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Abstract

Cancer is a major public health concern requiring novel treatment approaches. Enzyme-instructed 

self-assembly (EISA) provides a unique technique for selectively inhibiting cancer cells. However, 

structure and activity correlation of EISA remains to be explored. This study investigates new 

EISA substrates of alkaline phosphatase (ALP) to hinder ovarian cancer cells. Analogues 2–8 were 

synthesized by modifying the amino acid residues of a potent EISA substrate 1 that effectively 

inhibits the growth of OVSAHO, a high-grade serous ovarian cancer (HGSOC) cell line. The 

efficacy of 2–8 against OVSAHO was assessed, along with the combination of substrate 1 with 

clinically used drugs. The results reveal that substrate 1 displays the highest cytotoxicity against 

OVSAHO cells, with an IC50 of around 8 μM. However, there was limited synergism observed 

between substrate 1 and the tested clinically used drugs. These findings indicate that EISA likely 

operates through a distinct mechanism that necessitates further elucidation
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INTRODUCTION

Due to the multiple underlying cellular mechanisms that complicate cancer treatment,1 

cancer remains a major burden to public health.2 Molecular therapy, mostly based on ligand-

receptor interactions, is a key strategy for developing cancer drugs.3–5 But multiple inherent 

cellular mechanisms (e.g., up-regulating growth factors or efflux transporters, mutating the 

drug targets, and increasing metabolic drug degradation6–10) work against the drugs that 

function via ligand-receptor bindings.11–12 Checkpoint blockade cancer immunotherapy, a 

recent breakthrough in tumor immune biology,13–14 can induce long lasting responses in 

patients with metastatic cancers.15–21 However, immunosuppression renders immunotherapy 

ineffective to majority of cancer patients. One of cause of immunosuppression is alkaline 

phosphatase (ALP), especially in patients with tumor metastasis to bone.22–24 In tumor 

microenvironment, ALP rapidly converts adenosine triphosphate (ATP) to adenosine,25 a 

major cause for the patients’ unresponsiveness to immunotherapy.26 Thus, ALP is emerging 

as an important drug target. Although ALP is being recognized as an important target for 

improving cancer immunotherapy, it is regarded as “undruggable”27 because it is critical for 

normal functions of many organs, such as liver and brain.27–28

Instead of inhibiting ALP, we have used ALP to catalyze enzyme-instructed self-assembly 

(EISA) for generating in-situ formed nanofibers to selectively inhibit cancer cells.29–34 This 

approach is particularly attractive for targeting high-grade serous ovarian cancer (HGSOC), 

which also associates with the overexpression of ALP.35 HGSOC, an aggressive disease 

with a poor prognosis, is typically diagnosed late in its natural history when tumors have 

numerous genetic alterations and easily acquire drug resistance.36–37 This remains a major 

obstacle in the treatment of ovarian cancers.38–41 According to the latest report, an estimated 

19,710 new cases of ovarian cancer will be diagnosed in the US and 13,270 women will die 

from the disease in 2023. The majority of death will be caused by HGSOC, as it is the most 

common and aggressive subtype.42–49

To inhibit HGSOC cancer cells that overexpress ALP,29 such as OVSAHO, we have 

been developing EISA substrates. In our previous study, we have identified a D-peptide50 

as the EISA substrate that effectively inhibits OVSAHO without harming hepatocytes. 

Although that work29, 51 established a molecular design to target HGSOCs that overexpress 

ALP, several questions remain to be answered. For example, what is the structure-activity 
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relationships of that molecular architecture and whether the EISA substrates would be 

suitable to combine with other clinically used drugs for inhibit HGSOCs.

To answer the above questions, we designed and synthesized seven analogs of a potent 

phosphopeptide-based EISA substrate (1) by adding hydrophobic amino acid residue in 

the peptide backbone (2-6) or mitochondria targeting motif at the side chain of the 

phosphopeptides (7-8). The precursors largely contain D-peptides as the backbones because 

D-peptides are proteolytic resistant and D-tyrosine phosphate can be dephosphorylated by 

enzymes such as alkaline phosphatase50. Our results show that the IC50 values of 2, 3 and 7 
are greater than 200 μM, the IC50 values of 4 is smaller than 12.5 μM, and the IC50 values of 

5, 6 and 8 are 46.9 μM, 70.5 μM and 148.7 μM, respectively.

We also used the combination of 1 with clinically used drugs (Doxorubicin, Cisplatin, 

Paclitaxel, BAY 11–7085, K252A, LOC14, PACMA31, Talazoparib, and Bortezomib) and 

tested them against one of the most resistant HGSOC cell line, OVSAHO. However, our 

results show that clinical drugs and 1 exhibit limited synergy. These results support that 

EISA operates on fundamentally new mechanisms for inhibiting OVSAHO and underscore 

the importance of further elucidating the mechanism of action of EISA.

RESULTS AND DISCUSSION

Molecular design.

As shown in Scheme 2, we designed the EISA precursor 1, which contains a naphthyl 

capping group (Nap) at the N-terminal, D-diphenylalanine (ff) in the middle backbone, 

D-phosphotyrosine (yp) as an ALP cleavage site, and D-glutamic acid dimethyl ester at the 

C-terminal. Based on the structure of 1, by adding one more D-phenylalanine, D-leucine, or 

L-leucine before or after the ff backbone, we obtained precursor 2-6 to study the influence 

of molecular structure on biological activity. Keeping the structure of Nap-ffyp, we added 

a D-lysine at the C-terminal and connected triphenyl phosphonium (TPP), a mitochondria-

targeting motif, to the side chain of lysine to produce 7. By changing Nap to NBD-β-alanine, 

we obtained precursor 8. We expect that 7 and 8 would target mitochondria of cancer 

cells, and 8 would be a useful molecule to reveal the cellular location of the assemblies 

of the dephosphorylated 8 after ALP removes the phosphate group from 8 and triggers 

self-assembly. As shown in the critical aggregation concentrations (CAC) of the precursors 

(Figure S3), the addition of more hydrophobic amino acids, such as phenylalanine and 

leucine, to the backbone of 1 increases the self-assembly ability of the precursors (2–6). 

However, when TPP cation is attached to the side chain of 1, the resulting precursors (7 and 

8) are more hydrophilic and less prone to self-assembling.

Synthesis.

We first used solid phase peptide synthesis (SPPS) to synthesize all peptides without 

methylation or connecting the TPP to the side chain of lysine (Scheme S1). Briefly, the 

fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid was attached to the 2-chlorotrityl 

chloride resin. After the addition of 20% piperidine in N, N dimethylformamide (DMF) to 

release the Fmoc group, the next amino acid or capping group was attached to expand the 
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chain of the peptide or cap the peptide chain. Then, trifluoroacetic acid was added to cleave 

the products from the resin. To obtain methylated substrates 1–6, the obtained peptides (1 

equivalent) were dissolved in dichloromethane with stirring and then bromotrimethylsaline 

(30 equivalent) was added. The reaction was stirred at room temperature overnight. After 

air drying, methanol was added, and the reaction was stirred at room temperature for 1 day. 

After purification by HPLC, substrates 1–6 were obtained. For the production of substrates 

7 and 8, TPP was first activated by 1.1 equivalent N-hydroxysuccinimide (NHS) and N, 

N’-dicyclohexylcarbodiimide (DCC) with catalytic amount of 4-dimethylamiopryidine in 

dichloromethane. After obtaining the activated TPP filtrate by filtration and evaporated, it 

was dissolved in DMF, and the corresponding peptides (1.3 equivalent) was added with 3 

equivalent N-diisopropylethylamine (DIEA). The reaction mixture was stirred overnight, and 

the products were purified with HPLC.

Inhibitory activity.

After obtaining the pure EISA substrates, we firstly tested the cell viability of different 

ovarian cancer cell lines incubated with substrate 1. Substrate 1 exhibits the most potent 

cytotoxicity against OVSAHO and OVSAHO-luc cell lines with the 72 h IC5o of 8.0 

μM and 9.8 μM, respectively. This indicates that OVSAHO transfected with luciferase 

showed similar behavior to the OVSAHO cell line. In addition to these two cell lines, 

Kuramochi is also sensitive to 1, with a 72 h IC50 around 18.2 μM. However, 1 is less potent 

against GEMM4412 and JHOS4 cell lines, with IC50 values of 172.9 μM and 194.7 μM, 

respectively. Further, 1 exhibits much less cytotoxicity toward CHOK, SKOV3, OVCAR3, 

OVCAR4, OVCAR5, GEMM4306, A2780-res, and A2780 cells, with 72 h IC50 values 

greater than 200 μM (Figure 1A). The low potency of 1 against these cells agrees with that 

none of them overexpresses ALP.52

To further examine the cytotoxicity of other precursors and based on the previous cell 

viability data, we chose OVSAHO cells as the cell line for testing the cytotoxicity of the 

analogs of 1. According to the 72 h IC50 of all precursors (Figure 1B), the potency of all the 

precursors follows the order of 1> 4> 5, 6> 8> 2, 3, 7. Apparently, the insertion of D-leucine 

between ff and D-pTyr largely maintains the potency of the EISA precursor. However, 

the insertion of D-leucine before the diphenylalanine greatly decreases the activity of the 

precursor. The insertion of the hydrophobic L-leucine before and after the diphenylalanine 

shows the efficacy of inhibiting OVSAHO, but it is less potent compared to precursor 1. The 

introduction of TPP dramatically decreases the activity of the precursors, suggesting that 

OVSAHO is less dependent on mitochondria for survival. Although adding a phenylalanine 

increases the self-assembling ability of the peptides, the activity drops even more. The 

structure variations of 1 indicates that the attachment of TPP cation at the side chain of 1 
or the insertion of extra hydrophobic D-amino acid residue group at the N-terminal of 1 
significantly decreases the activity of 1. However, the insertion of a hydrophobic L-amino 

acid residue at the N-terminal of 1 only slightly decreases the activity of the precursor. These 

results indicate that the supramolecular structures of the assemblies likely determine the 

activity of EISA and further structural change is necessary for developing precursors more 

potent than 1.
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Combination with drugs.

Combination of multiple anticancer drugs is a commonly used strategy to enhance cancer 

therapy efficiency in chemotherapy.53–54 Based on the high efficiency of substrate 1 
compared to other derivatives and the potency of precursor 1 against OVSAHO cell 

compared to other cell lines, we chose substrate 1 and OVSAHO cell to further test the 

combination of 1 with drugs used in clinic. As shown in the three-days cell viability data 

(Figure 3), the IC50 of 1 is greater than, approximate, and below 20 μM in day 1, 2, and 3, 

respectively. The significant increase of the inhibition efficiency from 24 to 72 h is likely a 

result of the accumulation of the assemblies of 1 inside the cancer cells. This observation is 

consistent with that EISA precursors inhibit cancer cells without acquired drug resistance55. 

Since 20 μM of 1 is quite biocompatible to OVSAHO on the first day and the efficacy of 

the combination of substrate 1 with clinical drug is important in day 1, we chose 1 at 20 

μM for the combination study. We selected nine commercial drugs based on their different 

functions in inhibiting cancer cells, including doxorubicin, cisplatin, paclitaxel, BAY11–

7085, K252A, LOC14, PACMA31, talazoparib, and bortezomib (BTZ). As shown in Figure 

2, when OVSAHO cells were treated with 1 combined with doxorubicin for 24 h, the cell 

viability greatly dropped from about 120% to 20%. Combining 1 with cisplatin, BAY11–

7085, and K252A slightly enhances inhibiting OVSAHO cells. No inhibition enhancement 

occurred when OVSAHO cells were cocultured with substrate 1 and paclitaxel, LOC14, 

PACMA31, talzaoparib, or BTZ.

The 24 h cytotoxicity of doxorubicin itself against OVSAHO is around 75% at concentration 

of 1.25 μM, 2.5 μM, and 5 μM (Figure 3D). However, the cell viability hardly decreases 

further with the dosage increase of doxorubicin (Figure 2). To explore the enhanced efficacy 

of OVSAHO cell inhibition observed in the coculture of 1 and doxorubicin, we conducted 

further investigation involving combinations of concentrations and treatment times. When 

the concentration of substrate 1 is below 5 μM, the cytotoxicity is primarily attributed to 

doxorubicin, as the cell viability of combinational group is similar to that of doxorubicin 

treated group. Notably, significant enhancements are observed when the concentrations of 

precursor 1 are 1o μM or 20 μM (Figure 3A). Similar results are observed for all three-day 

combinations (Figure 3B, C).

CONCLUSION

In summary, we have designed a series of peptide substrates of ALP to examine the 

structure-activity relationship based on 1. The introduction of one additional hydrophobic 

amino acid, such as leucine or phenylalanine, in the backbones does not significantly 

increase the potency of the substrates. The lower activities of 2-6 likely originate from 

the less rigid nanofibers that those of formed after dephosphorylation, as suggested by 

transmission electron microscopy of the self-assembled nanostructures (Figure S1, 2). 

Although it is know that the position of phosphates can affect the activity of the EISA 

precursors56, in this work, the position of phosphates in the precursors is less likely to affect 

the activity because the positions of the phosphates are the same (from the C-terminal). 

In addition, further combination of designed precursor with clinical drugs suggests that 

designed precursor exerts a unique way of cancer cell killing. These results suggest that 
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the exploration of structural variations57–58 beyond amino acid addition to the peptide 

backbone, and further elucidation the detailed mechanism of 1 for inhibiting OVSAHO is 

necessary.

EXPERIMENTAL SECTION

General Information.

2-Chlorotrityl chloride resin (1.0–1.2mmol/g), O-(benzotriazol-1-yl)-N, N, N’, N’-

tetramethyluronium hexafluorophosphate (HBTU), and Fmoc-protected amino acids were 

purchased from GL Biochem (Shanghai, China). Bromotrimethylsilane was purchased 

from Sigma-Aldrich. Other chemical reagents and solvents were purchased from Fisher 

Scientific. All chemical reagents and solvents were used as received from commercial 

sources without further purification. All ovarian cancer cell lines were provided by Doctor 

Daniela M. Dinulescu. RPMI1640 medium was purchased from American Type Culture 

Collection (ATCC, USA). McCoy’s 5A Medium, Dulbecco’s modified Eagle medium, fetal 

bovine serum, and Gibco penicillin–streptomycin were purchased from Life Technologies. 

All precursors were purified with an Agilent 1100 Series Liquid Chromatograph system, 

equipped with an XTerra C18 RP column and a Variable Wavelength Detector. The LC–

MS spectra were obtained with a Waters Acquity Ultra Performance LC with Waters 

MICROMASS detector.

Synthesis of Desired Compounds.

We synthesized all peptides without methylation using SPPS. Weighing 0.5 g (0.5 

equivalent) of 2-chlorotrityl chloride resin, we immersed it in methylene chloride (DCM) 

for 15 min. The Fmoc protected amino acids were weighed according to 1.2 mmol/g of 

resin. We dissolved the Fmoc protected amino acid in DCM, adding 2.5 equivalent of N, 

N-Diisopropylethylamine (DIEA). Then, we thoroughly mixed the resin with the solution 

well on a rocker for 1 h. We washed it with DCM, followed by the addition of capping 

solution (DCM: MeOH: DIEA= 17: 2: 1) and reacted for 15 min. Afterward, we washed 

it with DCM first and then dimethylformamide (DMF). Using 20% piperidine in DMF for 

30 min, we removed the Fmoc group. We washed it with DMF and loaded the next Fmoc 

protected amino acid (1 equivalent), HBTU (1 equivalent), and DIEA (2.5 equivalent) in 

DMF for 40 min. We washed it with DMF. Upon finishing the addition of all amino acids, 

we used DCM to wash out DMF. For peptide cleavage, we employed a mixture of 95% TFA, 

2.5% triisopropyl silane (TIPS), 2.5% H2O for 60 min. We removed trifluoroacetic acid with 

air flow and precipitated the residue with diethyl ether. Finally, we collected the product for 

further synthesis.

The crude product (1 equivalent) from SPPS was dissolved in DCM with stirring and then 

bromotrimethylsaline (15 equivalent) was added. The reaction mixture was stirred at room 

temperature overnight. After air drying, methanol was added, and the reaction was stirred at 

room temperature for 1 day. Then the product (1–6) was purified with HPLC.

To a solution of 100 mg of 3-carboxypropyl triphenylphosphonium bromide (TPP) in 10 

mL of dichloromethane (DCM), by 1.1 equiv. (29 mg) of N-Hydroxysuccinimide (NHS) 
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and 57.6 mg of N, N’-dicyclohexylcarbodiimide (DCC) were added, along with catalytic 

amount of 4-dimethylamiopyridine. The mixture was stirred at room temperature for 2 h, 

and then filtered through a filter paper to remove precipitates. The filtrate was evaporated 

under reduced pressure, resulting in a white power that was used directly for the next step.

The white powder obtained above was dissolved in 5 mL of N, N-dimethylformamide, 

and then 1.3 equivalents of corresponding peptide were added, along with 3 equiv. N-

diisopropylethylamine (DIPEA). The resulting reaction mixture was stirred overnight, and 

the products (7–8) were purified by reverse phase HPLC. The purity of the compounds was 

determined using LC-MS. (Figure S4–11) All compounds are >95% pure by HPLC analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATION

ALP alkaline phosphatase

HGSOC high-grade serous ovarian cancer

ATP adenosine triphosphate

EISA enzyme-instructed self-assembly

BTZ Bortezomib

TPP triphenyl phosphonium

Nap 2-Naphthaleneacetic acid

NBD 7-nitrobenzofurazan

SPPS solid phase peptide synthesis

Fmoc fluorenylmethyloxycarbonyl

DMF N, N dimethylformamide

NHS N-hydroxysuccinimide

DCC N, N’- dicyclohexylcarbodiimide

DIEA N-diisopropylethylamine

DCM methylene chloride

HBTU O-(benzotriazol-1-yl)-N,N,N’,N-tetramethyluronium 

hexafluorophosphate
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TFA trifluoroacetic acid

TIPS triisopropyl silane
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Figure 1. 
A. The 72 h IC50 of 1 against OVSAHO, OVSAHO-luc, Kuramochi, GEMM 4412, JHOS4, 

CHOK, SKOV3, OVCAR3, OVCAR4, OVCAR5, GEMM4306, A2780-res, and A2780 

cells. B. The 72 h IC50 of 1, 2, 3, 4, 5, 6, 7, and 8 against OVSAHO cells.
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Figure 2. 
The cell viability of OVSAHO treated with 1 (20 μM) and the combination of 1 and 

doxorubicin, cisplatin, paclitaxel, BAY11–7085, K252A, LOC14, PACMA31, talazoparib, 

and BTZ for 24 h. p > 0.05 (ns), p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).
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Figure 3. 
The cell viability of OVSAHO treated with 1, doxorubicin and the combination of 1 and 

doxorubicin for A) 24 h, B) 48 h, and C) 72 h. D. The cell viability of OVSAHO treated 

with doxorubicin for 24 h, 36 h, and 72 h. p > 0.05 (ns), p < 0.05 (*), p < 0.01 (**), p < 

0.001 (***).
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Scheme 1. 
The illustration of ALP-instructed self-assembly for inhibiting ovarian cancer cells.
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Scheme 2. 
The molecular structures of the parent EISA substrate 1 and its analogs 2-8 and the structure 

of the clinical drugs used for combination with 1.

Yi et al. Page 17

J Med Chem. Author manuscript; available in PMC 2024 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	Molecular design.
	Synthesis.
	Inhibitory activity.
	Combination with drugs.

	CONCLUSION
	EXPERIMENTAL SECTION
	General Information.
	Synthesis of Desired Compounds.

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Scheme 1.
	Scheme 2.

