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� Abstract: Background: DNA hypermethylation plays a critical role in the occurrence and progression
of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for one-
carbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and pro-
gression of AML has not been reported yet.
Objective: In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tai-
lored treatment for AML patients.
Methods: We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its cor-
relation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled
AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used
to detect the genomic methylation level in individuals.
Results: Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML pa-
tients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily over-
expressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML pa-
tients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3
AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR
ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS)
in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and
frequently accompanied by mutations in DNMT3A and NPM1.
Conclusion: In conclusion, SXFN3 plays an important role in the progression and hypermethylation
in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypo-
methylating therapy.
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1. INTRODUCTION

Numerous studies have confirmed that DNA methylation
is critical in the occurrence and progression of AML [1-4]. 
Therefore, hypomethylating therapy is wildly accepted in 
clinical practice and has achieved significant efficacy in 
AML treatment [5-7]. However, the key molecule that regu-
lates tumor DNA methylation in AML patients is still large-
ly unknown. 
 SFXN3 is an important mitochondrial serine transporter 
that is required for generating one-carbon units, which is 
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critical in cellular metabolism, including one-carbon metab-
olism and DNA methylation in both cytosolic and mito-
chondrial branches [8, 9]. It has been reported that serine is 
converted into glycine in mitochondria through the mito-
chondrial serine transporter, which is necessary for the syn-
thesis of S-adenosylmethionine (SAM) [10-14]. In the cyto-
solic branch, the synthesis of the methionine-SAM cycle 
occurs in a serine-derived ATP-dependent manner [15]. 
SAM is the primary methyl donor in DNA and RNA meth-
ylation [16, 17]. Thus, SFXN3 could promote one-carbon 
metabolism and the methionine-SAM cycle by activating 
serine transport and enhancing SAM synthesis. This indi-
cates that SFXN3 plays an important role in regulating tu-
mor genomic hypermethylation. 
 However, it has not been reported whether SFXN3 could 
affect the occurrence and progression of AML. We hypothe-
sized that SFXN3 indicates a poor prognosis and suggested 
a tailored treatment for AML patients. 
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2. MATERIALS AND METHODS 

2.1. Bio-informatics Database 

 Raw data of SFXN3 expression in AML patients were 
downloaded from The Cancer Genome Atlas (TCGA) data-
base, which can be accessed at https://gdc-hub.s3.us-east-
1.amazonaws.com/download/TCGA-LAML.htseq_fpkm.tsv. 
gz. Full metadata is also available. Gene Expression Profil-
ing Interactive Analysis database (GEPIA) was used to ob-
tain SFXN3 expression data for AML patients and com-
pared controls (access the website at http://gepia.cancer-
pku.cn/detail.php?gene = SFXN3). Integrated data from both 
GEPIA and TCGA databases were analyzed via the GEPIA 
analysis system and R software (R 4.2.1) to determine the 
overall survival of SFXN3 high and low AML patients.  

2.2. Patients’ Characteristics and Bone Marrow Ob-
tained from our Home Hospital 

 The detailed diagnostic and classified criteria for the 
involved AML patients were according to the 2016 WHO 
guideline, and the patients were stratified using the 2017 
European Leukemia Network (ELN) prognostic classifica-
tion. We included a total of 31 newly diagnosed AML pa-
tients (Supplementary Table 1) treated in our center from 
January, 2022, to June, 2022. Additionally, we enrolled 23 
healthy volunteers in the control group (Supplementary Ta-
ble 2). The bone marrow and necessary clinical information 
were collected and recorded. All patients understood and 
signed the informed consent forms approved by the Ethics 
Review Committee of the First Affiliated Hospital of Anhui 
Medical University. 

2.3. The Expression of SFXN3 was Detected by RT-
qPCR 

 Total RNA was extracted from the bone marrow of pa-
tients and volunteers using the RNAprep Pure Hi-Blood Kit 
from TIANGEN, and nucleic acid quantification equipment 
(Eppendorf, BioPhotometer D30, DEU) was used to detect 
the purity and concentration of RNA. Then, the total RNA 
was reverse transcribed into cDNA by a reverse transcrip-
tion kit (Plus All-One 1st Strand cDNA Synthesis Super 
Mix, Novoprotein), and qPCR (Agilent, Mx3000P, USA) 
was used to detect the SFXN3 expression. RNA primer was 
synthesized by Sangon Biotech (Supplementary Table 3) 
and SYBR qPCR kit was purchased from Novoprotein 
(SYBR qPCR Super Mix Plus, Novoprotein). The relative 
expression of the gene is represented by 2-ΔΔCT. 

2.4. Detection of Genomic Methylation Level by Whole 
Genome Bisulfite Sequencing (WGBS) 

2.4.1. WGBS Experimental Method 

 Genomic DNA was extracted from bone marrow using 
the TIANamp Blood DNA Kit (TIANGEN). DNA concen-
tration and integrity were assessed by a NanoDrop 2000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA) and agarose gel electrophoresis. Then, the ge-
nomic DNA samples were added with a certain proportion 
of negative control (lambda DNA) and randomly interrupted 
at 200–300 bp. The interrupted DNA fragments were re-

paired at the end; an A-tail was added and ligated to the 
sequencing adaptor with all cytosines methylated. After 
bisulfite treatment by EZ DNA Methylation Gold Kits (Zy-
mo Research, Irvine, CA, USA), the unmethylated C turned 
into U, while the methylated C remained unchanged. Final-
ly, after PCR amplification and product purification, the 
final libraries were sequenced on the Illumina NovaSeq 
6000 platform (Illumina Inc., San Diego, CA, USA), and 
150 bp paired-end reads were generated. The sequencing 
and analysis were conducted by OE Biotech Co., Ltd. 
(Shanghai, China). 

2.4.2. WGBS Analysis Process 

 The raw reads were subjected to a quality check and then 
filtered by Fastp [18]. Clean reads were aligned to the hu-
man genome (GRCh38.p13) using Bismark [19]. The 
alignment result was next assessed by MethylKit [20] to 
determine the methylation level of each C site (from 0% to 
100%). To ensure the accuracy of the results, the C sites 
with coverage of �10x were filtered out. The sequence 
feature near the methylated C was analyzed using the R 
package ggseqlogo [21]. Differentially methylated regions 
(DMRs) were subsequently analyzed using MethylKit, and 
the parameter was set as "myobj, win.size = 1000, step.size = 
1000." The significant DMRs were identified by the thresh-
old of a p-value ≤ 0.05 as well as the absolute delta cutoff 
between the two groups ≥ 10%. The promoter region was 
defined as 4000 bp upstream of the TSS of a gene. The 
overall methylation level of the promoter region for every 
gene was calculated, and the P-value between the two 
groups was calculated using the t-test. GO and KEGG 
pathway enrichment analyses of DMRs related genes were 
performed using R based on the hypergeometric distribu-
tion. 

2.5. Statistical Methods 

 Quantitative variables were presented in mean±SD and 
analyzed using SPSS 26.0. The means between the two 
groups, which corresponded to normal distribution and ho-
mogeneous variance were compared using the t-test (T-test), 
otherwise, using the Mann-Whitney U test (Mann-Whitney 
U test). Analysis of variance (ANOVA) was used to com-
pare the means among three or more groups corresponding 
to the normal distribution and homogeneous variance, oth-
erwise, using the Kruskal-Wallis test (K-W test). Pearson 
Chi-square test and Fisher’s exact test were used to compare 
the proportions between two or more independent groups. p 
< 0.05 means the difference is statistically significant. 

3. RESULTS 

3.1. SFXN3 is Significantly Highly Expressed in Non-M3 
AML Patients and is Associated with Poor Clinical Out-
comes 

 To evaluate whether SFXN3 expression is related to the 
occurrence and progression of AML, we investigated the 
relationship through online databases. We found that the 
expression of SFXN3 was significantly higher in 173 AML 
patients than that in 70 healthy individuals (p < 0.01) (Fig. 
1a), according to data from GEPIA. Furthermore, we stud-
ied the overall survival (OS) of AML patients with high and 



412    Current Gene Therapy, 2023, Vol. 23, No. 5 Dong et al. 

low SFXN3 expressions, separated according to the median 
SFXN3 expression in the GEPIA and TCGA databases, re-
spectively. Data from 106 AML cases in GEPIA (p = 0.019) 
and 132 cases in TCGA (p < 0.01) showed that AML pa-
tients with high SFXN3 expression had significantly shorter 
OS than those of patients with low SFXN3 (Figs. 1b and c). 
The results indicated that high SFXN3 expression was sig-
nificantly detected in AML patients, and that high SXFN3 
expression in AML patients was associated with poor OS. 
 Next, we collected bone marrow from 31 newly diag-
nosed AML patients and 23 volunteers from our home hos-
pital and detected the expression of SFXN3. Our findings 
confirmed that SFXN3 was significantly higher in AML 
patients (6.89 ± 7.74) than in volunteers (1.08 ± 0.43) (p < 
0.01) (Fig. 2a). Furthermore, we investigated the variant 
SFXN3 expression in M3 and non-M3 AML patients and 
found that SFXN3 was preferentially overexpressed in non-
M3 AML patients (8.02 ± 8.20) than in M3 patients (2.17 ± 

1.12) (p < 0.05) and volunteers (1.08 ± 0.43) (p < 0.01). 
However, no significant changes in SFXN3 expression were 
demonstrated in M3 AML patients (2.17 ± 1.12) and volun-
teers (1.08 ± 0.43) (p > 0.05) (Fig. 2b). These data consist-
ently illustrated that SFXN3 was over-expressed in AML 
patients, especially in non-M3 AML patients. 
 According to the median SFXN3 expression, 25 newly 
diagnosed non-M3 AML patients were divided into high 
SFXN3 expression (SFXN3-H) group (n = 13) and low 
SFXN3 expression (SFXN3-L) groups (n = 12). We found 
that the ratio of high-risk patients in the SFXN3-H group 
was significantly higher than that of the SFXN3-L group (p 
< 0.05) (Fig. 2c). The percentage of blast cells in the 
SFXN3-H group (63.42% ± 21.50%) was significantly 
higher than that of the SFXN3-L group (41.54% ± 17.88%) 
(p < 0.05) (Fig. 2d). These findings suggested that the high 
SFNX3 expression indicates worse risk and tumor burden, 
further confirming the poor clinical prognosis of non-M3 
AML patients.  

 
Fig. (1). SFXN3 is enriched in AML patients and indicates a poor OS. (a) The expression of SFXN3 was significantly higher in AML pa-
tients (n = 173) than that in healthy individuals (n = 70) (p < 0.01). (Data was obtained from the GEPIA database). (b and c) AML patients 
with high SFXN3 expression had significantly short overall survival. (Data was obtained and analyzed from GEPIA (p = 0.019) and TCGA 
databases (p < 0.01), respectively). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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3.2. High SFXN3 Expressed Non-M3 AML Patients Po-
tentially Benefit from Hypomethylating Therapy 

 We further explored the relationship between SFXN3 
expression and the efficacy of hypomethylating therapy. In 
the SFXN3-H group, all 6 patients who received hypometh-
ylating therapy achieved complete remission (CR), while 
only 2 out of 7 patients who did not receive hypomethylat-
ing therapy got CR. A significantly increased CR rate was 
observed in non-M3 AML patients with high SFXN3 ex-
pression who received hypomethylating therapy, compared 
to those without hypomethylating treatment (p < 0.05). In 
the SFXN3-L group, no statistical difference was found in 
the CR rate with or without hypomethylating therapy (p > 
0.05). Thus, high SFXN3 expression in non-M3 AML pa-
tients may indicate potential benefit from hypomethylating 
therapy (Table 1).  

3.3. SFXN3 Promotes DNA Methylation in Non-M3 
AML Patients at Transcription Start Sites (TSS), which 
Clustered in Multiple Vital Cell Functions and Accom-
panied by Mutations in DNMT3A and NPM1 

 To our knowledge, SFXN3 is critical in generating one-
carbon units and DNA methylation in both cytosolic and 
mitochondrial branches. Our data indicated that non-M3 
AML patients with high SFXN3 expression could benefit 
from hypomethylating therapy. We hypothesized that 

SFXN3 might be involved in non-M3 AML progression via 
promoting aberrant DNA methylation. Thus, we conducted 
genomic methylation sequencing by whole genome bisulfite 
sequencing (WGBS) in high and low SFXN3-expressed 
non-M3 AML patients. We found no difference in methylat-
ed cytosine ratio between the SFXN3-H (11.13% ± 1.34%) 
and SFXN3-L (13.70% ± 1.79%) groups (Figs. 3a and b). 
Additionally, the ratio of CpG, CHG, and CHH showed no 
difference in the SFXN3-H (29.40% ± 4.83%; 14.74%± 
0.23%; 55.86% ± 5.05%) and SFXN3-L (22.55% ± 4.83%; 
14.73% ± 0.48%; 62.72% ± 2.02%) groups (Figs. 3c and d). 
However, we observed that the CpG methylation ratio was 
considerably higher in the SFXN3-H group than that in the 
SFXN3-L group (p < 0.05), whereas no significant increase 
was monitored in CHG and CHH (Fig. 3e). Furthermore, the 
sequencing data revealed that CpG methylation at transcrip-
tion start sites (TSS) was up-regulated in the SFXN3-H 
group (60.87% ± 4.39%) than in the SFXN3-L group 
(43.84% ± 7.03%) (Fig. 3f). TSS is crucial in controlling 
gene transcription and expression, and aberrant methylation 
plays a significant pathophysiological role in AML [22-24]. 
Our findings suggest that SFXN3 might promote a poor 
prognosis and outcome by inducing aberrant methylation of 
TSS. 
 We clustered 163 genes that showed a significant in-
crease in methylation in gene promoters of over 10% in GO 
and KEGG enrichment analysis. The enrichment of TSS

 
Fig. (2). SFXN3 is preferentially over-expressed in non-M3 AML patients and is associated with high-risk and frequent blasts. (a) SFXN3 
was over-expressed in AML patients compared with volunteers (p < 0.05). (b) SFXN3 was over-expressed in non-M3 AML patients com-
pared with both M3 AML patients (p < 0.05) and volunteers (p < 0.01); however, no significant differences were found between M3 patients 
and volunteers (p > 0.05). (c) High SFXN3 non-M3 AML patients suffered a poor prognosis of high-risk (p < 0.05). (d) The proportion of 
leukemia blasts in the SFXN3-H group was significantly higher than that in the SFXN3-L group (*p�< 0.05 ****p� 0.01). (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article). 
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Table 1. High SFXN3 expressed non-M3 AML patients potentially benefit from hypomethylating therapy. 

- 
With Hypomethylating Therapy Without Hypomethylating Therapy 

p-value 
CR Non-CR CR Non-CR 

SFXN3-H 6 0 2 5 0.039 

SFXN3-L 5 1 4 1 0.887 

Note: In the SFXN3-H group, 6/6 patients who were administrated hypomethylating therapy achieved complete remission (CR), but 2/7 patients got CR when treated without hy-
pomethylating therapy. A significantly higher CR rate was observed in non-M3 AML patients with high SFXN3 expression who were treated with hypomethylating therapy than in 
treatment without hypomethylating therapy (p < 0.05). In the SFXN3-L group, no statistical difference was found in the CR rate with or without hypomethylating therapy (p > 0.05). 
 

 
Fig. (3). SFXN3 can promote the CpG methylation level at the transcription start sites (TSS) in non-M3 AML patients. (a), (b) There was no 
difference in methylated cytosine ratio between the SFXN3-H and SFXN3-L groups (p > 0.05). (c) The proportion of three methylation 
types (CpG, CHG, and CHH) in each sample. (d) The CpG methylation ratio in the SFXN3-H group was higher than that in the SFXN3-L 
group, while the CHG and CHH methylation ratio was found with no significant difference in the two groups (p > 0.05). (e) The distribution 
of three methylation types (CpG, CHG, and CHH) in gene elements of SFXN3-H and SFXN3-L groups. (f) The methylation ratio of gene 
elements in the SFXN3-H and SFXN3-L groups. The methylation level at transcription start sites (TSS) in the SFXN3-H group was signifi-
cantly higher than that in the SFXN3-L group (p < 0.05). In addition, the methylation ratio of the SFXN3-H group also increased at tran-
scription termination sites (TTS) (p < 0.05). However, there was no significant difference between the two groups in other gene regions  
(*p� 0.05). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

hypermethylation highlighted multiple vital cell functions, 
including tumor cellular signal transduction, immunological 
recognition, tumor micro-environment, metabolism of nu-
triment, etc. (Fig. 4).  

 Finally, we explored the relationship of SFXN3 with the 
molecular and cytogenetic characteristics of non-M3 AML 
patients. By comparing the gene mutation sequencing of the 

SFXN3-H and SFXN3-L groups, we discovered that fre-
quently mutated genes with poor prognosis were found in 
the SFXN3-H group. Specifically, DNMT3A and NPM1 
were statistically significant (20.65% ± 22.64% vs 3.5% ± 
11.61%; 17.15% ± 16.68% vs 2.03% ± 6.74%) (p < 0.05) 
(Fig. 5a). There was no significant variation in the chromo-
somal karyotype between the SFXN3-H and SFXN3-L 
groups (Fig. 5b). 
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Fig. (4). (a, b) Multiple vital cell functions are highlighted by the enrichment of TSS hypermethylation, including tumor cellular signal 
transduction, immunological recognition, tumor micro-environment, metabolism of nutriment, etc. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 

 
Fig. (5). High SFXN3 is accompanied by mutations in DNMT3A and NPM1 in non-M3 AML patients. (a) By comparing the gene mutation 
sequencing of the SFXN3-H and SFXN3-L groups, we discovered that gene mutations with poor prognosis were frequently found in 
SFXN3-H group, and DNMT3A and NPM1 were statistically significant (p < 0.05). (b) There was no significant variation in the chromo-
somal karyotype between the SFXN3-H and SFXN3-L groups. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 

 In conclusion, SFXN3 promoted DNA methylation at 
transcription start sites (TSS) in non-M3 AML patients. 
These TSS were clustered in multiple vital cell functions 
and were accompanied by mutations in DNMT3A and 
NPM1. 

4. DISCUSSION 

 Recent studies have shown that gene mutations and dis-
orders play a key role in diagnosing and prognosis of new 
AML patients [25, 26]. Mono- and combination therapies 
with the backbone of hypomethylating agents have demon-
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strated satisfactory efficacy in clinics [5, 7, 27]. Mutations 
in methylation-related genes, such as TET-2 and IDH1/2, 
can enhance genomic methylation levels and are associated 
with poor disease prognosis [25, 28-30]. However, the trig-
ger and pathophysiological processes of DNA methylation 
are unclear. Our study reported that SFXN3 was over-
expressed in non-M3 AML patients and was associated with 
poor OS, high risk, and increased blast. Next, we observed 
frequent DNA methylation at TSS and TTS in high SFXN3 
AML patients, usually accompanied by DNMT3A and 
NPM1 mutation. Our data suggested that SFXN3 may be a 
novel potential biomarker for the non-M3 AML patient 
prognosis. Previous research has already shown that SFXN3 
promotes one-carbon metabolism and determines the prog-
nosis of many other tumors [8, 31, 32]. Our findings con-
firmed that SFXN3 promotes tumor hypermethylation in 
multiple cancers. 
 Numerous studies have established that DNA hyper-
methylation, especially occurring at TSS, plays a substantial 
role in AML [22-24] and always indicates poor survival of 
AML patients [1, 2, 4, 33]. Although hypomethylating 
treatments have achieved satisfactory efficacy in the clinics, 
the efficacy has been observed to have significant heteroge-
neity, with only about 30%-40% of the patients responding 
to hypomethylating treatment and the OS being significantly 
reduced in high-risk patients [7, 34, 35]. Thus, key bi-
omarkers are needed to be explored to guide personalized 
hypomethylating strategies [35, 36]. We detected signifi-
cantly frequent DNA methylation at TSS and TTS in high 
SFXN3 non-M3 AML patients and identified that these pa-
tients could benefit from hypomethylating therapy. Our data 
indicated that non-M3 AML patients with high SFXN3 
could benefit from hypomethylating therapy due to TSS 
methylation, which provides a novel and important bi-
omarker for optimizing the option of a hypomethylating 
strategy. EZH2, DNMT3A, IDH1/2, and TET2 have been 
associated with DNA methylation and hypomethylating 
therapy. Among these genes, EZH2 and DNMT3A are re-
lated to the activity of DNMT in vivo, while TET2 and 
IDH1/2 take part in the process of DNA demethylation. Mu-
tations in these genes show a higher remission rate to hy-
pomethylating therapy in AML patients [25, 37-39]. Differ-
ent from previously reported genes, SFXN3 mainly pro-
motes DNA methylation by activating serine transport and 
determines whether patients can benefit from hypomethylat-
ing therapy, providing a new theoretical basis for hypo-
methylating therapy. 
 SFXN3 is a novel and seldom evaluated serine trans-
porter in cancer cell development [9]. Previous studies re-
vealed its effect on mitochondrial serine transport and one-
carbon metabolism [8], which indicated that SFXN3 might 
be regulating hypermethylation in various tumor genomes. 
However, whether the hypermethylation of AML is partially 
generated by SFXN3 has not been reported yet. Through our 
study, we demonstrated that high SXFN3 non-M3 AML 
patients were detected with frequent DNA methylation, es-
pecially enriched in TSS. The WGBS analysis indicated that 
the TSS genes were clustered in multiple vital cell func-
tions. Genomic hypermethylation was involved in tumor 
cellular signal transduction, immunological recognition, 
tumor micro-environment, metabolism of nutriment, etc. 

These findings indicated that the regulation of SFXN3 in 
tumors is multifaceted. DNA hypermethylation occurs in 
multiple genes, some of which are associated with G-
protein-coupled receptors, appear in many cancers, and af-
fect the efficiency of chemotherapy drugs [40, 41]. Some 
tumor suppressor genes are affected by hypermethylation 
and promote tumor genesis and invasion through the ERK 
signaling pathway [42]. Additionally, DNA hypermethyla-
tion can control cellular immune responses [43, 44], change 
IL-17A genetic polymorphisms [45], result in extracellular 
instability [46], influence glycose metabolism and cell pro-
liferation [47], and participate in the development of various 
cancers. 
 Interestingly, we found that the high SFXN3 was ac-
companied by mutations in DNMT3A and NPM1. AML 
patients harboring DNMT3A mutations were found with 
poor OS and prognosis and satisfied response to hypometh-
ylating therapy [39, 48]. Nevertheless, the global DNA 
methylation status in the DNMT3A mutant genotype in 
AML has not been fully clarified and the evidence is con-
troversial [25]. Research revealed that DNMT3A encodes 
DNA methyltransferases that catalyze the addition of a me-
thyl group to the cytosine residue of CpG dinucleotide [37], 
and DNMT3A mutation could present in the hematopoietic 
stem/progenitor cells of primary blasts and mature cells af-
ter remission [49-51]. 
 However, the relationship between SFXN3-induced 
methylation enrichment and DNMT3A mutation needs fur-
ther exploration. Nucleophosphorin1 (NPM1) is a chaperone 
protein that functions as a tumor suppressor gene in a num-
ber of cellular processes [51]. Its mutation frequently coex-
ists with DNMT3A and FLT3-ITD mutations [28] and af-
fects the activity of TP53 regulatory protein [52]. The asso-
ciation of SFXN3 with these gene mutations further sug-
gests its impact on the prognosis of non-M3 AML patients 
and their sensitivity to hypomethylating therapy. 

CONCLUSION 

 Our study showed that the mitochondrial serine trans-
porter SFXN3 is significantly highly expressed in non-M3 
AML patients and is associated with poor clinical outcomes. 
The expression of SFXN3 could indicate whether the pa-
tients can benefit from the hypomethylating therapy or not. 
Furthermore, we confirmed that SFXN3 promotes DNA 
methylation in non-M3 AML patients at transcription start 
sites (TSS), which clustered in multiple vital cell functions 
and accompanied by mutations in DNMT3A and NPM1, 
indicating a potential biomarker for evaluating tumor meth-
ylation enrichment and predicting the prognosis of the dis-
ease.  

LIST OF ABBREVIATIONS 

AML = Acute Myeloid Leukemia 
ANOVA = Analysis of Variance  
CR = Complete Remission  
DMRs = Differentially Methylated Regions  
ELN = European Leukemia Network 
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GEPIA = Gene Expression Profiling Interactive 
Analysis Database 

NPM1 = Nucleophosphorin1 
OS = Overall Survival  
SAM = S-adenosylmethionine  
TCGA = The Cancer Genome Atlas 
TSS = Transcription Start Sites 
TTS = Transcription Termination Sites  
WGBS = Whole Genome Bisulfite Sequencing 
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