, different color represents different subject data) (Matta et al., 2020) and PBK simulated
(solid curve, mean) plasma concentration time profiles, for day 1 (A) and the entire study duration (B, 21 days) after dermal application of a lotion
sunscreen product containing 6% octocrylene. The study product was applied 1 time on day 1 (0 h) and 4 times per day for the remaining 3 days. The
shaded area represents the 90th percentiles interval of human population simulation.

Figure 7. For 4-MBC, comparison between observed (dot, mean 6 SD; Schauer et al., 2006) and PBK simulated (solid curve, mean) plasma concentration
time profiles in female (A) and male (B) human subjects after dermal application of a sunscreen formulation containing 4% 4-MBC (approximately
22 mg/kg bw). The shaded area represents the 90th percentiles of human population simulation.
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mechanistic models capturing flux rate over time in different

skin compartments. Merely knowing the percentage absorbed is

insufficient to parameter a PBK model, as different flux rates can

result in the same percentage absorbed but different systemic

exposure profiles. In this study, we employed a complex mecha-

nistic model to capture the dynamic skin absorption process of
3 chemicals. However, determining input parameters for parti-

tioning, diffusion in skin layers, and formulation effects are chal-

lenging due to variations among available in silico models and

their poorly understood performance (Gr�egoire et al., 2021). To

improve confidence in predictions, in vitro skin penetration data

from literature or generated in this study were used to parame-

terize the dermal absorption model. Notably, the 3 UV filters

exhibited low overall skin absorption, leading to high variability
and fluctuation in observed data in skin layers and receptor fluid.

Accounting for this variability through parameter distribution fit-

ting and reflecting it in probabilistic modeling, such as population

simulation, is important in the modeling process.
The ex vivo skin penetration studies included in this work for

model development used radiolabeled chemicals without distin-

guishing between the parent compound and metabolites.

Therefore, the skin absorption models developed didn’t include

skin metabolism assuming everything going through is the
parent. However, this can bring uncertainty to the model as the

frozen skin has shown effective esterase activity, and skin metab-

olism of OMC through skin S9 incubation has been observed

(through personal communication). Incorporating skin metabo-

lism into the model would improve the accuracy of determining

the penetration of the parent compound. However, the challenge

is, apart from metabolizing rate, metabolism in the skin also

depends on the abundance of skin S9, the duration of chemical
residence, and the rate of chemical penetration. Currently, there

is no well-established method for in vitro to in vivo extrapolation

to incorporate in vitro skin S9 clearance rate into an in vivo situa-

tion. The significant variability in skin penetration data for the

3 chemicals could partially reflect varying esterase activity and

different levels of skin metabolism among samples. This variabil-

ity was accounted for by a high CV% of 100% integrated for all

skin penetration-related parameters in human population simu-
lation. This may explain why the predicted Cmax still matches

well with clinical PK data, despite not including skin metabolism
in the absorption models.

Fup is a crucial parameter in PBK modeling, impacting the
interpretation of ADME behavior of chemicals. However, accu-
rately determining Fup for certain compounds is challenging
with current methods. In vitro methods like equilibrium dialysis
(Chen et al., 2019), ultracentrifugation (Weiss and Gatlik, 2014),
and ultrafiltration (Banker and Clark, 2008) have been historically
used for plasma protein-binding characterization, but their accu-
racy suffers for highly protein bound chemicals (ie, with Fup less
than 1%) (Riccardi et al., 2015). Modified versions of these meth-
ods have been proposed to improve accuracy for highly bound
chemicals (Chen et al., 2019; Riccardi et al., 2015; Toma et al.,
2021). In this study, we used the cross-filtration method, a modi-
fied ultrafiltration technique suitable for chemicals with nonspe-
cific binding and poor solubility. Validation using established
chemicals, including highly protein bound ones, demonstrated
good agreement with published figures (Taylor and Harker, 2006).
The results for the 3 UV filters showed good recovery and cap-
tured their highly protein bound nature.

Improved methods for determining Fup in challenging chemi-
cals primarily focus on the static measure of chemical binding in
plasma at equilibrium. However, they do not describe binding
affinity or kinetics, such as association and dissociation rates of
the chemical-protein complex. This limitation may lead to signif-
icant underestimation of liver clearance for highly protein bind-
ing chemicals when using traditional well-stirred liver models
with static Fup values. Due to the dynamic and reversible nature
of chemical-protein binding, influenced by different association
and dissociation rates, chemical-protein equilibrium is not
instantaneous. For a highly protein bound chemical slow dissoci-
ation may restrict chemical retention in plasma, whereas fast
dissociation may have a nonrestrictive or permissive effect (Li
et al., 2015). The nonrestricted well-stirred liver model has been
suitable for 3 UV filters, demonstrating a nonrestrictive effect of
protein binding on liver clearance when compared with human-
observed PK data. Various methodologies, such as surface plas-
mon resonance (Day et al., 2002), microdialysis (Wang et al., 2008),
and enzyme reporter assay coupling with high-resolution mass
spectrometry (Yan et al., 2023) have been investigated for deter-
mining chemical-protein binding kinetics. These methods

Table 9. Simulated against observed comparison on Cmax (ng/ml) and AUC0�t (ng � h/ml)

Chemical Observed Cmax (ng/ml) Predicted Cmax (ng/ml) Fold Difference
(Simulated Mean/
Observed Mean)Geometric Mean Range Geometric Mean Range

OMC Day 1 2 0.6–5 2.9 0.22–7.6 1.5
Day 4 7.9 2.6–30.6 9.9 1.1–24.7 1.3

Octocrylene Day 1 1.5 0.5–3.6 1.7 0.4–3.3 1.2
Day 4 7.8 2.6–38.7 5 1.3–11.3 0.6

4-MBC Female 25.5 19.8–31.2 21.7 9.8–40.0 0.9
Male 51.9 19.8–83.9 31.8 9.1–76.6 0.6

Chemical Observed AUC0�t (ng 3 h/ml) Predicted AUC0�t (ng 3 h/ml) Fold Difference
(Simulated Mean/
Observed Mean)Geometric mean Range Geometric mean Range

OMC Day 1 21.6 2.7–57.7 32.9 1.9–81.0 1.5
Day 4 103.4 45.1–213.5 276.0 87.3–705 2.7

Octocrylene Day 1 20.0 6.4–38.1 28.7 5.0–49.7 1.4
Day 4 94.7 41.4–210.0 128.6 26.6–245.2 1.4

4-MBC Female 485.6 NA 373.8 160.1–692.2 0.8
Male 987.9 NA 583.5 153.1–1374.9 0.6

NA, not available.
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measure association and dissociation rates (Day et al., 2002) or

capture the dynamic and kinetic nature of chemical-protein

binding through parameters like “dynamic free fraction” (Yan

et al., 2023). They offer valuable insights into the impact of bind-

ing kinetics on chemical properties and can enhance our under-

standing of the effect of Fup on ADME for highly protein bound

chemicals.
To determine the hepatic CLint of the 3 UV filters, hepatocytes

in suspension were used due to their higher metabolic activity

compared with cultured cell lines and intact cellular membranes,

which consider the impact of chemical movement across the cell

membrane for low permeability chemicals. The experiments

were preformed up to 240 min to ensure derivation of CLint values

in case of slow clearance and the results showed that for the 3

UV filters the curves are good enough to derive CLint values.

However, there are still gaps in achieving robust and reliable data

generation using this widely used in vitro method. Harmonization

frameworks are needed to address untargeted influences (eg,

results that are not explainable/usable/variable), particularly for

chemicals with unique physicochemical properties like instabil-

ity, volatility, and nonspecific binding (Louisse et al., 2020). In

hepatocyte stability assays, the commonly used medium control

(when cells are absent) as a negative control is not appropriate

for the 3 UV filters due to nonspecific binding to plastic, leading

to data misinterpretation. A more suitable negative control would

be heat-inactivated hepatocytes, which disable enzymatic activ-

ity while still including the chemical’s binding profile to cells.
The same PBK model structure was applied to the 3 UV filters.

In the model, liver clearance was considered as the main clear-

ance route, and that tissue distribution was perfusion limited.

The validation against human PK data showed that the structure

is valid for these chemicals. However, one should notice that

this model structure may not be suitable for a chemical that is

dominantly cleared via renal clearance or when active transport

is relevant.

Conclusion
This study on the 3 UV filters showed that even when human PK

data is limited for model validation/calibration, it is possible to

develop valid PBK models in a bottom-up approach. To ensure

successful PBK model development under such a strategy, the

key is to use relevant and robust approaches for parameter deter-

mination to support the reliability of input parameters and pro-

vide a sound biological basis for the model structure. Some

essential considerations and lessons have been learnt (Table 10)

for the 3 UV filters which are highly lipophilic and highly protein

bound, which need to be considered when developing PBK models

for similar chemicals in the future.
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