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Significance

While researchers have 
elucidated mechanisms 
underlying the circadian clock’s 
innate oscillation and its light 
responsiveness, the molecular 
and cellular machinery 
responsible for its resistance to 
incidental perturbations remains 
uncertain. We studied the central 
mammalian clock in the 
suprachiasmatic nucleus (SCN) 
and the role of the neuropeptide 
arginine vasopressin (AVP), 
recognized as a major 
neurotransmitter in SCN neurons 
and for coherent SCN output. 
Using a variety of conditional 
knockout mouse lines, we show 
that robustness of this master 
clock is mediated by two 
independent AVP pathways, one 
inside the SCN via AVP-V1a 
receptors and the other outside 
the SCN via anterior pituitary 
AVP-V1b receptors. Even though 
the SCN can function as an 
autonomous clock, its resilience 
depends on extra-SCN tissue 
feedback.
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CELL BIOLOGY
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The circadian clock is a biological timekeeping system that oscillates with a circa-24-h 
period, reset by environmental timing cues, especially light, to the 24-h day–night cycle. 
In mammals, a “central” clock in the hypothalamic suprachiasmatic nucleus (SCN) 
synchronizes “peripheral” clocks throughout the body to regulate behavior, metabo-
lism, and physiology. A key feature of the clock’s oscillation is resistance to abrupt 
perturbations, but the mechanisms underlying such robustness are not well understood. 
Here, we probe clock robustness to unexpected photic perturbation by measuring the 
speed of reentrainment of the murine locomotor rhythm after an abrupt advance of the 
light–dark cycle. Using an intersectional genetic approach, we implicate a critical role 
for arginine vasopressin pathways, both central within the SCN and peripheral from 
the anterior pituitary.

circadian clock | suprachiasmatic nucleus | vasopressin | pituitary

Virtually, all organisms have an internal timekeeping system, which oscillates with an 
endogenous “free-running” period of close to 24 h (“circa-dian”) that can be accurately 
synchronized (entrained) to exactly 24 h by daily environmental timing cues, especially 
light (1–3). In mammals, the master circadian clock in the suprachiasmatic nucleus (SCN) 
of the hypothalamus governs peripheral clocks throughout the brain and the body for 
temporal control of cellular metabolism and physiology. To function as a reliable “clock”, 
the SCN must measure time with cycle-to-cycle precision; that is, its rhythm must be 
robust in the face of errant variations or random perturbations that might interfere with 
its sustained oscillation.

A “jet lag” protocol is a useful, noninvasive, quantifiable, behavioral assessment of the 
capacity of the SCN to resist a shift in its ongoing oscillation after a sudden large shift in 
the timing of the external light–dark (LD) cycle; its robustness against this perturbation 
may be gauged by measuring the rate at which the locomotor activity rhythms of exper-
imental animals resynchronize after a sudden 8-h advance or delay of the LD cycle. 
Resetting of the behavioral rhythm is not completed immediately but proceeds slowly 
over several days; in C57BL/6 inbred mice, it takes approximately 10 d for complete 
reentrainment when the LD cycle is advanced by 8 h (4). A less robust, compromised 
system, with less capacity to withstand the external shift, would be expected to reentrain 
more quickly, in fewer days.

Most research on the mechanisms underlying the robustness of the circadian system 
has focused on the SCN, both at the intracellular molecular level and at the intercellular 
network level (5–7). We have previously reported that mice globally deficient in arginine 
vasopressin (AVP) receptors V1a and V1b (V1a–/–V1b–/– mice) exhibit essentially imme-
diate, complete shifts in circadian rhythms of behavior, body temperature, and gene 
expression in response to an abruptly shifted LD cycle, suggesting that these receptors are 
critical for the robustness of the circadian clock to this perturbation (4).

Here, we systematically elucidate the basis for AVP signaling in providing circadian 
robustness using an intersectional genetic approach. Our results reveal crucial roles for an 
unexpected extra-SCN source involving the anterior pituitary and for an intra-SCN source 
involving the neuropeptide somatostatin.

Results

AVP and V1a in the SCN Partially Contribute to Conferring Circadian Robustness. We 
first sought to determine the role of intrinsic SCN AVP signaling by generating three 
SCN-specific lines of knockout mice. First, we generated SCN-specific AVP knockout 
(SCN-AVP–/–) mice by crossing AVP-floxed mice, in which exon 1 of the AVP gene is 
loxP-flanked (floxed), with SCN-Cre mice that have Cre recombinase (Cre) expression 
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directed to inhibitory GABAergic neurons under the control 
of the Vgat promoter (SI Appendix, Fig. S1 A and B) (8), since 
AVP neurons in the SCN are GABAergic, whereas those in the 
paraventricular nucleus (PVN) and the supraoptic nucleus (SON) 
are not (9–11). Indeed, immunohistochemical analyses revealed that 
AVP expression was totally disrupted in the SCN of the mutant 
mice (SI Appendix, Fig. S1C), while expression in the PVN, SON, 
and the median eminence (ME) was not affected (SI Appendix, 
Fig. S1 D–F). Although AVP depletion in the SCN did not cause 
overt gross abnormalities, lethality, or infertility, we and other 
researchers (12) have found that global AVP deficiency causes death 
at or shortly after birth. We note that AVP cells outside the SCN 
would also be affected if the cells were GABAergic.

Second, SCN-specific V1a knockout (SCN-V1a–/–) mice were 
generated by crossing V1a-floxed mice, in which the coding region 
in exon 2 of the V1a gene is loxP-flanked (SI Appendix, Fig. S2 A 
and B), with SCN-Cre mice. V1a is expressed not only in the SCN 
but also in other tissues or organs, such as the liver (13). qPCR-based 
measurements revealed that V1a expression was completely abol-
ished in the SCN of SCN-V1a–/– mice but not in the liver 
(SI Appendix, Fig. S2C). This was in contrast to liver-specific V1a 
knockout (Alb-V1a–/–) mice, generated by crossing V1a-floxed mice 
with Albumin-Cre mice that express Cre driven by the albumin 
promoter, a reliable hepatocyte-specific promoter (14); as expected, 
V1a expression was completely lost in the liver of Alb-V1a–/– mice, 
but not in the SCN (SI Appendix, Fig. S2C). We confirmed that 

global V1a knockout (V1a–/–) mice, generated by using CAG-Cre 
mice that express Cre under the control of the ubiquitous CAG 
promoter, did not express V1a in either SCN or liver (SI Appendix, 
Fig. S2C).

Third, since V1b has been reported to be expressed in the SCN 
by in situ hybridization (15, 16), we generated SCN-specific V1b 
knockout (SCN-V1b–/–) mice by crossing V1b-floxed mice, in 
which the coding region in exon 2 of the V1b gene is loxP-flanked 
(SI Appendix, Fig. S3 A and B), with SCN-Cre mice.

By using these mutant mice, we examined the effect(s) of 
SCN-specific deletion of AVP, V1a, or V1b on the regulation of 
the speed of reentrainment after the LD cycle was abruptly 
advanced by 8 h (Fig. 1 A and B). To quantitatively compare reen-
trainment speeds measured in mice of each genotype, we calculated 
50% phase-shift values (PS50) (17). Compared to wild-type (WT) 
mice, SCN-AVP–/– and SCN-V1a–/– mice exhibited a significantly 
faster reentrainment to the shifted LD cycle (PS50 of ~6.1, ~4.3, 
and ~4.0 d, for WT, SCN-AVP–/–, and SCN-V1a–/–, respectively, 
Fig. 1C). In contrast, although global V1b knockout (V1b–/–) mice, 
generated by mating with CAG-Cre mice, also reentrained signif-
icantly faster (PS50 of ~3.8 d), SCN-V1b–/– mice showed a similar 
speed of reentrainment to WT as well as to AVPflox/flox, V1aflox/flox, 
Alb-V1a−/−, V1bflox/flox, SCN-Cre, and Alb-Cre mice (Fig. 1C and 
SI Appendix, Fig. S4), suggesting that AVP and V1a within the 
SCN and V1b outside the SCN have roles in reentrainment kinet-
ics under jet lag. Of note, the period length of locomotor activity 
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Fig. 1. SCN-AVP−/− and SCN-V1a−/− mice, but not SCN-V1b−/− mice, show faster reentrainment after LD advance. (A) Representative single-plotted actograms of 
WT, SCN-AVP−/−, SCN-V1a−/−, and SCN-V1b−/− mice subjected to an 8-h phase advance of the LD cycle. Black, red, and green-filled circles indicate assessed day of 
completed phase advance of activity onset. (B) Activity onset in the 8-h phase advance [means ± SEM; n = 17 (WT), 11 (SCN-AVP−/−), 10 (SCN-V1a−/−), and 13 (SCN-
V1b−/−)]. The data of WT mice are replicated for reference. (C) PS50 values in phase advance (means ± SEM; n for groups as shown; ****P < 0.0001, ***P < 0.001, 
one-way ANOVA with Dunnett post hoc test).
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rhythms in constant darkness (DD), the phase angle from LD to 
DD, and the magnitude of phase shift after a short light pulse in 
SCN-AVP–/– and SCN-V1a–/– mice were essentially identical to 
those in WT mice (SI Appendix, Fig. S5), excluding the interpre-
tation that rapid reentrainment in SCN-AVP–/– and SCN-V1a–/– 
mice was simply caused by an impaired clock, an advanced clock, 
or increased light sensitivity.

We considered the possibility that V1b had not been efficiently 
disrupted in the SCN of SCN-V1b–/– mice; however, using 
qPCR-based measurements, we found instead that V1b was not 
expressed in WT SCN samples obtained by laser-microdissection 
technique (SI Appendix, Fig. S6A), in contrast to the well-known 
circadian expression of Per2 (SI Appendix, Fig. S6B) or V1a 
(SI Appendix, Fig. S6C) in the same SCN samples. The lack of 
detectable V1b expression in the SCN is thus consistent with our 
genetic data showing that SCN-V1b–/– mice reentrain to the shifted 
LD cycle with a speed similar to that of WT, in contrast to the 
rapid reentrainment of V1b–/– mice. Based on these results, we 
reasoned that V1b outside the SCN must play a critical role in 
the V1b–/– circadian phenotype, and to implicate candidate loca-
tions, we systematically checked V1b expression sites by qPCR 
using tissue/organ-specific samples. Using the same primers tar-
geting V1b, we were able to successfully detect V1b expression in 
the pituitary (SI Appendix, Fig. S6A), where V1b mRNA has been 
reported to be abundantly expressed (18–20).

V1b in the Pituitary and AVP in CRF (Corticotropin-Releasing 
Factor) Neurons Are Involved in the Speed of Reentrainment. 
We next characterized a daily V1b expression profile using pituitary 
samples collected at 4-h intervals over 24 h. V1b expression in 
the pituitary showed no rhythmicity but was consistently high 
throughout the day (SI  Appendix, Fig.  S6D). Interestingly, we 
found exclusive expression of V1b in the pituitary, with no 
expression of V1a (SI Appendix, Fig. S6C) or V2 (SI Appendix, 
Fig. S6E), suggesting that V1a, V1b, and V2, are expressed in the 
SCN, pituitary, and kidney, respectively. Since the pituitary gland 
is composed of three lobes (anterior, intermediate, and posterior), 
each with unique functions, we further investigated which parts 
of the pituitary gland express V1b using a laser-microdissection 
technique (SI  Appendix, Fig.  S6E). We found that V1b was 
expressed in the anterior pituitary, but we could not detect V1b 
in either the posterior or intermediate lobe (SI Appendix, Fig. S6 
F and G).

The pituitary gland itself has been tested previously as a poten-
tial site of the master circadian clock. However, based on extensive 
studies in rats, Richter concluded that the pituitary gland, like 
other endocrine glands, is not essential for the generation of cir-
cadian locomotor activity rhythms (21). Indeed, researchers found 
that, in contrast to SCN lesions (22, 23), hypophysectomy (HPX) 
did not abolish rhythmicity (24–26). However, a role for the pitu-
itary gland in setting reentrainment speed under jet-lag conditions 
has not been reported. We found that when we abruptly advanced 
the LD cycle by 8 h, HPX mice reentrained to the new cycle 
significantly faster than non-HPX mice (Fig. 2 A–C); the HPX 
PS50 value of ~4.0 d, similar to that of V1b–/– mice (PS50 ~3.8 d), 
suggests that V1b in the anterior pituitary contributes to regulat-
ing the speed of reentrainment under jet lag. Behavioral analyses 
confirmed that the period length of locomotor activity rhythms 
in DD, the phase angle from LD to DD, and the magnitude of 
phase shift after a short light pulse in HPX mice were essentially 
identical to those in non-HPX mice (SI Appendix, Fig. S7).

V1b-expressing cells in the anterior pituitary receive AVP 
secreted by parvocellular neurons of the PVN projecting to the 
external zone of the ME and transported via the pituitary portal 

vein. These parvocellular AVP neurons, which are distinct from 
AVP neurons in the magnocellular PVN and SON that release 
AVP from the posterior pituitary as an antidiuretic hormone, 
coexpress CRF and synergistically stimulate adrenocorticotropic 
hormone (ACTH)-releasing cells in the anterior pituitary (27, 28) 
(Fig. 2D).

Since V1b is exclusively expressed in the ACTH cells in the 
anterior pituitary (29), we utilized Cre driven by the promoter of 
proopiomelanocortin (Pomc), the precursor of ACTH (30), to 
specifically knockout V1b in the anterior pituitary. In Pomc-positive 
cell-specific V1b conditional knockout (Pomc-V1b–/–) mice, gen-
erated by mating Pomc-Cre mice with V1bflox/flox mice, V1b expres-
sion was specifically and completely deleted in the pituitary but 
was not affected in the hippocampus, a site of high V1b expression 
(31), (SI Appendix, Fig. S3C). Expectedly, Pomc-V1b–/– mice 
exhibited significantly faster reentrainment than WT mice when 
the LD cycle was advanced by 8 h, with a reentrainment speed 
comparable to that of global V1b–/– and HPX mice (PS50 of ~6.1, 
~3.4, ~3.8, and ~4.0 d for WT, Pomc-V1b–/–, V1b–/–, and HPX, 
respectively, Fig. 2 C, E, F, and I). Reentrainment speed of V1bflox/

flox and Pomc-Cre mice was not significantly different from that  
of WT mice (Figs. 1C and 2I). To further examine the role of the 
parvocellular PVN AVP/CRF neurons that act on the V1b- 
expressing ACTH cells, we generated CRF-positive cell-specific 
AVP conditional knockout (CRF-AVP–/–) mice by mating CRF-Cre 
mice with AVPflox/flox mice. In CRF-AVP–/– mice, AVP immuno-
reactivity in the external zone of the ME, the terminals of CRF 
neurons, was significantly decreased compared to control AVPflox/

flox and CRF-Cre mice, whereas AVP in the internal zone was not 
changed (SI Appendix, Fig. S8), indicating that AVP was selectively 
down-regulated in parvocellular AVP/CRF neurons but not in 
magnocellular neurons. We found that CRF-AVP–/– mice showed 
significantly faster reentrainment after an 8-h LD cycle advance 
than WT mice (Fig. 2 G–I), indicating that AVP in CRF neurons 
is involved in the modulation of reentrainment speed under jet 
lag. Behavioral analyses confirmed that the period length of loco-
motor activity rhythms in DD, the phase angle from LD to DD, 
and the magnitude of phase shift after a short light pulse in 
Pomc-V1b–/– and CRF-AVP–/– mice were essentially identical to 
those in WT mice (SI Appendix, Fig. S5).

SCN-V1a–/–; Pomc-V1b–/– Double Conditional Knockout Mice Exhibit 
Immediate Reentrainment. Our data above demonstrate that V1a 
in the SCN and V1b in the Pomc cells regulate reentrainment speed 
under jet lag. If these two receptors function independently, double-
mutant mice should reentrain even faster than either single-mutant 
mice alone. Indeed, SCN-V1a–/–; Pomc-V1b–/– double conditional 
knockout (SCN-V1a–/–; Pomc-V1b–/–) mice exhibited essentially 
immediate, complete reentrainment compared to WT, SCN-V1a–/–, 
and Pomc-V1b–/– mice after the 8-h advance of the LD cycle (PS50 
of ~6.1, ~4.0, ~3.4, and ~1.4 d for WT,SCN-V1a–/–, Pomc-V1b–/–, 
and SCN-V1a–/–; Pomc-V1b–/–, respectively, Fig. 3). The immediate 
re-entrainment phenotype of SCN-V1a–/–; Pomc-V1b–/– mice thus 
can reproduce that of the global V1a–/–; V1b–/– mice that we had 
previously reported (4). Of note, SCN-V1a–/–; Pomc-V1b–/– mice 
did not show any alteration in period length in DD, the phase angle 
from LD to DD, or the magnitude of phase shift after a short light 
pulse (SI Appendix, Fig. S5).

SCN Somatostatin Is Involved in the Speed of Reentrainment. 
How is the pituitary involved in the regulation of re-entrainment 
under jet lag? To determine the effect of pituitary ablation on the 
SCN clock, we examined gene expression profiles in the SCN 
of HPX mice (Fig. 4 A and B). A customized panel of 38 SCN 
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genes, including representative core clock genes, clock-controlled 
genes, and circadian clock-related neurotransmitters and receptors, 
was analyzed by quantitative RT-PCR using the Fluidigm system 
(32, 33). Measurement at 6 time points before and after an 8-h 

advance of the LD cycle revealed preferentially and consistently 
downregulated mRNA expression of somatostatin (SST) in the 
SCN of HPX mice compared to control non-HPX mice, while 
other genes remained unaltered (Fig. 4B). The reduction in SST 
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gene expression was further confirmed using the StepOnePlus 
Real-Time PCR system (Fig. 4C). Microarray analysis revealed 
that SST showed the strongest signal intensity among the genes 
whose expression levels were reduced by more than 1.7-fold in 
the SCN of HPX mice compared to non-HPX mice at both ZT2 
and ZT14 (SI Appendix, Table S1).

SST has been implicated in circadian rhythmicity (34–36) and 
phase shifts (37, 38). We next performed SST immunohistochem-
istry in the SCN to examine whether reduced SST gene expression 
was reflected in SST protein expression and its histological distri-
bution in HPX mice. As previously reported, SST neurons were 
located in the dorsomedial region and projected to the ventrolat-
eral region of the SCN (39, 40), where SST receptor subtype 1 
(SSTR1) is expressed (41). SSTR1 is the only SST receptor 
expressed in the SCN (SI Appendix, Fig. S9), although its circadian 
function remains unknown. In the SCN of HPX mice, SST axonal 
arborization was significantly reduced compared to that of 
non-HPX mice (Fig. 4D). A similar significant decrease in SST 
innervation was also observed in the SCN of V1b–/– and 
Pomc-V1b–/– mice, but not of V1bflox/flox or V1a–/– mice, compared 
to WT mice (Fig. 4E). These results indicate that pituitary V1b 
plays a pivotal role in maintaining SST innervation in the SCN.

To investigate whether SST affects reentrainment speed after 
the LD cycle advance, we generated SST mutant (SSTm/m) mice 
(SI Appendix, Fig. S10). SSTm/m mice, deficient in SST mRNA 
and protein expression (SI Appendix, Fig. S10), as well as SSTR1–/– 
mice, exhibited significantly faster reentrainment after the advance 

than WT mice (Fig. 4 F–H), with PS50 values comparable to those 
for CRF-AVP–/– and Pomc-V1b–/– mice. During the preparation 
of our manuscript, other investigators also reported a similar phe-
notype of SST–/– mice (42). Behavioral analyses confirmed that the 
period length in DD, the phase angle from LD to DD, and the 
magnitude of phase shift after a short light pulse in SSTm/m and 
SSTR1–/– mice were essentially identical to those in WT mice 
(SI Appendix, Fig. S5). These results indicate that SST-SSTR1 in 
the SCN, which is affected by pituitary V1b, plays an important 
role in the regulation of reentrainment speed under jet lag.

Discussion

To probe the robustness of the circadian clock’s oscillation to an 
unexpected photic perturbation, we measured the speed of reen-
trainment of the murine locomotor activity rhythm after a sudden 
8-h advance of the LD cycle. Using an intersectional genetic 
approach, we have demonstrated that the inactivation of two path-
ways—an intra-SCN AVP/V1a pathway and an extra-SCN V1b 
pathway from parvocellular PVN AVP/CRF neurons to anterior 
pituitary ACTH cells—dramatically diminishes circadian robust-
ness, decreasing the PS50 from 6 d to little more than 1 d, with 
the V1b pathway presumably acting via regulation of SCN SST-
SSTR1 activity. Importantly, SCN-V1a–/–; Pomc-V1b–/– double 
conditional knockout mice exhibit essentially immediate, com-
plete reentrainment compared to either SCN-V1a–/– or Pomc-
V1b–/– mice alone, indicating the independent and additive 
contribution of the SCN AVP/V1a and PVN AVP/pituitary V1b 
pathways to the robustness of the clock (SI Appendix, Fig. S11).

AVP and CRF are coproduced in the parvocellular PVN (27, 43) 
and released into the pituitary portal vessels, where they act on V1b 
and CRF1 receptors, respectively, on corticotroph cells to stimulate 
ACTH release and activate the hypothalamic-pituitary-adrenal 
(HPA) axis (44). Glucocorticoids released from the adrenal cortex 
are known to modulate reentrainment under jet lag (17, 45). Taken 
together with our present findings, we conclude that the activity of 
an intact AVP/V1b-driven HPA axis plays a crucial role in building 
a robust circadian clock in vivo.

All life activities, including behavior, are based on homeostasis, 
in which physiological variables such as body temperature and 
fluid balance are maintained within a certain range. The hypo-
thalamus and pituitary are the primary regulators of homeostasis, 
with the HPA axis playing a major role in controlling the response 
to stress and regulating many biological processes, including diges-
tion, energy storage and expenditure, mood and emotion, and 
immune function. Our present results argue that “central” circa-
dian clock function under the “stress” of jet lag is not exempt from 
“peripheral” modulation by the HPA axis via a PVN AVP/pituitary 
V1b mechanism.

Materials and Methods

Animals. AVP-flox mice were designed and generated by Keiichi Itoi, Kenji 
Sakimura, and their lab members to address a different experimental issue 
from the present study, which has been submitted elsewhere (46). To generate 
AVP-flox, V1a-flox, and V1b-flox mice, targeting vectors were designed in which 
exon 1 of the mouse Avp gene, amino acids coding region in exon 2 of the mouse 
V1a gene, and amino acids coding region in exon 2 of the mouse V1b gene, 
respectively, were flanked by two loxP sites. Each targeting vector was constructed 
with C57BL/6 genomic fragments containing 6.5 kb 5′ arm and 5.3 kb 3′ arm 
(Avp-flox), 5.4 kb 5′ arm and 5.8 kb 3′ arm (V1a-flox), and 5.2 kb 5′ arm and 5.9 
kb 3′ arm (V1b-flox), a neomycin resistance cassette, and a diphtheria toxin gene. 
The linearized targeting vector was electroporated into the C57BL/6 embryonic 
stem cell line RENKA (47). Correctly targeted clones were identified by Southern 
blotting using 5′, 3′, and neo probes. The ES cells evaluated to have the correct 
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recombination were used to yield chimeric mice as described previously (48). 
Chimeric mice were mated with C57BL/6 mice, and the offspring were further 
crossed with Flippase expressing B6-Tg(CAG-FLPe)37 mice (RIKEN BRC Stock No: 
RBRC01835) to yield floxed heterozygous mice (49). Global knockout mice were 
generated by mating with B6.Cg-Tg(CAG-Cre)CZ-MO2Osb mice (RIKEN BRC Stock 
No: RBRC01828) (50). To generate SCN-, liver-, pituitary-, and CRF cells-specific 
knockout mice, each of the floxed mice was crossed with Slc32a1tm2(cre)Lowl/J 
mice (The Jackson Lab. Stock No: 016962), Albumin-Cre mice (51), Tg(Pomc1-
cre)16Lowl/J mice (The Jackson Lab. Stock No: 005965), and CRF-Cre mice (52), 
respectively. These Cre recombinase-expressing mice were backcrossed into the 
C57BL/6 background for at least 8 generations before mating with floxed mice. All 
the Cre genotypes used in this study were heterozygous. Mutant mice for the gene 
encoding SST were generated by gene targeting with mouse ES cells as described 
previously (53). The targeting vector contained the 5′-homologous region of 8.5 
kb of the SST gene, the internal ribosomal entry site, the cDNA encoding human 
interleukin-2 receptor α-subunit (IL-2Rα) fused to green fluorescent protein, 
the phosphoglycerate kinase-1 promoter-neo resistant gene cassette (PGK-neo) 
flanked by the two loxP sites, the 3′-homologous region of 2.6 kb of the SST gene, 
and the diphtheria toxin A-fragment gene cassette (SI Appendix, Fig. S10). Mice 
heterozygous for the targeted mutation (SST+/neo) were bred with Cre transgenic 
mice to delete the PGK-neo gene cassette. Resultant heterozygous mutant mice 
(SST+/m) were backcrossed with C57BL/6J mice for more than 9 generations and 
used to obtain homozygous mutant mice (SSTm/m). SSTm/m mice develop normally 
without somatic gigantism, as reported in a line of SST–/– mice (54). SSTR1–/– mice 
were generated as described previously (55), and backcrossed into the C57BL/6 
background. HPX mice were purchased from Shimizu Laboratory Supplies (Kyoto, 
Japan). Mice (2 to 5 mo old, age-matched between genotypes) were used for 
immunohistochemistry or gene expression analysis.

Behavioral Activity Monitoring for Jet-Lag Experiments. Mice (2 to 3 mo 
old, age-matched between genotypes) were individually housed in light-tight, 
ventilated closets in a temperature- and humidity-controlled facility with ad libi-
tum access to food and water. The animals were entrained to a 12-h-light (~200 
lx fluorescent light)/12-h-dark (LD) cycle for at least ten days to synchronize 
(entrain) the circadian clock to the ambient LD cycle, and then, the LD cycles were 
phase-advanced by 8 h. Locomotor activity was recorded in 5-min bins with a 
passive (pyroelectric) infrared sensor (FA-05 F5B; Omron), and the data obtained 
were analyzed with ClockLab software (Actimetrics) developed on MatLab 
(Mathworks). To better assess the rate of reentrainment, in this study, we used 
the PS50 value obtained by calculating the daily onset times after LD advance, 
rather than a single data point when reentrainment was completed. Onset times 
of locomotor activities under jet lag were determined by careful observation of 
all activity data, using offset times and smooth behavioral transitions over several 
days as a reference whenever possible. To determine PS50 values, sigmoidal 
dose–response curves with variable slope, Y = Bottom + (Top – Bottom)/(1 + 
10(log PS50 – X) HillSlope), were fitted to the onset time points of locomotor activity 
using GraphPad Prism software (17). The free-running period was determined by 
fitting a linear regression line to the activity onsets, based on animal behaviors 
over a 14-d interval taken 3 d after the start of the DD condition. The magnitude 
of phase shifts in behavioral activity after release to DD was determined as the 
time difference between the regression lines of activity onsets before and after 
the start of DD. For the light pulse-induced phase-shift experiments, mice put 
in DD were exposed to a light pulse for 30 min at CT14. The amplitude of light-
induced phase shifts is greatest at CT14, which is appropriate for the comparison 
of light responsiveness between genotypes. Phase shifts were quantified as 
the time difference before and after the light application. All experiments were 
conducted in accordance with the ethical guidelines of the Kyoto University 
Animal Research Committee.

Immunohistochemistry. For immunohistochemistry of AVP and SST, animals 
were anesthetized and perfused with cold fixative (4% paraformaldehyde in 0.1 
M PB) at ZT4. After fixation, coronal brain sections (30 μm thick) cut on a cry-
ostat microtome (CM3050S, Leica) were processed for free-floating immunohis-
tochemistry with rabbit polyclonal antibody against AVP (Merck, AB1565, 1:5,000 
dilution) and rabbit polyclonal antibody against SST (Peninsula Laboratories 
International, T-4103, 1:5,000 dilution). The sections were then incubated with 
biotinylated anti-rabbit IgG (Vector Laboratories, BA-1000, 1:1,000 dilution). 
Immunoreactivities were visualized with a peroxidase-based Vectastain Elite ABC 

kit (Vector Laboratories) using diaminobenzidine chromogen. For quantitative 
analysis of SST axonal arborization areas in the SCN, micrographs obtained with a 
Carl Zeiss Axiovert 200 microscope and 20× objective lens were binarized using 
ImageJ, and an innervated area of each nucleus was obtained by averaging the 
areas of 5 sections containing the nucleus by a person blinded to the genotype 
of the mice.

Laser Microdissection of the SCN and the Pituitary. Mice were killed by cer-
vical dislocation, and the eyes were removed under a red safety light when the 
samples were collected in the dark condition. The brain or the pituitary was then 
isolated from the skull under room light and immediately frozen on dry ice. Coronal 
brain or pituitary sections (30-μm thick) were prepared on a cryostat and mounted 
on POL-membrane slides (Leica) as described previously (4). Sections were fixed 
in an ice-cold mixture of ethanol and acetic acid, stained with 0.05% toluidine 
blue, and air dried quickly. Once the moisture in the sections decreased sufficiently 
for laser cutting, cells in the SCN or the pituitary were microdissected using an 
LMD7000 device (Leica; 10× magnification) and lysed in TRIzol reagent (Thermo 
Fisher Scientific), and total RNA was purified using the RNeasy micro kit (Qiagen).

Quantitative RT-PCR. Total RNA from the SCN, hippocampus, liver, pituitary, 
and kidney was converted to cDNA using the SuperScript VILO cDNA Synthesis 
Kit (Thermo Fisher Scientific). Quantitative PCR analysis of each cDNA was per-
formed as previously described (56). Absolute quantification of each gene level 
was achieved by comparison to the cloned plasmid DNA as a standard, and results 
were normalized to 36b4 mRNA levels. Melt curve analysis was performed to con-
firm each final PCR product. Primer sequences are shown in SI Appendix, Table S2.

Fluidigm. qPCR was performed on a BioMark HD System using a 48.48 Fluidigm 
BioMark Dynamic Array chip (Fluidigm) (32). Data were normalized to 36b4. 
Primer and probe sequences are shown in SI Appendix, Table S3.

Microarray Analysis. In order to identify changes in gene expression in the SCN 
of HPX mice, SCN tissue samples obtained by laser microdissection technique 
from 10 animals at ZT2 and 10 animals at ZT14 were pooled in TRIzol reagent 
(Thermo Fisher Scientific). Total RNA was isolated from the lysate using the RNeasy 
micro kit (Qiagen), and the integrity was assessed by analyzing aliquots on an 
Agilent 2100 Bioanalyzer (Agilent Technologies). Single-stranded cDNA synthesis 
and labeling were performed using GeneChip WT PLUS Reagent Kit (Affymetrix), 
and subsequent hybridization was performed with GeneChip Mouse Gene 2.0 ST 
Array (Affymetrix) according to the manufacturer’s protocol. The data were ana-
lyzed with Affymetrix Expression Console (Affymetrix) using the RMA algorithm for 
normalization. For statistical analysis of the microarray data, we obtained values 
of 11 probes for the seminal proteins (Svs1, Svs2, Svs3a, Svs3b, Svs4, Svs5, Svs6, 
Sva, Sval1, Sval2, and Sval3) that were unlikely to be expressed in the SCN. We 
then subtracted the mean of 11 probes from the value of each gene assuming 
the mean value to represent zero expression. DNA microarray data have been 
deposited at GEO under accession number GSE226929.

In Situ Hybridization. In situ hybridization analysis was performed as described 
(57) using the following gene-specific probes: for SSTR1, the anti-sense probe 
covering nucleotides 57 to 620 of the SSTR1 mRNA (Genbank, NM_009216), for 
SSTR2 (502 to 902, NM_009217), for SSTR3 (824 to 1,051, NM_009218), for 
SSTR4 (1,633 to 2,156, NM_009219), for SSTR5 (419 to 650, MMU82697), and 
for SST (36 to 524, NM_009215).

Northern Blotting. Whole-brain RNA was extracted using TRIzol (Invitrogen). 
Northern blot analysis was performed as described previously (58). 32P-radiolabeled 
probe for SST (36 to 524, NM_009215) was generated by RT-PCR.

Data, Materials, and Software Availability. DNA microarray data have been 
deposited in GEO (GSE226929) (59).
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