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Summary

Both common and rare genetic variants influence complex traits and common diseases. Genome-

wide association studies have discovered thousands of common-variant associations, and more 

recently, large-scale exome sequencing studies have identified rare-variant associations in 

hundreds of genes1-3. However, rare-variant genetic architecture is not well characterized, and 

the relationship between common- and rare-variant architecture is unclear4. Here, we quantify 

the heritability explained by gene-wise burden of rare coding variants across 22 common traits 

and diseases in 394,783 UK Biobank exomes5. Rare coding variants (AF < 1e-3) explain 1.3% 

(SE = 0.03%) of phenotypic variance on average – much less than common variants – and most 

burden heritability is explained by ultra-rare loss-of-function variants (AF < 1e-5). Common and 

rare variants implicate the same cell types, with similar enrichments, and they have pleiotropic 

effects on the same pairs of traits, with similar genetic correlations. They partially colocalize at 

individual genes and loci, but not to the same extent: burden heritability is strongly concentrated 

significant genes, while common-variant heritability is more polygenic, and burden heritability is 

also more strongly concentrated in constrained genes. Finally, we find that burden heritability for 

schizophrenia and bipolar disorder6,7 is approximately 2%. Our results indicate that rare coding 

variants will implicate a tractable number of large-effect genes, that common and rare associations 
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are mechanistically convergent, and that rare coding variants will contribute only modestly to 

missing heritability and population risk stratification.

Introduction

Genome-wide association studies have discovered thousands of common variants that are 

associated with common diseases and traits. Common variants have small effect sizes 

individually, but they combine to explain a large fraction of common disease heritability8,9. 

More recently, sequencing studies have identified hundreds of genes harboring rare coding 

variants, and these variants can have much larger effect sizes1-3,5. However, it is unclear 

how much heritability rare variants explain in aggregate, or more generally how common- 

and rare-variant architecture compare: whether they are equally polygenic; whether they 

implicate the same genes, cell types and genetically correlated risk factors; whether rare 

variants will contribute meaningfully to population risk stratification.

To characterize common-variant architecture, a productive approach has been to quantify 

components of heritability by aggregating subtle associations across the genome. This 

approach has been used to address the problem of “missing heritability”9-11, to quantify 

the shared genetic basis of related diseases and traits12-14, to prioritize disease-relevant 

cell types and regulatory elements15-18, and to quantify the effect of negative selection on 

common-variant architecture19-22.

For rare variants, however, heritability estimation is more challenging23. Most rare alleles 

are observed only once or twice, leading to low statistical power, and confounding 

due to uncorrected population stratification and cryptic relatedness is a major concern. 

Wainschtein et al.24 estimated that common and rare variants combine to explain most of 

the twin-heritability of height and BMI, but their estimates for the rare-variant contribution 

specifically had very wide confidence intervals.

To characterize rare variant genetic architecture, we estimated the heritability explained by 

gene-wise burden of rare and ultra-rare coding alleles, while avoiding confounding due to 

population stratification. Analyzing association statistics from 394,783 UK Biobank exomes 
5 together with common-variant association data from the same individuals25, we find that 

the burden heritability due to rare coding variants is modest (1.3% +/− 0.03%), and we 

systematically compare the architecture of common and rare variants.

Results

Estimation of burden heritability

In sequencing studies, most rare variants are observed in only one or a few individuals, 

motivating the use of burden tests that aggregate minor alleles within genes26. We define 

burden heritability as the fraction of phenotypic variance explained by minor allele burden 

in each gene under a random effects model (Figure 1A; see Methods). It is a component 

of the total coding-variant heritability, and it is statistically tractable even for singletons. 

The alleles comprising the burden are stratified by their predicted functional impact, and 

we focus primarily on predicted loss-of-function (pLoF) variants, whose gene-wise burden 
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is expected to explain the majority of their total heritability (due to their similar functional 

consequences) (Figure 1A). For missense variants the burden heritability is an unknown 

fraction of their total; for example, if 50% of alleles are deleterious and 50% are null, the 

burden heritability is one half the total heritability.

We developed burden heritability regression (BHR) to estimate burden heritability and to 

partition it across genes and alleles (see Methods). BHR inputs variant-level association 

summary statistics and allele frequencies. It regresses burden test statistics on “burden 

scores,” which are related to the combined allele frequency, and it estimates burden 

heritability from the regression slope (Figure 1B, Supplementary Tables 1-2). Similar to 

LD score regression10, this approach distinguishes heritable signal, which affects the slope 

of the regression, from confounding due to population stratification and relatedness, which 

affect its intercept. BHR relies on the assumption that genes with larger or smaller burden 

scores do not have larger or smaller per-allele effect sizes, which might be violated due to 

selection-related effects; we use two approaches to avoid selection-related bias (Methods).

We evaluated the performance of BHR in two sets of simulations. First, we analyzed 

simulated summary statistics at whole-genome scale, sampled directly without any 

individual-level data (Methods). These simulations included negative selection and 

population stratification. They did not include linkage disequilibrium (LD); this choice 

is approximately realistic for ultra-rare variants, which have extremely little LD 

(Supplementary Table 3). BHR produced unbiased estimates of the burden heritability, and 

in non-null simulations, it was well powered to detect a burden heritability of 0.5% (Figure 

1C). In additional simulations (Extended Data Figure 1, Supplementary Table 4), BHR 

produced approximately unbiased estimates with different amounts of selection, different 

amounts of population stratification (including minor-allele biased stratification), different 

ranges of allele frequencies, and different sample sizes.

Second, we simulated individual-level genotype and phenotype data in small-scale null 

simulations (10,000 individuals, 1,000 genes), and we compared BHR with GCTA-LDMS11, 

which has been used to estimate heritability in whole genome sequencing studies. The 

genotypes were sampled from forward simulations with independent sites (no LD) and 

migration among demes with different mean phenotypes (see Methods). We considered 

three models, including two with potentially problematic minor allele-biased stratification; 

as expected, this led to bias, but it was possible to detect and correct for it by subtracting 

the exome-wide mean minor-allele effect size (Extended Data Figure 2a,c). No bias was 

observed in the simulation with non-minor-allele-biased stratification. Results were similar 

in simulations with and without selection, indicating that synonymous variants can be 

used as a negative control for pLoF and missense variants. GCTA also produced upwardly 

biased estimates in these simulations, but conditioning on deme label corrected for the bias 

(Extended Data Figure 2b,d). This exact approach cannot be used in real-data analyses, 

but principal components may approximate it, to an extent that is difficult to predict in 

simulations.
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Burden heritability of 22 complex traits

We analyzed publicly available UK Biobank exome sequencing association statistics 

from Genebass5 for 22 complex traits and up to 394,783 individuals of European 

ancestry, including 18 continuous traits and 4 common diseases (see Data Availability 

and Supplementary Table 5). We analyzed 6.9 million coding variants in 17,318 protein 

coding genes (see Methods). Within each gene, variants were stratified into three allele 

frequency bins (MAF < 1e-5, 1e-5 - 1e-4, 1e-4 - 1e-3); we refer to MAF < 1e-5 variants 

as ultra-rare, and to MAF = 1e-5-1e-3 variants as rare. Variants were also stratified into 

four functional categories (pLoF, missense damaging, missense benign, and synonymous) 

(Figure 2A, Supplementary Table 6); missense functional predictions were obtained using 

PolyPhen2.27 Heritability estimates are reported on an observed scale, and liability-scale 

estimates are reported in Supplementary Table 7.

We estimate that on average across traits, gene-wise burden of rare and ultra-rare pLoF and 

damaging missense variants explain 1.3% (SE = 0.03%) of phenotypic variance (Figure 2B). 

All 22 traits had nonzero burden heritability at a nominal significance level (Supplementary 

Tables 7-8). Burden heritability concentrates among variants with the most severe predicted 

functional consequences: pLoF variants explain the majority of burden heritability, followed 

by damaging missense variants, while benign missense variants and synonymous variants 

explain little or no heritability (Figure 2B). Rare variants explained less burden heritability 

than ultra-rare variants. These estimates are corrected for within-gene LD, which causes 

inflation in the burden test statistics in proportion to the number of alleles per gene 

(Methods). With common-variant summary statistics for the same traits in UK Biobank, we 

estimated common variant SNP-heritability using LD score regression (Methods). A much 

larger fraction of phenotypic variance is explained by common variants (median 13%), and 

common variant and burden heritability are highly correlated (Figure 2C, Supplementary 

Table 10).

Inflation in exome association test statistics due to uncorrected population stratification is 

a major concern, especially when estimating heritability. The BHR intercept quantifies the 

inflation in burden test statistics due to sampling variation and most forms of confounding 

(analogous to the LD Score Regression intercept10), as well as overdispersion. (Fixing the 

intercept at 1 ∕ n resulted in inflated burden heritability estimates; Supplementary Figure 

1). We evaluated the robustness of this approach in three analyses. First, we quantified 

minor allele-biased population stratification, which could produce upward bias in BHR, by 

calculating the mean minor-allele effect size of synonymous variants (see Methods). This 

effect was nonzero but very small, and we quantified the resulting bias in our heritability 

estimates (0.005% on average; Extended Data Figure 3). Second, we computed null pLoF 

burden statistics by randomly permuting the major and minor alleles; as expected, BHR 

produced heritability estimates not significantly different from zero (Extended Data Figure 

4). Third, we computed the correlation between pLoF burden scores and synonymous 

burden statistics, and they were uncorrelated, as expected (Supplementary Figure 2).

Accordingly, we used the BHR intercept to quantify the amount of residual population 

stratification in the burden test statistics. For ultra-rare pLoF variants, on average across 
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traits, confounding and overdispersion explained 4% of variance in the test statistics, 

sampling variation explained 85%, and genuine burden heritability explained the remaining 

10% (Figure 2D, Supplementary Table 6). For ultra-rare synonymous variants, burden 

heritability explained 0% of variance; confounding and overdispersion explained 4% of 

variance, and sampling variation explained 94% (Supplementary Table 6). The estimated 

amount of inflation due to population stratification (~4%) implies a family-wise error rate of 

more than 0.05 but less than 0.1 for most traits (Supplementary Table 6).

We performed three additional sensitivity analyses. First, we considered frequency-

dependent burden weights, motivated by the known dependence of common-variant effect 

sizes on allele frequency28; estimates were nearly identical (Supplementary Figure 3). 

Second, we performed a joint regression with a shared intercept for different frequency 

bins and functional categories; again, results were nearly identical (Supplementary Figure 

4). Third, we varied the number of gene constraint bins, and no change was observed with 

more than five bins (the number we use) (Supplementary Figure 5).

Two recent papers reported that rare variants from whole-genome sequencing data are 

an important source of heritability for complex traits. Wainschtein et al.24 reported the 

heritability explained by rare and low-frequency variants (MAF=1e-4 - 0.01) is 0.3 (SE 

0.1) for height and 0.29 (SE 0.25) for BMI; Jang et al.29 similarly reported that rare 

variants explain a large fraction of heritability for smoking phenotypes, with large standard 

errors. Unlike our burden estimates, these estimates include noncoding SNPs and SNPs 

at intermediate allele frequencies (0.001-0.01), and they do not aggregate variants by 

gene. Because of these differences, our rare variant heritability estimates are smaller but 

much better powered: 0.037 (SE=0.001) for height, 0.012 (SE=0.001) for BMI, and 0.006 

(SE=0.001) for smoking status, respectively (Supplementary Tables 8 and 11).

Concentration within significant genes

In GWAS, a consistent observation has been that common traits are highly polygenic, with 

numerous loci of small effect31,32. In contrast, most rare genetic diseases are caused by 

large-effect mutations in a much smaller number of genes, and it is unclear whether the rare-

variant genetic architecture of common diseases is highly polygenic like common variants or 

more oligogenic like rare diseases. We quantified the proportion of burden heritability that is 

explained by exome-wide significant genes (Methods), and we compared the extent to which 

common- and rare-variant heritability is concentrated in large-effect genes and regions of the 

genome.

17 of 22 traits had at least one significantly associated gene in Genebass5 (Methods), and 

they had a median of 6 significant genes per trait (Supplementary Tables 12-13). These 

genes explained a substantial proportion of the burden heritability (median: 19%; Figure 

3A), after partially correcting for winner’s curse33; see Methods and Supplementary Figure 

6. For LDL cholesterol levels, APOB alone explained 39% (SE = 4%) of burden heritability, 

and for diabetes, GCK explained nearly 15% (SE = 4%).

In contrast, individual common-variant associations are dramatically smaller as a fraction 

of common-variant heritability (Figure 3B, Supplementary Table 14). Even aggregating 
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common-variant heritability across large LD blocks (most > 1Mb), top rare-variant 

associated genes (out of 17,318) explain a much larger fraction of heritability than top 

LD blocks (out of 1,651) (Extended Data Figure 5, Supplementary Table 15). The difference 

in common- vs. rare-variant polygenicity can be explained by “flattening” due to negative 

selection, as we previously hypothesized19 (see Discussion).

We sought to reconcile the difference in polygenicity with the observation that rare-variant 

associations are strongly enriched near GWAS loci3. For traits with at least 5 significant 

genes, we quantified the fraction of common variant heritability mediated by those genes 

using the Abstract Mediation Model (AMM), which fully accounts for uncertainty in 

which SNPs regulate which genes34 (Supplementary Table 16). We confirm that rare-variant 

associated genes are enriched for common variant heritability; for example, the 81 exome-

wide significant genes for height explain 9.5% of its common variant heritability (SE = 

2.5%). However, these same genes explain 32.1% of burden heritability (SE = 2.0%) and 

other traits exhibit similar patterns (Figure 3C). The same is observed for individual genes 

(Extended Data Figure 6).

For the cancer phenotype, which is a composite of multiple cancer types, the seven exome-

wide significant genes (MSH2, BRCA1, BRCA2, APC, ATM, PALB2, CHEK2) explain 

33% (SE = 4%) of its burden heritability. Noting that all of these genes are well-known 

tumor suppressors, we analyzed known tumor suppressors and oncogenes from the Cancer 

Gene Census35 (CGC). Indeed, the 172 CGC tumor suppressor genes explain nearly half of 

the burden heritability (48%, SE = 10%) (Figure 3D, Supplementary Table 17). In contrast, 

the 101 oncogenes do not explain any burden heritability (1%, SE = 2%). These results 

are concordant with the known biology of tumor suppressors and oncogenes. They contrast 

with common-variant architecture: tumor suppressor genes only mediate 5% (SE = 4%) of 

common-variant heritability, and the seven exome-wide significant genes mediate 0% (SE = 

2%) (Figure 3D).

Enrichment of constrained genes

We investigated the contribution of different gene sets to the burden heritability, defining the 

burden heritability enrichment of a gene set as its fraction of burden heritability divided by 

its fraction of burden variance (approximately the fraction of minor alleles, not of genes) 

(see Methods). We estimated common variant gene-mediated enrichments for the same gene 

sets using AMM.

First, we analyzed sets of genes that are differentially expressed in trait-matched cell and 

tissue types (see Methods, Supplementary Table 13). For these gene sets, burden heritability 

enrichments and common-variant enrichments were approximately equal (Figure 4A). For 

example, in a set of 3,396 red blood cell-expressed genes, the enrichment was 2.1x (SE 

= 0.4x) for common variants and 2.2x (SE = 0.3x) for rare variants. Even though common-

variant heritability is spread across more genes compared with burden heritability, it is 

equally concentrated in specific cell types, consistent with the cell-type-centric omnigenic 

model36 (see Discussion).
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Next, we compared common- vs. rare-variant enrichments across the spectrum of selective 

constraint37. Rare variant enrichments were larger than common variant enrichments in 

constrained genes for 21/22 traits (Figure 4B). Fluid intelligence score had a rare variant 

enrichment of 8.1x (SE = 1.0x), compared with a common variant enrichment of 2.2x (SE 

= 0.3x). From the 1st to the 5th quintiles of constraint, rare variant enrichments decayed 

from a median of 4.5x to 0.3x, while common variant enrichments had a lower maximum 

(2.1x) and a similar minimum (0.5x) (Figure 4C). These observations are consistent with 

the expected effect of negative selection, which prevents both coding and regulatory variants 

affecting highly constrained genes from becoming common in the population19,22,38,39 (see 

Discussion).

For phenotypes that directly affect fitness, loss-of-function alleles are expected to be 

deleterious almost exclusively, since if gene loss were protective, the gene would be 

lost. Indeed, pLoF variants in constrained genes are associated with childlessness in UK 

Biobank40. Moreover, a standard approach in severe psychiatric and neurodevelopmental 

disorders is to aggregate pLoFs across a set of candidate genes41-43 (this approach cannot be 

used to estimate burden heritability, as not all candidate genes are causal). We calculated the 

genome-wide mean minor allele effect of ultra-rare pLoFs on each trait (Supplementary 

Table 7). These values were uncorrelated with the corresponding synonymous effects, 

indicating that they are not driven by minor-allele biased population stratification (Extended 

Data Figure 3) (see Methods). Traits with large mean minor-allele effect sizes tended to 

have a strong burden heritability enrichment in constrained genes (Extended Data Figure 7), 

consistent with the hypothesis that these traits are directly under selection (but not providing 

evidence against the importance of pleiotropic selection44).

Burden genetic correlations

Exome-sequencing studies often aggregate pLoF and damaging missense variants to 

maximize power6,45, raising the question of whether damaging missense variants generally 

act via loss of function. We used BHR to compute burden genetic correlations between 

pLoF and damaging missense variants (Figure 5A, see Methods, Supplementary Table 18). 

We observed a mean burden genetic correlation of 0.64 (SE = 0.10), implying that pLoF 

and missense variants in the same genes often have divergent phenotypic effects. One 

explanation is that deleterious missense variants frequently act via mechanisms other than 

partial loss of function. Alternatively, PolyPhen2 predicted damaging variants approximate 

pLoFs in some genes but not others.

Common-variant effect sizes are often correlated across traits, providing evidence of 

shared biological mechanisms12. We estimated pairwise burden genetic correlations from 

ultra-rare pLoF variants among an extended group of 37 traits (Supplementary Table 5). 

197 correlations passed a nominal threshold for statistical significance, and 55 passed a 

Bonferroni threshold (Supplementary Table 19). For the same group of UKB traits, we also 

computed common variant genetic correlations using LDSC12 (Methods, Supplementary 

Table 19). Both common and rare variants had correlated effects within clusters of closely 

related traits (e.g. LDL/Triglycerides/High Cholesterol, Calcium/Albumin, Neuroticism/
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Depression) and also within less obvious trait pairs (FVC/BMI, Osteoarthritis/Depression) 

(Figure 5B; for all 37 traits, see Extended Data Figure 8).

More generally, rare-variant genetic correlations were concordant with those from common 

variants, but they were stronger by 1.6x on average (Figure 5C). A potential explanation 

is that pleiotropic genes are more strongly constrained44, which would dampen common-

variant genetic correlations. A different possibility is that coding effects are less cell-type 

specific and therefore more pleiotropic, but we did not observe stronger genetic correlations 

among common coding variants (Extended Data Figure 9; see Methods). We note that 

rare-variant genetic correlations, similar to common-variant correlations, can be an artifact 

of cross-trait assortative mating46 (Supplementary Figure 7).

Schizophrenia and bipolar disorder

Damaging variants in constrained genes are strongly associated with neuropsychiatric 

disorders45,47,48. We applied BHR to summary statistics from recent exome-sequencing 

studies of schizophrenia (SCHEMA study6: 24,248 cases, 97,322 controls) and bipolar 

disorder (BipEx study7: 14,210 cases, 14,422 controls) (Methods). Following the original 

reports, we analyzed ultra-rare variants with minor allele count less than 5 (MAF < 2e-5 for 

SCZ, MAF < 9e-5 for BPD).

We estimate that schizophrenia and bipolar disorder have a pLoF burden heritability of 

1.7% (SE = 0.3%) and 1.8% (SE = 0.3%), respectively (on a liability scale) (Figure 6A, 

Supplementary Table 20). These estimates were larger than those of the UK Biobank traits 

except for height, consistent with their high common variant heritability. The pLoF burden 

genetic correlation between bipolar disorder and the two main schizophrenia cohorts was 

0.39 (SE = 0.22) and 0.51 (SE = 0.28), roughly consistent with estimates of their common-

variant genetic correlation of 0.7249 (Supplementary Table 21). The burden heritability 

due to ultra-rare damaging missense variants (MPC > 2)50 was 0.35%, SE = 0.12% for 

schizophrenia and 0.14%, SE = 0.12% for bipolar disorder. There was no evidence of 

nonzero burden heritability for synonymous variants (Figure 6A).

The SCHEMA study6 identified 9 autosomal genome-wide significant genes associated 

with schizophrenia, and we estimate that they explain 7% (SE = 1.5%) of the burden 

heritability. Larger studies will discover many additional significant genes, and the same will 

probably occur for bipolar disorder, which has a high burden heritability but no exome-wide 

significant genes in the BipEx sample.

A consistent observation in exome-based analyses of neuropsychiatric disorders is an 

enrichment of significant associations in constrained genes6,7. Indeed, in the top quintile 

of constrained genes, burden heritability is 9.6x (SE = 1.2x) enriched for schizophrenia and 

4.6x (SE = 1.1x) enriched for bipolar disorder (Figure 6B). For schizophrenia, we estimate 

that constrained genes explain 70% (SE = 9%) of its burden heritability (Supplementary 

Table 20).
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Discussion

Rare protein-coding genetic variation is a rich source of biological insight. Rare diseases are 

often caused by mutations in one or a handful of genes, and the discovery of those genes 

has led to effective therapies51,52. For common diseases and complex traits, the role of rare 

variation has been debated24,53. In this study, we found that rare loss-of-function variants 

comprise ~1% of phenotypic variance for most traits, that burden heritability concentrates 

among ultra-rare variants in highly constrained, large-effect disease genes, and that these 

genes are modestly enriched for common-variant heritability. Our findings make us highly 

optimistic about the potential for rare coding associations to inform our understanding of 

common disease biology, for two reasons.

First, for rare, syndromic forms of common diseases (e.g., MC4R-driven obesity), a 

critical question is whether their causal genes are relevant to common variant liability 

as well. If common and rare variants converge on the same disease-causing processes, 

therapeutics targeting rare-variant associated genes have the potential to benefit a large 

number of patients, not only the few who carry specific mutations. Reassuringly, we find 

that common- and rare-variant associations are mechanistically convergent: rare-variant 

associated genes are enriched for common-variant heritability (Figure 3C), common and rare 

variants implicate the same cell types and tissues (Figure 4A), and they have pleiotropic 

effects on the same pairs of traits (Figure 5C). These findings provide quantitative, genome-

wide confirmation of previous reports that common and rare variants implicate overlapping 

genes3,6,34 and pathways43,54.

Second, rare-variant architecture is much less polygenic. Already, exome-wide significant 

genes explain a substantial proportion of the total burden heritability for well-powered traits 

(Figure 3A), suggesting that large-effect mechanisms involve a tractable number of genes. 

Many of these significant genes are drug targets, and accordingly, drug target gene sets55 

explain a large fraction of burden heritability for some traits (Extended Data Figure 10); in 

contrast, common-variant polygenicity has been a challenge for translational efforts4.

The differences that we observe between common- and rare-variant architecture support 

the flattening hypothesis, which we previously proposed as an explanation for extreme 

common-variant polygenicity19. Under the flattening hypothesis, a small fraction of genes 

and regions of the genome have large effect sizes when mutated, and these loci dominate 

the rare-variant heritability. However, these genes are constrained, limiting their common-

variant associations, and common-variant heritability is spread across a much larger 

number of loci with much smaller effects. This hypothesis provides an explanation for the 

differences we observe between common vs. rare-variant polygenicity (Figure 3A-B) and 

between their enrichments in constrained genes (Figures 4C, 6B).

Our results also support aspects of the omnigenic model36,which posits that there are 

a limited number of “core genes” with biologically interpretable effects and a much 

larger number of “peripheral genes” whose effects are mediated by highly connected 

intracellular networks. The limited polygenicity of rare variants, with relatively few large-

effect genes, is consistent with the limited number of hypothesized core genes. Core genes 
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and exome-wide significant genes may differ, for example because some peripheral genes 

may have large effects56, but they should largely overlap. In addition, we find that cell-type-

specific heritability enrichments are similar between common and rare variants (Figure 4a), 

consistent with the hypothesis that core genes and peripheral genes are expressed in the 

same cell types.

Just as negative selection affects the distribution of heritability among genes, it also 

affects the fraction of heritability in protein-coding versus regulatory regions. Gazal et al.22 

found that coding variants explain a much larger fraction of heritability for low-frequency 

variants (~26%) than for common variants (~8%), consistent with the expected effect of 

negative selection. If this trend continues at even lower frequencies, then rare and ultra-

rare noncoding variants would explain little heritability and would not explain “missing 

heritability.”

Polygenic risk scores derived from common variants may stratify individuals into clinically 

meaningful groups57-59. The growing accessibility of whole exome and genome sequencing 

raises the question of whether these genetic profiles should expand to include both common 

and rare variants. On the one hand, our estimates suggest that rare coding variation will 

have modest predictive power on average in the population, since most patients do not 

carry a large-effect risk allele60. On the other, these variants are highly relevant to the 

individuals who do carry them, and screening for these variants can be especially valuable 

to individuals who have been ascertained by phenotype or family history61. Moreover, 

rare variant-associated genes may implicate disease processes that are relevant to patients 

without those specific mutations.

Our analysis has a number of limitations. First, it is limited to coding variants, and 

we do not quantify the contribution of rare noncoding variants. Second, for missense 

variants in particular, burden heritability might represent a fraction of the total rare coding 

heritability, due to overdispersion effects (Figure 1A). We stratified missense variants by 

their PolyPhen2 predicted effect, but with a more sophisticated approach, it would be 

possible to capture a larger fraction of the total missense heritability. Third, BHR is a 

method-of-moments estimator operating on burden association statistics, and this approach 

is not expected to have highest possible statistical power; a method based on individual-level 

data, especially if it used maximum likelihood rather than the method of moments, might 

produce more precise estimates of the burden heritability. Fourth, our analysis is limited to 

European-ancestry participants in the UK Biobank, which reflects a well-documented bias 

in human genetics research62. Fourth, the UK Biobank is a relatively healthy population 

cohort63, which limits our power to analyze diseases. For the same reason, the UK Biobank 

sample might be depleted of deleterious genetic variation40, potentially causing decreased 

burden heritability in this population.

In GWAS, widespread sharing of summary statistics has been catalytic. We have released 

open-source software implementing the full suite of BHR analyses (Code Availability), and 

we advocate for sequencing studies to share variant-level association statistics, including 

variant frequencies, functional annotations, and per-allele effect sizes, which are sufficient 

for analysis using BHR.
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Methods

Definition of burden heritability

Let Xg be the mean-centered genotype matrix for gene g, and let Zg be the standardized 

genotype matrix, whose columns have zero mean and unit variance. We define the burden 
for gene g as the mean-centered minor allele count for each individual:

bg ≔ Xg1mg × 1 = Zgwg #(1)

where 1mg × 1 is the all-ones vector, mg is the number of variants in gene g, and wg is the 

vector of burden weights. The entries of wg are the standard deviations of the corresponding 

columns of Xg; under Hardy-Weinberg equilibrium, they are equal to 2p(1 − p) (where p is 

the allele frequency).

Let y be the n × 1 standardized phenotype vector, and let β g be the mg × 1 vector of per-allele 

effect sizes:

β g ≔ E(Xg
TXg)−1E(Xg

Ty) . #(2)

Let βg be the vector of per-normalized genotype effect sizes, or correlations:

βg ≔ E(Zg
TZg)−1E(Zg

Ty) = wg ∘ β g #(3)

where ∘ denotes the element-wise product. The burden effect size γg is the correlation 

between the burden bg and the phenotype y:

γg ≔ E(bg
Ty)

E(yTy) E(bg
Tbg)

= wg
TE(Zg

Ty)
n wg

TE(Zg
TZg)wg

= wg
Tβg

wg
Twg

.

#(4)

We assumed that there is no LD, such that E(Zg
TZg) = nI, in the third line (see below).

Burden heritability is defined under a random effects model for the burden effect sizes γ. 

Suppose that the vector of per-allele effect sizes β g has mean μg1 and zero covariance. Then 

the per-normalized genotype effect size vector β has mean μgwg, and the burden effect γg has 

mean

E(γg ∣ μg) = wg
TE(βg ∣ μg)

wg
Twg

= μgwg
Twg

wg
Twg

= μg ∣ wg ∣ . #(5)

We define the burden heritability of gene g as:
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ℎburden
2 (g) ≔ E(γg ∣ μg)2 = μg

2 ∣ wg ∣ 2 . #(6)

The total burden heritability across a set of genes A is:

ℎburden
2 (A) = ∑

g ∈ A
E ℎburden

2 (g) = ∑
g ∈ A

E(μg
2) ∣ wg ∣ 2 . #(7)

The burden heritability is a component of the total heritability. For gene g, its total 

heritability (without LD) is:

ℎtotal
2 (g) = E var(Zgβg ∣ βg) = E(βg

Tβg) ≥ ℎburden
2 (g) . #(8)

Burden heritability regression

Burden test statistics, which are commonly used to identify associated genes, are essentially 

burden effect estimates. The burden effect estimate, γg, is the sample correlation between bg

and y:

γ g ≔ bg
Ty

(bg
Tbg)(yTy)

. #(9)

(It is related to the burden χ2 statistic: nγ g
2 ∼ χ1

2 ∣ H0). Without LD, and without correlated 

stratification effects (see below), γ g has mean γg and variance:

var(γ g ∣ μg) ≈ n−1 + a + var(γg ∣ μg) . #(10)

There are three terms. n−1 is the ordinary sampling variation, which is the approximate term; 

the approximation is accurate when the burden effect is small. a quantifies inflation due to 

population stratification and cryptic relatedness, and we assume that it is not gene specific 

(see below). The third term quantifies overdispersion-related sampling variation in the true 

value of γg. If variants in the same gene have uncorrelated overdispersion effects with a 

constant effect-size variance dg in per-standard deviation units, then the overdispersion term 

is:

var γg ∣ μg, σg
2 =

wg
T E(βgβg

T) − E(βg)E(βg)T wg

wg
Twg

= wg
T(σg

2I)wg

wg
Twg

= dg . #(11)

Combining equations 5, 10 and 11:

E γ g
2 ∣ μg = μg

2 ∣ wg ∣ 2 + dg + n−1 + a . #(12)
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The BHR regression equation is obtained by taking an average value of μg
2 and dg across 

genes. Let τ = E(μg
2) and d = E(dg). The BHR regression equation is:

E(γ2) = τ‖w‖2 + d + n−1 + a . #(13)

The first term is used to estimate the burden heritability, and the other terms are the 

regression intercept.

Minor-allele biased population stratification

A potential source of bias for BHR is minor-allele biased population stratification. 

Specifically, let αg be the random vector of normalized stratification effects for minor alleles 

in gene g; we generally assume that

E αgαg
T = aI #(14)

where a is the non-gene-specific inflation parameter. Under this assumption, the contribution 

of stratification to the BHR equation is:

E wg
Tαg

2

wg
Twg

= a . #(15)

However, minor alleles may have nonzero mean effect sizes due to stratification, such that

E αgαg
T = aI + mgmg

T
#(16)

where mg = mwg is the mean effect due to stratification. This type of stratification could 

plausibly arise when a small fraction of individuals in the study come from a certain 

subpopulation, such that variants specific to that subpopulation are observed at low 

frequencies. It could also occur when one subpopulation is bottlenecked, causing its 

frequency spectrum to shift. In this scenario, the contribution of stratification effects is:

E wg
Tαg

2

wg
Twg

= a + m2 ∣ wg ∣ 2
#(17)

and the BHR slope will be inflated by m2.

Minor-allele biased stratification would cause the mean minor-allele effect size to be 

nonzero genome wide, possibly motivating a genome-wide mean centering approach. For 

pLoF variants, however, it is biologically plausible that their causal effect sizes have nonzero 

mean (especially for traits such as autism and schizophrenia41-43. To distinguish between 

these possibilities, we calculate the genome-wide mean minor allele effect size for pLoF and 

synonymous variants separately. Let wgenome(syn) be the concatenated vector of synonymous 

burden weights across the genome; we compute the genome-wide mean synonymous minor 

allele effect, mgenome(syn), as:
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mgenome(syn) = ∣ wgenome(syn) ∣ −2 wgenome(syn)Tβ . #(18)

We estimate the contribution of minor allele biased stratification to the burden heritability 

as:

ℎbias
2 = mgenome

2 (syn) ∣ wgenome ∣ 2 #(19)

because mgenome
2  is the estimate of the upward bias in the BHR regression slope, by 

equation 17. For pLoF variants, we estimate the bias in their heritability estimates as 

mgenome
2 (syn) ∣ wgenome(pLoF) ∣

2
.

Independence assumption and selection-related bias

BHR assumes that E(μg
2) is not correlated with ∣ wg ∣

2
. In general in a regression 

analysis, if the slope depends on the independent variable, it leads to bias. Here, the most 

plausible reason for non-independence is that genes under selective constraint have smaller 

burden scores and larger mean effect sizes; this would produce downward bias in the 

heritability estimates.

We use two approaches to mitigate this potential bias. First, we bin genes by their observed 

vs. expected number of pLoF variants in gnomAD (a measure of selective constraint)37. 

With this approach, we only require the weaker assumption that E(μg
2) is uncorrelated with 

∣ wg ∣
2
 within bins. We use five bins of approximately equal size. This approach is 

analogous to the use of LD-related annotations by Gazal et al. to address bias due to 

LD-dependent architecture in stratified LD score regression (S-LDSC)21.

Second, we incorporate null burden statistics that effectively fix the BHR intercept and 

ameliorate bias in its slope. (Even in the absence of bias, this approach is useful to increase 

power). We define random null burden weights vectors vg, whose burden weights are 

randomly sign flipped compared with wg (but identical in magnitude). Burden statistics 

computed using null burden weights are equally affected by noise, confounding, and 

overdispersion effects, but they contain very little burden signal.

In detail, let vg = wg ∘ [ ± 1, …, ± 1] be the null burden weights for gene g. The null burden 

effect size is:

δg = vg
Tβg

vg
Tvg

. #(20)

If the mean minor-allele effect is μg, the mean of δg is:

E(δg) = μgvg
Twg

vg
Tv

. #(21)
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The regression equation for the null burden statistics is

E δ g
2 = E(μg

2) vg
Twg

2

vg
Tvg

+ d + n−1 + a . #(22)

The null burden scores, (vg
Twg)

2 ∕ vg
Tvg, are much smaller than the original burden scores, as 

the random sign flipping causes vg
Twg to be small; therefore, the intercept of the regression is 

effectively constrained to be approximately equal to the mean null burden statistic.

Any number of these null burden statistics can be incorporated into the regression. We use 

five null burden statistics per gene, which is enough that including a larger number has little 

effect (Supplementary Figure 8).

Large-effect genes as fixed effects

Large-effect genes introduce noise in BHR. We identified genes with a significant 

association at a Bonferroni-significant exome-wide significance threshold (i.e., 0.05 / 

number of genes by a χ2 test). We excluded these genes from the regression and instead 

included them as fixed effects, adding their squared burden effect size estimates to the 

heritability directly. This approach is appropriate because the effect size estimates of 

significant genes are less likely to reflect confounding, and it greatly reduces the standard 

error of the regression estimator. The estimated heritability explained by each gene was 

ℎ2(g) = γ g
2 − (n−1 + a), where (n−1 + a) is the BHR intercept.

Standard errors calculation

We estimated standard errors in the regression using a block jackknife, as previously 

described10. We used 100 contiguous blocks of genes with around 170 genes per block. 

Significant genes are excluded from the block jackknife procedure, and uncertainty in their 

effect size estimates is incorporated using the delta method. The delta method is also 

used to calculate the standard error for the fraction of burden heritability mediated by 

significant genes, the enrichment of burden heritability in particular annotations, and the 

genetic correlation.

In detail, let θ be a vector of parameters with covariance matrix Σ. For a function g(θ), the 

sampling variance is approximately:

var g(θ) ≈ ∇g Σ ∇gT . #(23)

We apply this formula as follows:

• Standard error of the fraction of burden heritability in a particular gene set. Let 

ℎtotal
2  be the total burden heritability estimated by BHR, and ℎk

2 be the burden 

heritability in annotation k estimated by BHR. The fraction of burden heritability 

in annotation k is:
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g(θ) = g ℎk
2

ℎtotal
2 = ℎk

2

ℎtotal
2 . #(24)

The covariance matrix of θ, Σ, is computed via block jackknife.

• Standard error of the fraction of burden heritability in a particular gene 
annotation under the mixed model. In the mixed effects model, genes with 

exome-wide significant associations are modelled as fixed effects. Let ℎrandom
2

be the total burden heritability estimated by the BHR random effects model 

excluding significant genes, and let ℎk
2 be the burden heritability in annotation 

k estimated by BHR, excluding significant genes. Let γ EWS denote the vector of 

burden effect sizes for exome-wide significant genes. Let M(k) be the diagonal 

matrix with dimension equal to the number of significant genes whose diagonal 

entries are 1 for genes in annotation k, and 0 otherwise. The fraction of burden 

heritability in annotation c is:

g(θ) = g
γ EWS

ℎk
2

ℎrandom
2

= ℎk
2 + γ EWS M(k)γ EWS

T

ℎrandom
2 + γ EWSγ EWS

T . #(25)

The variances and covariance of ℎk
2 and ℎtotal

2  are computed via a block jackknife. 

The variance of γ EWS is estimated as the intercept of the BHR random effects 

model, and their covariance is assumed to be zero with each other and with ℎk
2

and ℎtotal
2 .

• Standard error of the burden genetic correlation under the mixed model. Let 

ℎrandom 1
2  and ℎrandom 2

2  be the random-effects burden heritability of traits 1 and 2 

respectively, excluding significant genes. Let ρ be the burden genetic covariance 

between trait 1 and trait 2 excluding significant genes, computed with the cross-

trait BHR model. Let γ EWS 1 denote the vector of burden effect sizes for significant 

genes (in per-s.d. units) for trait 1. Let γ EWS 2 denote the vector of burden effect 

sizes for significant genes for trait 2. The burden genetic correlation under the 

mixed model is:

g

ℎrandom 1
2

ℎrandom 2
2

ρrandom

γ EWS 1

γ EWS 2

= ρrandom + γ EWS 1
Tγ EWS 2

ℎrandom 1
2 + γ EWS 1

Tγ EWS 1 ℎrandom 2
2 + γ EWS 2

Tγ EWS 2

#(26)

The variances and covariances of ℎtotal, 1
2 , ℎtotal, 2

2 , and ρ are computed via a block 

jackknife. The estimated variances of γ EWS 1 and γ EWS 2 are the BHR intercepts for 

traits 1 and 2 respectively, and the covariance between γ EWS 1 and γ EWS 2 is the BHR 

cross-trait intercept. The exome-wide significant effects are assumed to have no 
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covariance with ℎc
2, ℎtotal

2 , or ρ. The covariance between u and v is the intercept 

from the cross-trait BHR model.

Stratified regression equation and heritability enrichment

BHR can be used to model any number of gene-level annotations. Let Ag be the row vector 

of annotation values for gene g. Similar to S-LDSC16, we model the effect-size variance of 

gene g as a linear function of Ag:

E μg
2 = Agτ #(27)

where τ is the regression slope. This choice is necessary in order for τ to be estimated using 

linear regression (other choices give rise to least-squares estimators without closed-form 

solutions). The gene-stratified regression equation becomes

E γ g
2 = ∣ wg ∣ 2Agτ + d + n−1 + a #(28)

where we assume that overdispersion and confounding effects do not vary across gene sets.

We define the burden heritability enrichment of a gene set as the fraction of heritability 

divided by the fraction of burden scores. Let the cumulative burden score for gene set k be

w(k) = ∑
genes g

Agk ∣ wg ∣ 2
#(29)

and let its estimated burden heritability be

ℎ2(k) = ∑
genes g

Agk ∣ wg ∣ 2Agτ . #(30)

Letting w(0), ℎ2(0) denote the cumulative burden score and the burden heritability across all 

genes, the burden heritability enrichment of gene set k is:

e(k) = ℎ2(k)w(0)
ℎ2(0) w(k)

. #(31)

This definition differs from the fraction of heritability divided by the fraction of genes; 

for example, constrained genes have smaller burden scores on average, so their burden 

heritability enrichment is greater than their fraction of heritability divided by their fraction 

of genes.

Whole-exome scale simulations

We simulated gene burden statistics under approximately realistic genetic architectures 

without LD. We simulated 18,000 genes with between 1 and 1,000 possible variants per 

gene (drawn from a uniform distribution). We chose the mean effect size for each gene, μg, 

from a sparse mixture of normal distributions. In simulations with overdispersion, we also 
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included nonzero gene-specific effect-size variance parameters, dg. Then, we drew per-allele 

effect sizes for variants within each gene from gene-specific normal distributions:

β g ∼ N(μg1, dgI) . #(32)

To model negative selection, we simulated effect sizes on 100 independent traits, and we 

defined a selection coefficient for each variant in proportion to its sum of squared effect 

sizes across traits. This choice follows the stabilizing pleiotropic selection model of Simons 

et al.44 The selection coefficients were scaled to a desired mean selection coefficient.

We sampled allele frequencies from the neutral spectrum, such that the probability of 

observing an allele at allele count nj was proportional to 1 ∕ nj, where 1 ≤ nj ≤ n. We 

approximated the effect of selection of the allele frequency spectrum by discarding variants 

whose sampled allele frequency was nj
n > 4Ns, where s was the selection coefficient and N

was 1e4. This approach allows millions of variants to be sampled efficiently.

After sampling the allele frequencies p, we set the per-normalized-genotype effect sizes to 

β ∝ β (2p(1 − p))1 ∕ 2, normalizing them so that the burden heritability of variants in the allele 

frequency bin under consideration matched the desired value.

We computed the observed over expected number of variants in each gene by dividing the 

number of variants with frequency greater than zero by the number of variants (between 1 

and 1000), computing o/e bins from these values.

We sampled effect-size estimates for each variant from a normal distribution, which is 

appropriate for a continuous trait:

β j ∼ N(βj, n−1 + a) . #(33)

Simulation parameters for each simulation are provided in Extended Data Figure 1 legend. 

For the “realistic” simulations, the fraction of causal genes with large, medium and small 

effects was 4e-4, 2e-3, 1e-2 respectively, and their per-allele effect size variance before 

normalization was 5, 1, 1/5. The mean selection coefficient was Ns̄ = 10. The sample size 

was 5e5, the number of genes was 1.8e4, and the true burden heritability was either 0 

or 0.005. The variance of the stratification effects was 1e-7, the mean minor-allele-biased 

stratification effect was 1e-5, and there was no overdispersion.

Small-scale simulations with individual level data

We simulated individual-level genotype and phenotype data in small-scale null simulations 

(10,000 individuals, 1,000 genes, 1-100 variants per gene, ℎ2 = 0). We sampled genotypes 

and a continuous phenotype (“height”) in forward simulations under three steady-state 

demographic models involving 3-4 demes:

1. “North-south” stratification with a northern, central, and southern deme, and 

migration between adjacent demes (rate: 0.01 per generation). We simulated a 
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large environmental effect, with taller simulated height (+0.5 SD) in the northern 

deme and shorter height (−0.5 SD) in the southern deme. Population size was 

N=1e4 in each deme.

2. “North-bottlenecked” stratification with the same migration patterns and the 

same mean phenotypes in each deme, but different population sizes: N=5e3, 1e4, 

and 2e4 in the northern, central and southern demes respectively.

3. “Local” stratification, with three demes of equal size (N=1e4) and equal height, 

and a fourth deme with much smaller population size (N=1e3) and much taller 

height (+1 SD). The migration rate was 0.01 between each pair of adjacent 

demes, and the small deme was adjacent to the large central deme.

We performed each of these simulations both with and without negative selection, 

mimicking our analyses of pLoF and synonymous variants respectively. The true heritability 

was zero, to isolate possible inflation due to population stratification.

We sampled diploid individuals from each deme with independent sites (no LD) and with 

probability proportional to deme size. We calculated summary statistics for BHR using 

linear regression with no covariates. We recorded the deme from which each individual was 

sampled and used these as covariates for GCTA in the “deme-corrected” GCTA analysis. For 

both BHR and GCTA, we restricted to variants with sample allele frequency at most 1e-3 

(i.e., a minor allele count of 20).

Our forward simulations involved simulated the allele frequency for each variant in each 

deme, without simulating the individuals directly, for computational tractability. This choice 

is appropriate under the assumption of independent sites; a coalescent simulation would be 

unable to model selection, and an individual-level forward simulation would be slow. In 

detail, we specified a mutation rate of mu=1e-5, a migration rate of 0.01 between adjacent 

demes, and a population size that differed among demes as described above. We initialized 

allele frequencies as described in the previous section, and we simulated 1000 generations of 

selection, mutation, migration, and drift. In each generation, we updated the allele frequency 

of each variant as follows. Let p(k) be the number-of-demes by 1 vector of allele frequencies 

for some variant at generation k:

1. Migration: set p(k) = Gp(k − 1), where G is the migration matrix

2. Mutation: set p(k) = μ(1 − p(k)) + (1 − μ)p(k), where μ is the mutation rate

3. Selection: set p(k) = p(k)(1 − s)
1 − p(k) + p(k)(1 − s)

4. Drift: sample p(k) = x
N , x ∼ binomial(N, p(k)) where N is the population size. 

For efficiency, we approximate Binomial sampling with either a Poisson(Np(k))
distribution, when p(k) < 0.1, or a N Np(k), Np(k)(1 − p(k))  distribution, when 

0.1 < p(k) < 0.9.
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Observed-scale effect sizes for binary traits

For binary traits, we used raw allele counts in cases in controls as the input to BHR, rather 

than effect-size estimates from a mixed model. We calculated the observed-scale effect size 

of SNP x on the phenotype y as:

β = corr(y, x)

= 2 ∗ (MAF in cases − MAF) ∗ prevalence
2 ∗ MAF ∗ (1 − MAF) ∗ prevalence ∗ (1 − prevalence) .

#(34)

We report heritability estimates on an observed scale unless noted otherwise.

Genes analyzed

We analyzed 17,318 genes, a subset of the 19,407 genes in Genebass5. We analyzed genes 

meeting all of the following criteria: autosomal; LoF observed/expected ratio present in 

gnomAD37; cell type specific t-statistic defined in Finuncane 2018 Nature Genetics; and at 

least one variant present in Genebass.

Variant annotation and QC

We analyzed a set of 6976410 variants that passed the quality control checks described in 

Karczewski et al (2022) (Supplementary Table 6). We analyzed variants in four functional 

categories: predicted loss-of-function (pLoF), missense pathogenic, missense benign, and 

synonymous variants. pLoF variants were defined as in Genebass5, and included stop-

gained, essential splice and frameshift variants. Missense functional classes were defined 

using PolyPhen2: we defined missense pathogenic as a PolyPhen2 variant annotation of 

“probably damaging” or “possibly damaging” and missense benign as a PolyPhen2 variant 

annotation of “benign”. Synonymous variants were defined as in Genebass.5 We excluded a 

small number of variants that were not annotated as either pLoF, missense or synonymous in 

Genebass.

Common-variant heritability estimates

We used GWAS summary statistics from the UK Biobank to facilitate a direct comparison 

with the phenotypes from exome-sequencing analysis (see URLs). Across 22 core BHR 

traits, the GWAS had a median effective sample size of 344104 (see Supplementary Table 

8).

We used stratified LD Score Regression (S-LDSC)10,16 to generate common variant 

heritability and genetic correlation estimates. We elected to use LDSC for direct comparison 

of heritability estimates because it employs a similar random-effects model to BHR. We 

used LD scores from the 1000 Genomes project 64 and annotations from the baseline LD 

model21 (see URLs).

In order to estimate the fraction of common-variant heritability explained by significant 

genes (Figure 3), we used HESS, which is able to estimate the local heritability explained 

by regions with significant associations or significant genes32. We used an LD reference 
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panel from the 1000 Genomes Project64 and a genome partition composed of approximately 

LD-independent blocks from Berisa et al65.

We used the Abstract Mediation Model (AMM34) to estimate the fraction of heritability 

mediated by gene sets. In brief, AMM estimates the fraction of heritability mediated by 

a gene set while accounting for uncertainty in SNP-gene mapping. Instead of relying on 

SNP-to-gene mapping using expression data like eQTLs, AMM first learns a genome-wide 

probabilistic SNP-to-gene mapping from the decay in heritability across gene proximity (i.e. 

27% of heritability mediated by the closest gene). We applied AMM twice: to estimate the 

fraction of heritability mediated by BHR-significant genes (Figure 3D) and to estimate the 

enrichment of heritability mediated by constrained genes and gene sets defined by tissue 

and cell-type expression data (Figure 4A-C). We used a SNP-to-gene probability distributed 

learned from constrained genes in Weiner et al34, which are well-powered across a range of 

traits.

Accounting for LD

Rare variants, and to a lesser extent ultra-rare variants, may have within-gene LD. Within-

gene LD is a problem for BHR because it causes sampling errors to be correlated among 

alleles. In particular, if minor alleles have net-positive within gene LD, then their sampling 

errors will have net-positive correlations, just as true effects are expected to be correlated. 

This source of bias is potentially strong, as the sampling variance of the effect sizes is large. 

Net zero LD, which occurs when correlations are nonzero for particular alleles but zero on 

average, is less of a problem; it leads to decreased power, but not to bias. Outside-of-gene 

LD is also only a minor concern, as it is not expected to produce net positive correlations 

between different minor alleles in the same gene.

Net-positive within gene LD can occur as an ascertainment related artefact of binning on 

the within-sample allele frequency. Suppose that minor alleles within a gene have a mixture 

of positive and negative LD, such that their net LD is zero: that is, 1TR1 = 0 where 1 is 

the all ones vector and R is the population correlation matrix. Suppose that we sample n
haplotypes X, compute their within-sample LD matrix R, and bin them by their sample 

minor allele count. For a pair of variants ij, with correlation rij, consider the probability that 

they are both observed exactly ni = nj times. This probability is low if rij is zero or negative, 

even if their population allele frequencies are equal. It is much higher, however, if rij ≈ 1, 

which would cause the sample allele frequencies of the two variants to be highly correlated. 

Conversely, when variants are observed at similar within-sample minor allele frequency, this 

ascertainment effect makes them more likely to be in positive LD.

If the amount of within-gene LD is known, it can be incorporated into BHR. Let the 

within-gene-g LD matrix be Rg = n−1E(Zg
TZg). If causal per-allele effect sizes have mean μg, 

the mean of the marginal per-normalized-genotype effect size vector βg is E(βg ∣ μg) = Rgμgwg. 

The burden effect size is:
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γg ≔ E bg
Ty

E(yTy) E(bg
Tbg)

#(35)

= wg
Tβg

wg
TRgwg

#(36)

and its mean is:

E(γg ∣ μg) = μg wg
TRgwg . #(37)

Dropping subscripts, the regression equation becomes:

E(γ2) = μ2wTRw + dpq + n−1 + a . #(38)

The intercept is unchanged. Let β  be the vector of sample correlations; their residuals have 

covariance

E β − β β − β
T

= (n−1 + a)R #(39)

so

E((γ − γ)2) =
wTE β − β β − β

T
w

wTRw
= n−1 + a .

#(40)

The overdispersion term behaves the same way.

Equation 37 represents one principled approach to account for within-gene LD, but we 

were only able to access within-gene LD from UK Biobank for chromosomes 20-22 due 

to computational limitations of our LD estimation pipeline. Ultra-rare variants on these 

chromosomes have very little LD (Supplementary Table 3). We calculated the amount of 

LD related bias that is expected to be observed for each class of variants, assuming that the 

amount of net positive within-gene LD on chromosomes 20-22 are representative of the rest 

of the genome. Under the null (β = 0), the expected burden statistic not accounting for LD is:

E(γ2) =
wTE ββT w

wTw

= (n−1 + a)wTRw
wTw

.

#(41)

For chromosomes 20-22, we calculated a correction term
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s = 1
no.genes ∑

genes g

wg
TRgwg

wg
Twg

− 1 #(42)

from synonymous variants in each allele frequency bin. The correction factor was noisy for 

some individual bins and there was no clear relationship between the allele frequency and 

the correction factor, so we computed a single precision-weighted mean s̄ = 4.6 (s.e.=0.5) 

across bins (see Supplementary Table 22). Then, we subtracted s̄ from the BHR regression 

slope in order to obtain LD corrected heritability estimates; the corrected estimate is equal to

ℎcorrected
2 = ℎuncorrected

2 − s̄∑
g

∣ wg ∣ 2 . #(43)

The correction is largest for rare synonymous and missense variants; it is much smaller for 

ultra-rare variants (which have much smaller entries of w) and for pLoF variants (which 

are fewer in number) (see Supplementary Tables 6, 18). It is inconsequential for ultra-rare 

pLoFs and in analyses of ultra-rare pLoF variants outside of Figure 2b-c, we do not apply 

this correction to ultra-rare pLoF estimates.

Alternative burden definitions

Burden heritability can be defined for any choice of burden weights, and in this section, we 

generalize BHR accordingly. Let W g be the diagonal mg × mg matrix whose diagonal entries 

are the standard deviations of each variant; under Hardy-Weinberg equilibrium, they are 

equal to 2p(1 − p (where p is the allele frequency). Let ug be any vector of burden weights. 

The burden bg is defined as:

bg ≔ Xgug = ZgW gug #(44)

The burden effect sizes are:

γ ≔ W gugβg

(W gug)TW gug
#(45)

and if the mean per-allele effect sizes are E(βg ∣ ug) = μgug, then:

E(γg ∣ νg) = W gugE(βg ∣ ug)
(W gug)TW gug

= μg
(W gug)TW gug

(W gug)TW gug

= μg‖W gug‖ . #(46)

The burden heritability is:

ℎburden
2 = ∑

g
μg

2 ∣ W gug ∣ 2 .
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In the definition of burden heritability above, with uniform burden weights, ug is the all-ones 

vector, and μg is the mean minor allele per-allele effect size.

The BHR regression equation is now:

E(γ2) = τ‖W gug‖2 + d + n−1 + a #(47)

where τ = E(μ2) and the burden heritability estimate is τ∑g ∣ W gug ∣
2
.

In the main text, we use uniform weights (e.g. ug = 1mg × 1). This is the natural choice of 

weights for loss-of-function variants, which are expected to have similar effects; however, 

for missense variants, a different set of weights may be more appropriate. In particular, 

variants at higher allele frequencies may have smaller per-allele effect sizes, and one way to 

model this phenomenon is the “alpha model”28,66:

E(β2 ∣ p) ∼ [2p(1 − p)]α #(48)

Under this model, the elements of ug are [2p(1 − p)]
α
2 . Notably, our main BHR analyses 

correspond to α = 0, the case where per-allele effect sizes are assumed to be independent 

of frequency. We estimate heritabilities for two alternative choices of α:α = − 1, which 

maximizes the burden heritability when normalized effect sizes (i.e., correlations) are equal 

across variants, and α = − 0.5, an intermediate value.

Burden heritability explained by exome-wide significant genes

To compute the heritability explained by exome-wide significant genes, we used significant 

pLoF burden associations (Bonferroni-corrected p < 0.05) from Genebass, which were 

identified using SAIGE-gene67. We computed the ultra-rare pLoF burden statistics for these 

genes from the SAIGE variant-level effect size estimates (for binary traits, we used the 

case-control allele frequencies as described above).

When the power to detect a significant gene is smaller than one, its effect size estimate is 

upwardly biased due to winner’s curse33. Similarly, the fraction of heritability explained by 

significant genes is upwardly biased, especially when most significant genes are close to 

the significance threshold. We implemented a partial correction for winner’s curse that only 

depends on the test statistic of each significant gene (and the threshold). In detail, let Zj
2 be 

the χ2 test statistic for significant gene j, and let T  be the χ2 significance threshold (with 

1 degree of freedom). We compute the expected χ2 statistic for a gene with non-centrality 

equal to Zj conditional on passing the threshold:

Xj
2 = E(X2 ∣ X > T ), X ∼ N(Zj, 1) . #(49)

We evaluate the expectation by sampling and computed the winners-curse-corrected test 

statistic as 2Zj
2 − Xj

2.
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We tested this approach in simulations and determined that it corrects for about half of 

the observed winner’s curse across the whole range of genetic architectures and sample 

sizes (Supplementary Figure 6). It is less successful in the presence of strong population 

stratification, which causes excess false positives. In real data, a complication is that the 

significance test is computed from a statistic that includes not only the ultra-rare pLoFs but 

other variants as well, and this might overcorrection for some genes.

Genes sets

We analyzed two existing collections of cell type- or tissue-specific gene sets. First, we 

analyzed tissue-specific gene sets comprising the top 10% of genes differentially expressed 

in focal tissue vs. other tissues from GTEx v7 bulk RNA-seq17. Second, we analyzed cell 

type-specific gene sets constructed from single-cell RNAseq data18. In brief, genes were 

ranked based on expression in a given cell type relative to expression of the gene in different 

cell types in the same tissue. Based on the ranking, each gene-cell type pair was assigned 

a χ2 statistic, the statistics were min-max normalized to the range [0,1], and genes with 

normalized values of 1 were assigned to the gene set.

Burden genetic correlation

Between two traits, the burden genetic covariance is defined as:

ρburden = ∑
genes g

∣ wg ∣ 2 E(μ1gμ2g) #(50)

where μ1g, μ2g are the mean minor-allele effect size for gene g and traits 1 and 2 respectively. 

The burden genetic correlation is:

rburden = ρburden

ℎburden
2 (trait 1) ℎburden

2 (trait 2)
. #(51)

To estimate the burden genetic covariance, the cross-trait BHR regression equation is:

E(γ 1γ 2) = τ‖w‖2 + intercept,

intercept = ρ ns

n1n2
+ a12 + d12 .

#(52)

The regression slope is τ = E(μ1, μ2), and we stratify the regression across gene sets in the 

same manner as the single-trait case. In the intercept (similar to cross-trait LDSC12), ρ is the 

phenotypic correlation, ns is the number of samples that are shared between the two studies, 

n1 and n2 are the number of individuals in each study, a12 is the covariance of the stratification 

effects on the two traits, and d12 is the covariance of the overdispersion effects on the two 

traits.

When the two traits have different sets of variants because there are different individuals 

for each study, ∣ w ∣ 2 is replaced by ∣ w1 ∣ ∣ w2 ∣ , where wk is the burden weights 
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vector for trait k. The same approach is used when computing the correlation between 

missense and pLoF effects.

With the estimated regression slope τ, the estimated genetic covariance is:

ρburden = ∑
genes g

Agτ ‖wg1‖‖wg2‖ #(53)

and the genetic correlation is estimated using equation 45.

Genetic correlation of common coding variants

We computed common variant genetic correlations restricted to coding variants using the 

implementation of sLDSC implemented in the GenomicSem package68 noting that the 

main release of sLDSC does not implement a stratified genetic covariance estimator. We 

used GenomicSem to compute zero-order genetic covariance and sampling matrices for all 

annotations in the Baseline LD Model v2.2, and used the zero-order genetic covariance 

matrix from the “Coding_UCSC” annotation to compute the common coding genetic 

correlation.

Noting that genetic correlation estimates can be unstable in the setting of low or negative 

heritability estimates, we only computed coding genetic correlations for pairs of traits where 

both traits had nominally significant (i.e., z > 1.96) coding heritability estimates. 28 of 37 

examined traits had significant coding heritability estimates.

SCHEMA and BipEx Datasets

We used publicly available variant-level counts data from the SCHEMA6 and BipEx7 as 

input data (URLs). We restricted the SCHEMA analyses to the two study strata with largest 

sample size: EUR (Exomes, Nextera) and EUR (Exomes, Non-Nextera) (see supplementary 

information of Singh et al, 2022). For the BipEx dataset, we used the “Bipolar Disorder” 

group counts. Following Singh et al, 2022, we restricted to variants with minor allele count 

(MAC) less than 5, and performed separate analyses for pLoF, damaging missense (MPC > 

2), and synonymous variants. For each cohort, burden statistics were calculated from allele 

counts using Equation 33, and burden scores were computed from sample allele frequencies. 

Then, we used BHR to compute burden heritabilities, enrichments, and genetic correlations 

separately for the two SCHEMA cohorts. We used this approach to avoid confounding due 

to differences in the sequencing technology and the sample prevalence between the cohorts.

To produce a single estimate for the schizophrenia heritability, we performed a precision-

weighted meta-analysis across the two cohorts. We used BHR to compute the total burden 

heritability, as well as the burden heritability for constrained genes (the top 5th of genes 

by observed/expected LoF counts from gnomAD). Within each stratum, we computed the 

variances for these two estimates, as well as their covariance, using a block jackknife. 

We used the per-stratum heritability estimates and covariance matrices to perform a 

precision-weighted meta-analysis. We also computed the jackknife covariance matrix of 

the heritability estimates for each constraint bin, and used this matrix with the delta method 

to calculate the standard error for the enrichment of heritability in constrained genes.
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Extended Data

Extended Data Figure 1: Performance of BHR in exome-scale simulations with no individual-
level data
We performed an extended set of simulations to assess the performance of BHR. The MAF 

groups are < 1e-5 (group 1), 1e-5 - 1e-4 (group 2), 1e-4 - 1e-3 (group 3), and 1e-3 - 1e-4 

(group 4), respectively; the gray and red boxplots indicate the distribution of estimates in 

null and non-null simulations (true burden h2 = 0%, 0.5% respectively). A minor difference 

in the way that BHR was applied to simulated vs. real data is that in simulated data, 

significant genes were identified without any attempt to correct for population stratification, 

whereas in our real-trait analyses, they were identified using SAIGE-GENE.1 We started 

with a realistic set of parameters (see Methods) and varied one simulation parameter in each 

simulation. (A) We increased the sample size from 5e5 to 2e6. This increase amplifies the 

uncorrected population stratification, causing false positive significant genes and upward 

bias in BHR (no bias is observed in estimates without significant genes). (B) We added 

overdispersion effects with the same distribution of effect sizes as the burden effects, i.e. 

with per-allele effect size variance drawn from a discrete mixture distribution (see Methods). 

This distribution differs from the BHR model, which assumes that overdispersion effects 

have a constant per-s.d. effect size variance, but this form of misspecification does not lead 

to bias. (C) We performed simulations with realistic parameters, including stratification and 

selection (see Methods and Figure 1C). (D) We decreased the sample size from 5e5 to 1e5. 

(E) We increased the strength of population stratification (including the minor-allele biased 

stratification) by a factor of 10, from a per-s.d. effect size mean of 1e-7 and a variance of 
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1e-5 to a mean of 1e-6 and a variance of 1e-4. (F) We increased the strength of selection, 

from mean Ns=1 to mean Ns=10. There were extremely few variants with allele frequency 

greater than 1e-3, so MAF group 4 estimates are not shown. Numerical results are contained 

in Supplementary Table 4. Boxplots denote median, quartiles and range of distribution 

(excepting outliers).

Extended Data Figure 2: Comparison of BHR and GCTA in null simulations with individual-
level genotypes and phenotypes, and different patterns of population stratification
There are four demographic models: no stratification; north-south stratification; north-south 

stratification with smaller population size in the northern deme; and local stratification 

with very small population size in one deme (see Methods). Under each model, we 
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performed simulations with and without selection, mimicking pLoF and synonymous 

variants respectively. (a) BHR burden heritability estimates with no correction for minor 

allele-biased stratification. (b) GCTA heritability estimates with no correction for ancestry. 

(c) BHR burden heritability estimates, correcting for minor allele-biased stratification. (d) 

GCTA heritability estimates, correcting for ancestry by providing the deme from which 

each individual was sampled as a covariate. Boxplots denote median, quartiles and range of 

distribution (excluding outliers).

Extended Data Figure 3: Genome-wide mean minor allele effect sizes
We define the “mean effect” as the effect size of the genome-wide burden, summing 

all minor alleles across genes within a category, on the phenotype. For synonymous 

variants, a nonzero mean effect is interpreted as evidence of minor-allele biased population 

stratification, and this type of stratification produces upward bias in BHR heritability 

estimates (see Methods). (a-c) Mean effect of synonymous variants vs. mean effect of 

missense benign, missense other, and pLoF variants respectively. The lack of correlation 

in (c) suggests that for pLoFs, the nonzero mean effect is mostly biological. (d) Mean 

effect of synonymous variants vs. the resulting bias in heritability estimates, for synonymous 

variants (left y axis) or for pLoFs (right y axis). These differ by a constant factor due to the 

larger number of synonymous variants than pLoFs. (e) Mean effect of pLoF variants vs. the 

contribution of these effects to burden heritability. These estimates are a small fraction of the 

total pLoF burden heritability. Error bars represent standard errors, which are computed by 

assuming independence across genes.
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Extended Data Figure 4: Burden heritability estimates with effect-allele-permuted burden 
statistics
We assessed the potential for confounding in our results by repeating our analyses with 

ultra-rare pLoF burden statistics whose effect alleles were randomly permuted. This 

permutation is expected to eliminate the burden heritability while not affecting any form 

of confounding that is symmetrical with respect to the minor vs. major allele. Boxplots 

indicate the distribution of burden heritability estimates before and after the permutation 

(non-null and null, respectively), with median, quartiles and range (excepting outliers).
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Extended Data Figure 5: Proportion of common variant heritability explained by LD-
independent blocks with significant heritability
For each trait, we used HESS to identify which of the 1651 LD-independent blocks 

from Berisa2 have Bonferroni-significant heritability, and then computed the proportion 

of the overall HESS heritability mediated by each block. Although these blocks aggregate 

over many variants in many genes, the proportion of heritability explained by individual 

significant blocks is still less than the proportion of burden heritability explained by 

individual significant genes in BHR (Extended Data Figure 4).
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Extended Data Figure 6: Comparison of burden versus common variant heritability explained 
by exome-wide significant genes
Each point represents a trait-gene significant burden association from the Genebass dataset. 

X axis values are the fraction of common variant heritability (estimated with HESS) 

explained by the LD-independent block containing that gene. Y axis values are the fraction 

of burden heritability (estimated with BHR) explained by the significant gene.
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Extended Data Figure 7: Absolute mean minor allele effect size of ultra-rare pLoF variants 
genome wide, vs. the constrained gene enrichment of each trait
(+) and (−) denote the sign of the mean minor allele effects. For numerical results, see 

Supplementary Tables 7, 16, and 17.
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Extended Data Figure 8: Genetic correlation estimates across 37 traits, for common variants 
(upper triangle) and rare coding variants (lower)
Asterisks indicate nominally significant genetic correlation estimates (two-tailed p < 0.05). 

Gray boxes not on the diagonal indicate cross-trait LDSC point estimates that are outside of 

[−1.25, 1.25], which cross-trait LDSC does not report by default. For numerical results, see 

Supplementary Table 19.
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Extended Data Figure 9: Comparison of common coding vs. common whole-genome genetic 
correlations
(a) We evaluated whether common coding variants, similar to rare coding variants, have 

stronger genetic correlations than common variants overall. The fit line indicates the Deming 

regression slope, which allows for uncertainty in both the X and Y axis values. (b-c) To 

assess the stability of the Deming regression slope, we separately analyzed chromosomes 

1-8 and chromosomes 9-22. (d-e) We also assessed the stability of the Deming regression 

slope for the burden genetic correlation vs. the common-variant genetic correlation on 

chromosomes 1-8 and chromosomes 9-22.
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Extended Data Figure 10: Burden heritability enrichments of drug target gene sets
We used BHR to estimate the ultra-rare loss-of-function burden heritability enrichment in 

sets of manually curated drug target genes from a previous publication6. For all panels, 

error bars are standard errors, and bars are shaded in blue if the enrichment is significantly 

greater than 1. (A) Burden heritability enrichment in n = 14 blood pressure drug target 

genes (union of diastolic and systolic blood pressure gene sets from reference publication). 

(B) Burden heritability enrichment in n = 8 bone mineral density drug target genes. (C) 

Burden heritability enrichment in n = 6 calcium drug target genes. (D) Burden heritability 

enrichment in n = 10 lipid drug target genes (union of LDL and triglyceride gene sets from 

reference publication). (E) Burden heritability enrichment in n = 6 red blood cell drug target 

genes. (F) Burden heritability enrichment in n = 7 type 2 diabetes drug target genes.
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Figure 1: Overview of Burden Heritability Regression (BHR)
(A) The burden heritability of a gene is determined by its mean minor-allele effect size 

(dashed lines) and its “burden score,” which is approximately the combined allele frequency. 

(B) BHR regresses gene burden statistics on gene burden scores, and the burden heritability 

estimate is proportional to the regression slope. We plot the mean burden statistic within 

burden score bins for ultra-rare pLoF/synonymous variants and LDL cholesterol levels 

(Supplementary Tables 1-2). (C) Performance of BHR in simulations. We started with 

approximately realistic simulations and varied the sample size, the allele frequency of the 

variants, and the strength of negative selection. The boxplots are the distribution of BHR 

h2 estimates across 100 simulation runs, denoting median, quartiles, and range (excepting 

outliers)
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Figure 2: Burden heritability of 22 complex traits and common diseases in UK Biobank
(A) Proportions of coding variants by allele frequency and functional consequence in 

Genebass. Missense variants are categorized as either “benign” or as “possibly damaging/

probably damaging” using PolyPhen2. Ultra-rare is defined as AF < 1e-5. Rare is defined 

as 1e-5 ≤ AF < 1e-3. Common is defined as AF > 0.05. (B) Estimates of burden 

heritability across frequency bins and functional categories. Boxplots show the distribution 

of heritability estimates across 22 complex traits and common diseases, denoting median, 

quartiles and range (excepting outliers). Numerical results are contained in Supplementary 

Table 7. (C) Comparison of the total burden heritability (ultra-rare + rare) with the common-

variant heritability of each trait (estimated using LDSC16). Error bars are standard errors. 

Numerical results for each trait are contained in Supplementary Tables 8 and 10. (D) 
Comparison of test statistic inflation between ultra-rare pLoF (red) and synonymous variants 

(gray) across the 22 traits. Lambda GC is the median burden χ2 statistic divided by 0.454.30
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Figure 3: Burden heritability explained by significant genes
(A) Fraction of burden heritability explained by exome-wide significant genes from 

Genebass5. Each box represents the fraction of burden heritability explained by one 

significant gene. For numerical results, see Supplementary Table 12. (B) Fraction of 

common variant heritability explained by genome-wide significant loci. Each box represents 

the fraction of common variant heritability explained by one significant locus. For numerical 

results, see Supplementary Table 14. (C) The fraction of common variant heritability 

mediated by exome-wide significant genes, estimated using AMM34, compared with the 

fraction of burden heritability explained by the same genes, for traits with at least 5 exome-

wide significant genes. For numerical results, see Supplementary Tables 12 and 16. (D) 
Common- vs. rare-variant cancer heritability mediated by cancer genes. The blue bars are 

the BHR estimates, and the grey bars are the AMM estimates. For numerical results, see 

Supplementary Table 16-17. Error bars in A-D are standard errors.
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Figure 4: Common- and rare-variant heritability enrichments
(A) Common and rare variant enrichments across cell type differentially expressed gene 

sets for selected trait-cell type pairs (see Supplementary Tables 16-17 for numerical results). 

Error bars are standard errors. (B) Common and rare variant enrichments in constrained 

genes in the bottom quintile of observed/expected pLoF alleles in gnomAD37. Error bars are 

standard errors. (C) Common and rare variant enrichments for 22 traits across quintiles of 

constraint. Boxplots denote median, quartiles and range (excepting outliers).
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Figure 5: Burden genetic correlations between variant classes and traits
(A) Burden genetic correlations between ultra-rare pLoF and damaging missense variants, 

across 9 traits that have nominally significant burden heritability for both. The dashed line 

indicates the mean correlation across all 22 traits, computed as a ratio of averages. Error bars 

denote standard errors. For numerical results, see Supplementary Table 18. (B) Clustered 

heatmap of genetic correlations estimated with BHR from ultra-rare pLoF variants (lower 

triangle) and genetic correlations estimated with LD Score Regression (upper triangle). * 

nominal significance (two-tailed p < 0.05). For numerical results, see Supplementary Table 

19. (C) Comparison of common and burden genetic correlations across trait pairs. The 

dashed line indicates the least squares regression fit (slope = 1.6).
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Figure 6: Burden heritability of schizophrenia and bipolar disorder
(A) Burden heritability of ultra-rare pLoF variants, ultra-rare missense variants with MPC 

> 2, and ultra-rare synonymous variants. Gray violin plots show the distribution of burden 

heritability estimates in 22 UK Biobank traits (Figure 2B). (B) Constrained gene enrichment 

of ultra-rare pLoF vs. common variant heritability. Error bars denote standard errors. For 

numerical results, see Supplementary Table 20.
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