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In two-dimensional artificial crystals with large real-space periodicity, the nonlinear
current response to a large applied electric field can feature a strong angular dependence,
which encodes information about the band dispersion and Berry curvature of isolated
electronic Bloch minibands. Within the relaxation-time approximation, we obtain
analytic expressions up to infinite order in the driving field for the current in a band-
projected theory with time-reversal and trigonal symmetry. For a fixed field strength,
the dependence of the current on the direction of the applied field is given by rose curves
whose petal structure is symmetry constrained and is obtained from an expansion in
real-space translation vectors. We illustrate our theory with calculations on periodically
buckled graphene and twisted double bilayer graphene, wherein the discussed physics
can be accessed at experimentally relevant field strengths.
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In two-dimensional (2D) crystals, rotation symmetries about the axis perpendicular to
the 2D plane require that the DC current response J (E) to a constant uniform electric
field E is isotropic to first order in the field strength. Given a crystal symmetry S, the
current obeys J (SE) = SJ (E) and unless there are very few symmetries, anisotropies
generally occur at higher order (1). Nevertheless, the anisotropy in the current can be
a valuable tool for probing the energetic and geometric properties of electron bands.
In systems with atomic-scale periodicity, the strong-field regime is not readily accessible
because the required fields generally induce interband transitions, i.e., electric breakdown
(2), which mask the properties of an otherwise isolated band. However, in moirés
(3–5) and superlattice heterostructures (6), such as periodically gated (7) or strained (8)
systems, the spatial period of the lattice L can be made large, of the order 10 nm. Hence,
a nonperturbative regime, which we define as

!B� � 1, !B = eEL/ℏ, [1]

with !B the Bloch frequency and � the momentum-relaxation time, can be reached
for realistic field strengths (9). Taking L = 10 nm and � = 1 ps (10), we find
E � 0.66 kV/cm, which is experimentally feasible. Importantly, the strong-field regime
can be realized in these systems well below the onset of electric breakdown, which we
estimate as follows. We require eEΔx � "gap with Δx the uncertainty in the position
of the electron, and thus, eE � "gapℏΔv/|∂2"/∂k2

|. Assuming the curvature is largest
near the band edge and that Δv/v should be small in the semiclassical theory (2), we
find eEL � "2

gapL/ℏv < "2
gap/"width, where "width is the bandwidth. Since moirés and

other artificial crystals can host spectrally isolated and narrow minibands, as shown in
Fig. 1 A and B for periodically buckled graphene (PBG) and twisted double bilayer
graphene (TDBG), respectively, the right-hand side of this inequality can be made large.
For example, taking L = 10 nm and "2

gap/"width = 50 meV, which we find can be
realized in PBG, we obtain E � 50 kV/cm.

In this work, we investigate the nonperturbative current response in a band-projected
theory. That is, we solve the semiclassical transport theory exactly to infinite order in
the field strength but assume that interband transitions are negligible, as outlined in
the previous paragraph. We focus on trigonal systems with time-reversal (T ) symmetry
for which C3z rotation symmetry is conserved but C2z rotation symmetry and inversion
symmetry are broken, i.e., the point groupsC3,C3v,C3h,D3, andD3h (12). These are the
relevant point groups of many moirés and other 2D superlattices, such as those based on
graphene (3, 8) and transition-metal dichalcogenides (5). We first consider the weak-field
limit and determine the lowest-order anisotropy in the currents from symmetry. There
we find a nonlinear Hall response from the Berry curvature hexapole since the lower
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Fig. 1. (Left) Energy bands for (A) periodically buckled graphene and (B)
AB–AB twisted double bilayer graphene, along high-symmetry lines in the
superlattice Brillouin zone. Dark/light bands correspond to valley K+/K−, and
the highest valence [lowest conduction] band is shown in red in (A) [B] with
valley Chern number C. (Right) Geometric current of the highlighted bands
at 0.4 filling and T = 5 K for PBG (C) and TDBG (D). Parameters for PBG are
L/l0 = 6, V0 ≈ 26 meV, and 3�/� = −0.155 with "2

gap/"width = 48 meV;
and for TDBG: # = 1.44◦ and U = 56.5 meV and others from ref. 11 with
"2

gap/"width = 4.1 meV.

order dipole response is forbidden by C3z and odd powers are
forbidden by T . In contrast, the current originating from the
band dispersion becomes anisotropic in the transverse response at
fifth order while the longitudinal response only depends weakly
on the field direction. Furthermore, by expanding in terms of
coordination shells, we obtain analytic expressions for the current
in terms of the real space Fourier components of the band
dispersion and the Berry curvature. This differs from the usual
prescription where one expresses the current in terms of multipole
moments at successive orders in the response (13, 14). Our results
amount to resumming the multipoles to infinite order in the field
strength, elucidating the dependence of the current on the field
direction. Here, we focus on the current instead of conductivities
since the latter are harder to interpret in an arbitrary order in
the field strength. For a fixed field strength, we find that the
anisotropic current distributions take the form of rose curves
when plotted as a function of the field direction, as illustrated in
Fig. 1 C and D. While the longitudinal response has no petals,
the main petal structure of the transverse response is determined
from symmetry. These petals can fracture into a number of
subpetals by breaking in-plane mirrors (or equivalently, out-
of-plane � rotations). In a recent work, two of the authors
demonstrated that the geometric current originating from the
Berry curvature plateaus and dominates in the strong-field limit
(15). Here, we obtain the exact plateau values which are strongly
anisotropic. We finally apply our theory to graphene-based
artificial crystals that host spectrally isolated and narrow mini-
bands: periodically buckled graphene and twisted double bilayer
graphene.

Weak-Field Response

It is illustrative to first consider the weak-field limit (!B� � 1)
to investigate how symmetry constrains the order at which
anisotropy sets in. To this end, we write the current as
J = J (+) + J (−), where J (±)(E) ≡ 1

2 [J (E)± J (−E)] are,
respectively, even and odd under field reversal (E 7→ −E ). Note
that J (+) vanishes if inversion or C2z symmetry is conserved. In
the presence of C3z , the currents can be expanded as

J (−)
x + iJ (−)

y = a(E2)E+ + bE5
− +O(E7), [2]

J (+)
x + iJ (+)

y = c(E2)E2
− + dE4

+ +O(E6), [3]

where E± = Ex ± iEy, a = a0 + a1E2 + a2E4, c = c0 + c1E2,
and all other parameters are c-numbers. In particular, a0 = �L +
i�H , where �L (�H ) is the longitudinal (Hall) conductivity. Both
sides in Eqs. 2 and 3 transform as angular momentum Lz = 1
objects which are conserved mod 3 under C3z symmetry. If mirror
symmetryMx (x 7→ −x) is also conserved, one finds that a and b
are real while c and d are imaginary, whileMy (y 7→ −y) makes
all parameters real. Time-reversal symmetry further requires that
a is real by Onsager reciprocity. Similar expressions were obtained
for the odd current in the presence of C2z or C4z , while C6z results
again in Eq. 2. These are given in SI Appendix, section I C.

The anisotropy in the current is most clearly expressed in terms
of the longitudinal J‖ ≡ Ê · J and transverse J⊥ ≡ (Ê × ẑ) · J
current components with Ê = (cos �, sin �) the field direction.
This is because J‖ (J⊥) transforms as a scalar (pseudoscalar) under
a crystal symmetry. For example, for C3v = 〈C3z ,Mx〉 (or D3)
and T symmetry,

J (+)
⊥

= 2c̃E4 cos(3�), [4]

J (−)
‖

= aE + bE5 cos(6�), J (−)
⊥

= 2bE5 sin(6�), [5]

at leading order with real-valued c̃ = ic1. Here, we have assumed
that the even current is purely transverse. Note that the projected
currents gain an extra sign under field reversal. The lowest
nonzero Hall effect thus originates from the Berry curvature
hexapole in a system with C3z and T symmetry (14, 16).

Expansion in Coordination Shells

To calculate the current response, we start from the equations of
motion for electrons in a 2D crystal (17, 18):

ℏṙk = ∇k"k − ℏk̇ ×Ωk ẑ, ℏk̇ = −eE , [6]

where Ωk = −2 Im
(
〈∂uk/∂kx|∂uk/∂ky〉cell

)
is the Berry curva-

ture with uk(r) the cell-periodic Bloch functions in periodic
gauge (19), and "k is the band dispersion. The steady-state
current is given by J = −2e

∫
BZ

d2k
(2�)2 fk ṙk ≡ JBloch + J geom

with fk the nonequilibrium distribution function, obtained
from the Boltzmann transport equation. In the relaxation-time
approximation, by resumming the solution to all orders in the
electric field, we find

JBloch =
2e
Vcℏ

∑
R

iRf 0
R "−R

1− ie�E · R/ℏ
, [7]

J geom = (ẑ × E)
2e2

Vcℏ

∑
R

f 0
RΩ−R

1− ie�E · R/ℏ
, [8]
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where the sums run over lattice vectors,Vc is the unit cell area, and
"R , f 0

R , and ΩR are Fourier components with f 0
k = f 0("k) the

Fermi function. The factor two accounts for spin, as we assume
spin–orbit coupling is weak throughout this work.

We now consider a Chern trivial band, separated in energy
from other bands, with C3v = 〈C3z ,Mx〉 (or D3) and T
symmetry. Expanding in coordination shells:

"k =
∑
j,n

"j cos(k · L(j)
n ), Ωk =

∑
j,n

Ωj sin(k · L(j)
n ), [9]

where j runs over shells and n = 1, 2, 3 runs over lattice vectors
L(j)
n related by C3z , see Fig. 2A. All shells are regular hexagons

obtained by scaling and rotating the first shell. Since T is
preserved, "k (Ωk) is an even (odd) function of momentum.
Crystal symmetries S act as "k = "Sk and Ωk = det(S)ΩSk
and thus constrain the coefficients "j and Ωj.

For example, the second shell contains two lattice vectors
related by C3z and Mx (or C2y) symmetry, which therefore
contribute a term to Ωk that is even under Mx . Hence, Ω2 is
forbidden byMx but allowed byMy (or C2x) which forbids Ω1.
Similarly, only antisymmetric superpositions (Ω4 = −Ω5) of
the degenerate fourth and fifth shells are allowed. Conversely,
the dispersion conserves Mx for a symmetric superposition
("4 = "5). Plugging the expansions of Eq. 9 into Eqs. 7 and 8,
we obtain

J ‖/⊥Bloch = −
6eL
Vcℏ

∑
j

"j f 0
j Lj
L

F ‖/⊥Bloch
(
!B�Lj/L, � + �j

)
, [10]

Jgeom =
6eL
Vc�

∑
j

Ωjf 0
j

L2
L
Lj

Fgeom
(
!B�Lj/L, � + �j

)
, [11]

where f 0
j = f 0

R for R = L(j)
n . Note that T implies JBloch (Jgeom) is

even (odd) inE . For the first five shells, the scaling factors Lj/L =
{1,
√

3, 2,
√

7,
√

7} and angles �j = {0, �6 , 0,
�
6 +', �6 −'} with

' = arctan(
√

3
5 ), see Fig. 2A. We also defined

F ‖Bloch(� , �) =
�
[
8 + 6�2 + �4 cos2(3�)

]
16 + 24�2 + 9�4 + �6 cos2(3�)

, [12]

F⊥Bloch(� , �) =
�5 sin(3�) cos(3�)

16 + 24�2 + 9�4 + �6 cos2(3�)
, [13]

Fgeom(� , �) =
�4 (4 + �2) cos(3�)

16 + 24�2 + 9�4 + �6 cos2(3�)
, [14]

which are nonperturbative in the field strength. All material
details are contained in the coefficients "j, f 0

j , and Ωj. For a
fixed field strength E , the currents are roses as a function of the
field direction �. The longitudinal rose, shown in Fig. 2B, only
has one petal and depends rather weakly on �. On the other hand,
the transverse roses are strongly anisotropic. Both F⊥Bloch [Fig. 2C ]
and Fgeom [Fig. 2D] have six petals due to Mx symmetry, while
F⊥Bloch has an extra six petals fromMxT . As a check, we consider
the weak-field limit (!B� � 1) and recover the results from the
symmetry analysis. As the field strength increases, F ‖Bloch attains
a maximum at (!B�)2

∈ [4/3, 2] depending on �, and decays as
E−1 for !B� � 1. This decrease originates from electrons being
Bragg reflected before relaxing to equilibrium and manifests as
a negative differential conductance (20). However, unlike the
Bloch current, the geometric current plateaus for strong fields
(15). This is because the anomalous velocity grows linearly with

A

D C

B

Fig. 2. (A) First five coordination shells of the triangular lattice. (B–D) First-shell roses for the longitudinal (B), transverse Bloch (C), and geometric (D) current.
The color scale gives the value of !B� = e�EL/ℏ.
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the field, which cancels the E−1 decay. Hence, the geometric
current dominates the response at strong field:

lim
!B��1

Jgeom =
6e
Vc�

∑
j

Ωjf 0
j ��+�j ,�/6+m�/3

Lj cos[3(� + �j)]
, [15]

with m ∈ Z. The plateau value is very singular near 3(� +
�j) = �/2 + m� where contributions from Ωj vanish. Terms
with different �j can thus be distinguished by their dependence
on the field direction. Moreover, because the geometric current
first increases in magnitude and then plateaus, the geometric
differential conductance attains an extremum. For the first shell,
it lies at !B� ≈ 1.477 for � = m�/3 and shifts to larger fields
when �→ �/6 + m�/3.

Experimentally, one can distinguish between the Bloch and
geometric currents since they are odd and even in the electric field
when T is conserved, respectively. Moreover, assuming the first
shell dominates, which holds in the case of periodically buckled
graphene (Material Systems), the ratios

J⊥Bloch

J ‖Bloch

'
(!B�)4 sin(3�) cos(3�)

8 + 6(!B�)2 + (!B�)4 cos2(3�)
, [16]

J⊥Bloch
Jgeom

' −
"1�L2

ℏΩ1

!B� sin(3�)
4 + (!B�)2 , [17]

are independent of the chemical potential and yield � and "1/Ω1.
Measuring Jgeom at different fillings of the band would then, in
principle, yield Ω1 and "1. The inverse problem of extracting the
Fourier coefficients from the response is generally more tractable
when Ωk and "k are sufficiently smooth such that only a limited
number of shells contribute.

Material Systems

We apply the nonperturbative response theory to PBG (C3v)
and TDBG (D3 and C3). In both systems, the band structure is
tunable by applying an electric field normal to the xy plane. We
calculate "2

gap/"width for the highest valence band and the lowest
conduction band of a given valley and find broad windows in the
strong-field regime where the band-projected theory is valid, i.e.,

0.66 ps
�

10 nm
L
�

E
kV/cm

�
"2

gap

"widthmeV
10 nm
L

. [18]

Other potential material realizations include periodically gated
Bernal bilayer graphene (21) and moirés based on transition-
metal dichalcogenides (5). Moreover, large nonlinear responses
have already been studied both theoretically and experimentally
in twisted bilayer graphene, where a second-order Hall effect is
possible when both C2z and C3z are broken either due to disorder
(22) or strain (23–25).

We further consider the case where the buckling pattern
(PBG) or the moiré lattice (TDBG) varies slowly with respect
to the atomic lattice. Hence, the two valleys of graphene (K±)
are effectively decoupled. The total current is then obtained
by summing contributions from both valleys, resulting in a
small modification of the expressions in Eqs. 7 and 8. Since
the valleys are related by T , the total current is obtained by
letting f 0

R "−R 7→ 2 Re
(
f 0+
R "+

−R

)
in the Bloch current and

f 0
RΩ−R 7→ 2 Im

(
f 0+
R Ω+

−R

)
in the geometric current where the

superscript corresponds to valley K+. This modification does
not change Eq. 16 but gives an extra factor from the phases of
the Fourier components in Eq. 17. A shell expansion for two
decoupled bands, which individually break T and carry valley
Chern numbers, is given in SI Appendix, section II E.

Periodically Buckled Graphene. When monolayer graphene is
placed on top of NbSe2 or hBN (8, 26) as well as artificial
nanobubble (27) or nanopillar (28–30) substrates, it can undergo
a buckling transition. Here, we consider a substrate-induced
buckling transition that gives rise to a periodic height profile
with C3v symmetry. In the first-star approximation, the height
profile is given by h(r) = h0

∑3
n=1 cos

(
Gn · r + �

4 + �
)

with
Gn = Cn−1

3z (0, 4�/
√

3L), where the phase � controls the shape
of the profile (8, 30–32). Experimentally, � can be tuned by
designing different artificial substrates. When h(r) varies slowly
on the graphene lattice scale (L � a = 0.246 nm), a valley-
projected theory can be used with Hamiltonian (30)

H� = ℏvF
[
k +

�e
ℏ
A(r)

]
·
(
��x , �y

)
+ V(r)�0, [19]

where � = ±1 indicates the valleys K� and vF =
√

3 t0a/2 is
the Fermi velocity with t0 = 2.7 eV (33). Here, the scalar field
V = V0

∑3
n=1 cos

(
Gn · r + �

4 + �
)

originates from applying
an electric field (different from the driving field) normal to
the nominal graphene plane (34) and B = ∇ × A = ẑB(r)
with B(r) = B0

∑3
n=1 cos (Gn · r − 2�) the strain-induced

pseudomagnetic field (PMF). The latter is obtained by taking into
account in-plane relaxation while keeping the height modulation
fixed (30) (SI Appendix, section III A). Up to a translation,
the PMF is invariant under � 7→ � + �/3 while V changes
sign. Hence, we restrict ourselves to � ∈ (−�/6,�/6]. For
concreteness, we take L/l0 = 6 with L = 14 nm, where
l0 =

√
ℏ/eB0 ∝

√
aL3/h2

0 is an effective magnetic length.
These are the experimental values of ref. 8. Furthermore, because
�zH� [V]�z = −H� [−V], we only consider the highest valence
band (of both valleys) for PBG.

In Fig. 3A, we show "2
gap/"width in the (V0,�) plane for

the highest valence band. By varying the shape of the height
profile and the electric field normal to the nominal graphene
plane, this ratio is in the range 10 to 100 meV which should
be large enough to avoid electric breakdown in the strong-field
regime. As an example, we consider the parameters indicated
with a cross on Fig. 3A. For this case, the valley Chern number is
given by ±1 for valley K±, and the bands along high-symmetry
lines are shown in Fig. 1A. In Fig. 3B, we show the relative
magnitude and phase of the Fourier components "+R and Ω+

R .
We see that the first shell dominates in this particular case. The
longitudinal and geometric current as well as the corresponding
differential conductance are shown in Fig. 3C for different fillings
of the band. We find that the strong-field regime is reached
for E ≈ 1 kV/cm. The longitudinal current does not depend
strongly on the field direction; hence, we only show the case
� = 0◦. Here, theE−1 decay for!B� � 1 manifests as a negative
differential conductance. On the other hand, the geometric
current is strongly anisotropic, as is clear from the current rose
shown in Fig. 1C. We see that the plateau in the geometric
current shifts to larger fields as we increase � from 0◦ to 20◦,
concomitant with a shift and broadening of the peak in the
differential conductance.
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B

Fig. 3. (A) "2
gap/"width for the highest valence band of PBG in the (V0 ,�) plane. The cross corresponds to the case shown in Fig. 1A. Some K+ valley Chern

numbers of the two bands near charge neutrality are shown. (B) Relative magnitude and phase of "+R and Ω+
R for the cross in (A). (C) J‖Bloch for field direction

� = 0◦ and |Jgeom| for � = 0◦ (solid) and � = 20◦ (dashed), as well as the differential conductance, for T = 5 K. The color scale gives the filling n/n0 of the band.

Twisted Double Bilayer Graphene. TDBG consists of a stack
of two (AB or BA) Bernal bilayer graphene layers that are
twisted relative to each other (11, 35). A second-order Hall
effect was recently observed in TDBG for twist angles � ∼ 1◦
where C3z was broken by strain (36–39), making this system a
promising platform for studying nonperturbative responses. For
such small twists, one can again use a valley-projected theory; see
SI Appendix, section IV. The tunable parameters for TDBG are
now given by the twist angle # and the bias difference U between
the topmost and bottommost layer due to an applied electric field
(different from the driving field) normal to the TDBG plane.
The latter reduces the point group of TDBG from D3 to C3. As
such, the current roses are less constrained and only show C3z
symmetry; see Fig. 1D.

In Fig. 4A, we show "2
gap/"width in the (U, #) plane for the

lowest conduction band. By varying the twist angle and the bias,
this ratio can be of the order of 5 meV which limits the range
of electric fields where the band-projected theory is valid in the
strong-field regime to a few kV/cm. We note that this ratio can
be larger for smaller twist angles # � 1◦. However, for such
small twists, lattice relaxation might become important, and as
such, we do not consider them here. As an example, we consider
the parameters indicated with a cross on Fig. 4A. For this case,
the valley Chern number is given by ∓2 for valley K±, and the
bands along high-symmetry lines are shown in Fig. 1B. In Fig.
4B, we show the relative magnitude and phase of the Fourier
components "+R and Ω+

R up to the fifth shell. Contrary to the

case chosen for PBG in Fig. 3, many shells contribute. The
longitudinal and geometric current as well as the corresponding
differential conductance are shown in Fig. 4C for different fillings
of the band. Because the moiré lattice constant Lm(# = 1.44◦) ≈
9.8 nm is of the same order as the one chosen for PGB and
the first shell is still the largest contribution, the onset of the
strong-field regime is again given by E ≈ 1 kV/cm. Generically,
the longitudinal current does not depend strongly on the field
direction; hence, we only show the case � = 0◦. On the other
hand, as already demonstrated in Fig. 1D, the geometric current is
strongly anisotropic. The field strength for which Jgeom plateaus
as well as the position and width of the peak in dJgeom/dE is
strongly dependent on the field direction. Moreover, since the
point group of interlayer-biased TDBG is C3, there are no mirror
axes for which the transverse currents vanish. Hence, there is no
fixed field direction for which the plateau is reached first as a
function of the field strength.

Discussion

In this work, we have studied the anisotropy in the current
response to a static electric field within a semiclassical band-
projected theory up to infinite order in the field strength.
We have focused on two-dimensional superlattice systems with
trigonal symmetry that feature spectrally isolated and narrow
minibands, for which electric breakdown is absent even in
the strong-field regime. We have demonstrated that the Bloch
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Fig. 4. (A) "2
gap/"width for the lowest conduction band of AB–AB TDBG in the (U, #) plane. The cross gives the case shown in Fig. 1B, and the K+ valley Chern

numbers of the two bands near charge neutrality are shown. (B) Relative magnitude and phase of "+R and Ω+
R for the cross in (A) up to the fifth shell. (C) J‖Bloch

for field direction � = 0◦ and Jgeom for � = 0◦ (solid) and � = 20◦ (dashed), as well as dJ/dE, for T = 5 K. The color scale gives the filling n/n0 of the band.

(geometric) currents can be written in terms of an expansion in
coordination shells where each term is given by a rose weighted by
the Fourier component of the group velocity (Berry curvature).
Here, each rose obeys the symmetries of the given shell. While
the longitudinal current rose has no petals and hence a weak
anisotropy, the transverse currents are strongly anisotropic. The
latter follows from the fact that roses originating from shells
with mirror symmetries necessarily have nodes and thus several
petals. Furthermore, for the longitudinal and Bloch transverse
response, the strong-field regime is characterized by a negative
differential conductance due to electrons being Bragg reflected
before relaxing their momentum. For the geometric response,
however, the current plateaus in the strong-field regime, yielding
a peak in the differential conductance whose position and width
strongly depend on the field direction.

We have suggested two candidate systems: periodically buckled
graphene and twisted double bilayer graphene. For these systems,
strong-field responses are accessible at field strengths E ∼
1 kV/cm owing to a lattice constant of the order of 10 nm.
Importantly, because these systems break C2z symmetry but
conserve time-reversal symmetry, there is a nonlinear geometric

response from the momentum distribution of Berry curvature.
We have further shown that "2

gap/"width ∼ 50 meV for PBG and
"2

gap/"width ∼ 5 meV for AB–AB TDBG, such that especially
for the case of PBG, the strong-field regime can be reached
well before electric breakdown. Finally, we note that most moiré
systems display some degree of heterostrain which breaks rotation
symmetry (40). In some cases, this feature is necessary to observe
a second-order Hall effect (36–39). Hence, in the presence of
strain, the symmetry of the rose pattern at low fields is expected
to be reduced, while at larger fields, the petal structure enforced
by C3z symmetry is expected to be only slightly perturbed.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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