1 **TITLE:**

2 Viromes vs. mixed community metagenomes: choice of method dictates interpretation of

- 3 viral community ecology
- $\frac{4}{5}$

5 **AUTHORS:**

6 James C. Kosmopoulos^{1,2}, Katherine M. Klier^{1,3}, Marguerite V. Langwig^{1,3}, Patricia Q. 7 Tran¹, and Karthik Anantharaman^{1,4*}

8
9

¹ Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 10 USA

- 11 ² Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, 12 Wisconsin, USA
- 13 ³ Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison,
- 14 Wisconsin, USA
15⁴ Department o
- 15⁴ Department of Integrative Biology, University of Wisconsin-Madison, Madison,
- 16 Wisconsin, USA
- 17 Correspondence: karthik@bact.wisc.edu
- 18

19 **ABSTRACT**

20

21 *Background*

22 Viruses, the majority of which are uncultivated, are among the most abundant biological 23 entities on Earth. From altering microbial physiology to driving community dynamics, 24 viruses are fundamental members of microbiomes. While the number of studies 25 leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, 26 standards for viromics research are lacking. Viromics can utilize computational 27 discovery of viruses from total metagenomes of all community members (hereafter 28 metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). 29 However, differences in the recovery and interpretation of viruses from metagenomes 30 and viromes obtained from the same samples remain understudied.

31

32 *Results*

33 Here, we compare viral communities from paired viromes and metagenomes obtained 34 from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. 35 Overall, viral communities obtained from viromes were more abundant and species rich 36 than those obtained from metagenomes, although there were some exceptions. Despite 37 this, metagenomes still contained many viral genomes not detected in viromes. We also 38 found notable differences in the predicted lytic state of viruses detected in viromes vs 39 metagenomes at the time of sequencing. Other forms of variation observed include 40 genome presence/absence, genome quality, and encoded protein content between 41 viromes and metagenomes, but the magnitude of these differences varied by 42 environment. 43

44 *Conclusions*

45 Overall, our results show that the choice of method can lead to differing interpretations 46 of viral community ecology. We suggest that the choice of whether to target a 47 metagenome or virome to study viral communities should be dependent on the 48 environmental context and ecological questions being asked. However, our overall 49 recommendation to researchers investigating viral ecology and evolution is to pair both 50 approaches to maximize their respective benefits.

52 **KEYWORDS**:

53 Virome, metagenome, viral ecology, differential abundance

54

51

- 55
- 56
- 57
- 58 59

60

- 61
- 62
- 63
- 64

65 **INTRODUCTION**

66

67 Viruses exist in all known ecosystems and infect cells from all domains of life. As the 68 most abundant biological entity on Earth [1,2], viruses significantly impact the ecology 69 and evolution of their hosts [3,4], play pivotal roles in microbial community succession 70 [5], contribute to community-wide metabolic processes [6–8], and are a source of novel 71 therapies being used to combat a worldwide antimicrobial resistance crisis [9,10]. 72 Advances in these areas have been enabled by large-scale investigations into entire 73 communities of viruses which have revealed tremendous amounts of previously 74 unknown virus diversity in human [11–13] and environmental [14–18] systems. Since 75 their hosts largely have not been isolated, these investigations have utilized viral 76 metagenomics (viromics) to examine thousands of viral genomes from DNA/RNA 77 sequence data extracted directly from host-associated and environmental samples. 78 While the number of studies using viromics has been growing in the past decade [18– 79 20], the sampling and analytical methods used vary greatly [20,21]. Although there have 80 recently been efforts to establish standards for analyzing viruses from sequence data 81 [19–21], standards in extraction methodologies are still largely lacking.

82

83 There are two ways to identify genomic sequences of viral communities. First, one can 84 sequence metagenomes of a mixed microbial community (hereafter metagenomes). 85 Second, virus-like particles (VLPs) can be separated from a sample to enrich for viral 86 community DNA prior to sequencing (hereafter viromes). Both methods involve 87 computational approaches to identify viral sequences after sequencing, but they each 88 have their own benefits and drawbacks. For instance, viromes do not offer the host 89 context that metagenomes can [22,23]. Thus, investigations into virus \Box host 90 relationships can benefit from the use of metagenomes. On the other hand, predicting relationships can benefit from the use of metagenomes. On the other hand, predicting 91 virus host relationships from metagenomes alone remains difficult and can often only
92 be achieved for a fraction of viral genomes [22,23]. Furthermore, rare, low-abundance be achieved for a fraction of viral genomes [22,23]. Furthermore, rare, low-abundance 93 viruses are diverse and have significant impacts on their communities [24–26]. These 94 viruses are often not detected in metagenomes because viruses represent a small 95 fraction of the mixed community [27]. However, they are detectable in viromes because 96 viruses and other forms of protected environmental DNA represent the majority of 97 sequences in these samples [27,28]. It has also been argued that active viruses exist 98 mostly in an intracellular state and therefore metagenomes are more likely to be 99 appropriate to study viral communities [29,30]. However, the high rates of viral lysis and 100 virion production that have been widely observed [31] might suggest that sequences 101 captured in viromes could better reflect the active viral community. Overall, most studies 102 of viral ecology typically use either method depending on their scope and environmental 103 context.

104

105 Although most viral ecology studies have typically utilized either viromes or 106 metagenomes, only a few have leveraged both methods. For example, in an agricultural 107 soil ecosystem, the cumulative richness of viruses in viromes was orders of magnitude 108 greater than that of metagenomes [27]. In a seasonally anoxic freshwater lake, viromes 109 were richer in viruses than metagenomes [6] but the magnitude of this difference was 110 much smaller than that of the soil study. Viral community composition in the freshwater

111 lake was also mostly influenced by sample type (viromes or metagenomes) [6], while 112 human gut viral communities were mostly influenced by the individual human host
113 rather than sample method [32]. These studies offer novel insights into the viral and rather than sample method [32]. These studies offer novel insights into the viral and 114 prokaryotic community composition of their respective ecosystems, but they remain to 115 be synthesized together into a broader context of method application.

116

117 The few existing studies that leverage paired viromes and metagenomes have largely 118 paid attention to community-level differences in viruses assembled from each approach, 119 but it remains unknown whether or how this influences the interpretation of ecology and 120 evolution, and the abundance of viruses at the genome level. While differences in 121 genome contiguity and assembly quality between viromes and metagenomes have 122 been discussed [33,34], focused comparisons of viral genomes assembled from 123 viromes versus metagenomes are lacking. Similarly, since the gene content of viruses 124 can vary greatly both within and between populations [35–37], existing community-level 125 comparisons of viromes and metagenomes are unable to highlight any gene-level 126 differences between the two methods.

127

128 Here, we directly compare paired viromes and metagenomes from multiple samples 129 obtained from four different environments: a freshwater lake, the global oceans, the 130 human gut microbiome, and soil. After using the same, standardized analytical workflow 131 for every sample and across each environment, we compared viral sequence yields, 132 genome presence/absence, viral genome quality, and virus gene differential abundance 133 between viromes and metagenomes. Last, we discuss the unique insights offered by 134 each approach and suggest when to apply viromes, metagenomes, or both methods 135 when studying viral communities in different environmental contexts.

136

137 **METHODS**

138

139 *Data acquisition*

140 In an effort to compare paired viromes and mixed community metagenomes from a 141 variety of environments, we obtained sequence reads from publicly available studies. 142 We searched for short-read collections that met the following criteria: (1) both viromes 143 and metagenomes must have been generated for the same biological samples, (2) 144 neither virome nor metagenome samples underwent whole-genome or multiple-145 displacement amplification, and (3) metadata were available that allowed virome and 146 metagenome pairs originating from the same biological sample to be identified, or read 147 filenames made it otherwise clear.

148

149 Among the datasets that met the criteria, we chose collections of paired viromes and 150 metagenomes to represent four vastly different environments: a freshwater lake, marine 151 water columns from the global oceans, the human gut microbiome, and soil. Raw reads 152 from virome and metagenome libraries sequenced from water column samples of Lake 153 Mendota, Wisconsin, USA [6] were chosen to represent a freshwater environment. 154 Reads from soil samples of an agricultural field in Davis, California, USA [27] were 155 chosen to represent a soil environment. Fecal sample sequence reads of a cohort in

- 156 Cork, Ireland [11] were chosen to represent human gut samples. Finally, reads from the 157 Tara Oceans database were obtained to represent marine samples [38,39].
- 158

159 Marine, soil, and human gut reads were obtained from NCBI GenBank [40] using 160 SRAtoolkit (hpc.nih.gov/apps/sratoolkit.html) from BioProjects PRJEB1787 (marine 161 metagenomes), **PRJEB4419** (marine viromes), **PRJNA545408** (soil viromes and 162 metagenomes) and PRJNA646773 (human gut viromes and metagenomes). For the 163 Tara Oceans marine samples, we obtained reads for the <0.22 μm fractions of samples 164 for viromes and the 0.22-3.0 μm fractions for metagenomes (Figure 1A), and read libraries were removed if there was no counterpart library available from the same 166 sample station and depth for the other size fraction. Freshwater virome and 167 metagenome reads were obtained directly by the first author of the study, and can also 168 be found at the JGI Genome Portal under Proposal ID 506328. For all environments, all 169 read libraries obtained were composed of paired-end Illumina reads. A detailed 170 description of the data sources for this study and relevant information can be found in 171 Supplementary Table 1.

172

173 *Sequence read quality control and assembly*

174 Freshwater samples were previously sequenced by the Department of Energy Joint 175 Genome Institute (DOE JGI) and thus sequence reads underwent quality control (QC) 176 and were assembled into contigs within the DOE JGI metagenome workflow [41]. To 177 reduce biases that could have been introduced by different QC and assembly methods, 178 read QC and metagenome assembly were performed following the same assembly 179 workflow with the same sequence of software (and versions), commands, and 180 parameters as JGI (Figure 1B). Briefly, raw reads from marine, soil, and human gut 181 samples underwent quality filtering and trimming with BBDuk and BBMap using 182 rqcfilter.sh which were then error-corrected with bbcms. Filtered, error-corrected reads 183 were split into separate mates and singletons using reformat.sh, and the resulting read 184 pairs were imported to metaSPAdes v3.13.0 [42] for assembly. Read lengths and counts 185 at each step of QC were obtained with readlen.sh from the BBTools suite 186 (sourceforge.net/projects/bbmap/) and assembly statistics were obtained for samples 187 from all environments using metaQUAST v5.2.0 [43] which were parsed in R [44] and 188 plotted using ggplot2 [45] to generate Figure 2.

189

190 *Virus identification, mapping, binning, quality assessment, and taxonomic* 191 *assignment with ViWrap*

192 For every sample, ViWrap v1.2.1 [46] was run (Figure 1B) with the assembled sample 193 contigs and filtered reads using the parameter "--identify_method vb" to only use 194 VIBRANT v1.2.1 [47] to identify viral contigs, as well as the options "--input_length_limit 195 10000" and "--reads_mapping_identity_cutoff 0.90" to adhere to established 196 recommended minimum requirements for virus detection [20]. In accordance with these
197 standards for virus detection, only viral contigs of at least 10 kb were retained for standards for virus detection, only viral contigs of at least 10 kb were retained for 198 downstream analyses. After using VIBRANT to identify viral contigs, ViWrap mapped 199 reads to the input assembly using Bowtie2 v2.4.5 [48]. Read recruitment to all 200 assembled contigs at least 10 kb was calculated using SAMtools v1.17 [49] using the 201 read mapping files generated by Bowtie2. Read recruitment statistics were then filtered 202 to only include the viral contigs with a length of at least 10 kb identified by VIBRANT. 203 Additionally, ViWrap used the resulting coverage files to bin viral contigs into vMAGs 204 with vRhyme v1.1.0 [50].

205

206 In this study, both binned viral contigs and unbinned singletons are together referred to 207 as vMAGs. The quality, completeness, and redundancy of the resulting vMAGs were 208 assessed with CheckV v1.0.1 [51] by ViWrap. ViWrap then grouped vMAGs within 209 samples into genus-level clusters with vConTACT2 v0.11.0 [52] and then into species-210 level clusters with dRep v3.4.0 [53]. ViWrap assigned taxonomy to vMAGs by aligning 211 proteins with DIAMOND v2.0.15 [54] to NCBI RefSeq viral proteins [55], the VOG HMM 212 database v97 [56], and IMG/VR v4.1 high-quality vOTU representative proteins [57]. 213 Summary statistics on the number of viral contigs, read recruitment, vMAGs, taxonomy, 214 and genome quality gathered by ViWrap for each sample were parsed in R and plotted 215 using ggplot2 to generate Figure 2, Figure S2, Figure S3, and Figure S4.

216

217 *Predicting the lytic state of vMAGs*

218 ViWrap provides a prediction of the lytic state for all vMAGs it identifies [46], i.e., 219 whether a vMAG is likely to represent a lytic virus, a lysogenic virus, an integrated 220 prophage flanked with cellular DNA, or not determined. ViWrap makes these 221 determinations based on a combination of annotation results from VIBRANT and 222 binning results from vRhyme. Possible predictions by ViWrap include "lytic scaffold", 223 "lytic virus", "lysogenic scaffold", "lysogenic virus", and "integrated prophage". ViWrap 224 handles instances when vRhyme bins multiple integrated prophage sequences or lytic 225 and integrated prophage sequences together by splitting the vMAG back into individual 226 scaffolds to avoid retaining potentially contaminated bins (see 227 github.com/AnantharamanLab/ViWrap). Furthermore, the distinction made by ViWrap 228 between "scaffold" and "virus" depends on the genomic context of the contigs in a 229 vMAG [50] and the estimated completion of a vMAG [51]. Here, we simplified these 230 predictions using a custom python script and did not distinguish between predictions on 231 the "virus" or "scaffold" level and used the results predicted by ViWrap to label vMAGs 232 as "lytic", "lysogenic", or "integrated prophage".

233

234 *vMAG presence/absence analysis*

235 Although ViWrap employed dRep to dereplicate vMAGs into species-level clusters at 236 95% ANI within samples, species representative vMAGs were still redundant between 237 samples after running ViWrap on each. To dereplicate vMAGs across all samples, an 238 additional ANI-based approach was taken. Redundant vMAGs from each sample were 239 gathered and dereplicated using dRep v3.4.3 [53] with a minimum genome length of 10 240 kb in addition to the options "-pa 0.8 -sa 0.95 -nc 0.85" to set the ANI thresholds for 241 primary and secondary clusters to 80% and 95%, respectively, and to require a 242 minimum covered fraction of 85%, as recommended by established benchmarks for 243 viral community analyses [20]. The parameters "-comW 0 -conW 0 -strW 0 -N50W 0 -244 sizeW 1 -centW 0" were also used when running dRep so the resulting species 245 representative vMAGs were simply the largest vMAGs in each cluster.

246

247 Bowtie2 mapping indices were created from fasta files containing all representative 248 vMAGs from each environment, separately, to be used in competitive alignments. For 249 each environment, filtered reads from every sample were separately mapped to the 250 environment's mapping index using Bowtie2 v2.5.1 with default parameters to perform 251 an end-to-end alignment and report single best matches at a minimum of 90% identity. 252 The resulting alignment files were sorted and indexed using SAMtools v1.17 [49]. 253 Sorted and indexed files were used with CoverM v0.6.1 (github.com/wwood/CoverM) to 254 obtain covered fraction (genome breadth) statistics at the vMAG level for reads mapping 255 with at least 90% identity. A minimum breadth threshold of 75% was used to establish 256 the detection of a vMAG in each read sample in accordance with previously established 257 recommendations [20]. Lists of unique representative vMAG IDs determined to be 258 present in samples in this way were used to generate Figure 3 and Figure S4 with the R 259 package eulerr (CRAN.R-project.org/package=eulerr) [58,59]. Labels for Figure 3 were 260 manually edited for clarity.

261

262 *Virus genome assembly comparison*

263 To address a preexisting notion that metagenomes typically result in truncated or less-264 complete viral genome assemblies than viromes [21,27,60], we identified vMAGs 265 shared between viromes and metagenomes. Using our previously generated dRep 266 results, we identified pairs of vMAGs that met the following criteria: (1) one vMAG was 267 assembled from a virome and the other a metagenome, (2) each vMAG in the pair was 268 placed in the same species-level cluster, (3) both vMAGs were assembled from the 269 same sample source, (4) the virome-assembled vMAG was a single contig and 270 predicted by CheckV to be complete, and (5) the metagenome-assembled vMAG was 271 predicted by CheckV to be incomplete.

272

273 A single pair was chosen among the resulting candidates based on their respective 274 lengths. Each genome was then subjected to noncompetitive mapping of filtered reads 275 from the virome and metagenome of the same sample source. This resulted in four read 276 mapping files: virome reads mapped to the virome-assembled vMAG, virome reads 277 mapped to the metagenome-assembled vMAG, metagenome reads mapped to the 278 virome-assembled vMAG, and metagenome reads mapped to the metagenome-279 assembled vMAG. For each file, the read depths d at each genome position were 280 obtained using SAMtools v1.17 [49] with the option "depth", and then log_{10} normalized obtained using SAMtools v1.17 [49] with the option "depth", and then log_{10} normalized 281 by the total number of reads in the sample n in hundreds of millions to obtain a 282 secondized read denth 282 normalized read depth.

283

normalized read depth =
$$
log_{10} \frac{d}{(n \cdot 10^{-8})}
$$

284

285 The two vMAGs were aligned using Mauve [61] and BLASTn v2.5.0 from the BLAST+ 286 suite [62] to identify regions in the virome-assembled genome that were missing from 287 the metagenome-assembled genome, as well as gaps and alternate sequences. This 288 revealed the metagenome-assembled vMAG in the pair to be on the opposite strand as 289 the virome-assembled vMAG, so downstream analyses of this vMAG were performed 290 on its reverse-complement. Finally, each vMAG in the chosen pair was reannotated for

291 gene predictions and function using Pharokka v1.4.1 [63] with default settings. The 292 resulting read depths by genome position and unassembled regions were plotted using 293 ggplot2 and arrows representing gene prediction coordinates were added with gggenes 294 v0.5.1 (wilkox.org/gggenes) to generate Figure 4. Highlighted regions and coloring for a 295 selection of genes of interest were added manually to Figure 4.

296

297 *Differential abundance of viral proteins*

298 We sought to identify protein-coding viral genes that were differentially abundant across 299 virome and metagenome assemblies. For each environment (both viromes and 300 metagenomes), we combined all nucleotide sequences of protein-coding genes 301 predicted by Prodigal [64] that were encoded on viral contigs >10 kb identified by 302 VIBRANT into a database of redundant gene sequences. These databases were then 303 dereplicated, separately by environment, using MMseqs2 v14.7e284 [65]. We used the 304 command "mmseqs easy-search" to estimate pairwise average nucleotide identities 305 (ANI) for all genes in each database, with parameters "--min-seq-id 0.95 -c 0.80 –cov-306 mode 1" to only retain alignments with minimum ANI of 0.95 and a minimum aligned 307 fraction to the target sequence of 0.80. A clustered graph was generated from the 308 pairwise ANI estimates using mcl with mcxload v14-137 [66] to obtain gene clusters, 309 and the longest gene within each cluster was chosen to be the cluster's dereplicated 310 representative. Bowtie2 mapping indices were separately generated from the four 311 databases of dereplicated gene representatives of each environment. For each 312 environment, filtered reads from all samples were mapped to the Bowtie2 index of 313 dereplicated genes corresponding to the same environment, using the same 314 parameters and filtering steps as in the vMAG presence/absence analysis above.

315

316 Tables of raw mapped read counts for each dereplicated gene representative were 317 obtained for each environment using CoverM. These tables were used to build negative 318 binomial generalized models of gene counts with DESeq2 [67] to infer genes that were 319 differentially abundant across viromes and metagenomes for each environment, 320 separately. The extraction method (virome or metagenome) and sample source were 321 included as factors in the models for each environment, and the DESeq2 workflow 322 employed Wald tests to compare the counts between viromes and metagenomes. For 323 each test, the resulting $log₂$ fold changes reported by DESeq2 were shrunken using the 324 function "lfcShrink" with adaptive Student's *t* prior shrinkage estimators. We used a 325 false-discovery rate adjusted *P*-value cutoff of 0.05 for the Wald test results as well as a 326 minimum shrunken $log₂$ fold change of 0.58 (corresponding to a minimum fold change 327 of 1.5) as requirements to determine if a given gene was enriched in either virome or 328 metagenome samples of a given environment. The results were visualized using 329 ggplot2 to generate Figure 5A.

330

331 PHROG [68] functional predictions for all dereplicated gene representatives were 332 obtained by running Pharokka v1.4.1 [60] on each dereplicated gene database. The 333 resulting PHROG annotations and functional categories were mapped back to the 334 DESeq2 significant genes to obtain the presence of PHROG functional categories in 335 each enrichment (virome or metagenome). The relative abundance of PHROG 336 categories among all genes in each enrichment group was calculated and plotted with 337 ggplot2 to generate Figure 5B. To assess the over- or underrepresentation of any 338 PHROG category within either enrichment group, we performed hypergeometric tests 339 on the genes assigned to each enrichment group for every environment, separately, 340 using the function "phyper" from the stats R package [44]. The resulting *P*-values were 341 false-discovery rate adjusted, and significant results were plotted using ggplot2 to 342 generate Figure 5C.

343 **RESULTS**

9 **Figure 1. Sampling and analytical approaches used to generate metagenomes, viromes, and vMAGs.** (A) Overview of sampling approaches to generate viromes and metagenomes. Viromes were sequenced from a size fraction below 0.22 μm or from a virus-like particle fraction achieved from ultracentrifugation [11,27]. Metagenomes were sequenced using one of two main approaches: DNA from the bulk sample was extracted and sequenced, allowing the recovery of DNA from prokaryotes, viruses, and other microbes. Alternatively, after filtering a sample to isolate virus-like particles in the <0.22 μm fraction, other studies extracted and sequenced DNA from the remaining >0.22 μm fraction that did not pass through the filter [6,38,39]. (B) Overview of metagenome/virome assembly and virus identification methods to obtain viral metagenomeassembled genomes (vMAGs). (C) Overview of methods for the vMAG presence/absence analysis. Figure created with BioRender.com.

345 **Sources of data used in this study.**

346

347 *Viromes were successful in enriching for viral sequences*

348 Sequencing depth within and between viromes versus metagenomes varied (Figure 349 2A). Freshwater and human gut viromes had a significantly higher sequencing depth 350 than metagenomes, while marine metagenomes had a higher sequencing depth than 351 viromes (Figure 2A). There was no difference in depth between viromes and 352 metagenomes of soil samples (Figure 2A). Because of this observed variation in 353 sequencing depth, results hereafter were normalized to sequencing depth unless 354 otherwise specified. Reads from viromes of all environments mapped back to their 355 assembled contigs (>10 kb) at a significantly higher rate than metagenomes (Figure 356 2B). Strikingly, soil viromes recruited upward of 25% of filtered reads while all soil 357 metagenomes recruited less than <1% of filtered reads. Further inspection of soil 358 metagenome assembly statistics revealed a median N50 <3,000, even when only 359 calculating statistics for contigs >2,000 bp (Figure S1). The poor read recruitment of the 360 soil metagenome assemblies is likely a result of the poor contiguity of the assemblies 361 arising from high community complexity in soils [69,70].

362

363 Although the differences between viromes and metagenomes with respect to 364 sequencing depth and read recruitment varied by environment, viromes from all 365 environments had reads mapping to viral contigs at a greater rate than metagenomes 366 (Figure 2C). All assemblies (metagenomes and viromes) except for the human gut had 367 a greater proportion of viral to nonviral contigs (Figure 2D). Moreover, viromes from all 368 environments except for the human gut had a higher total number of viral contigs than 369 metagenomes (Figure S2A). Marine and soil viromes had a higher total number of

370 vMAGs than metagenomes (Figure S2B). When considering only "high-quality" vMAGs 371 that are estimated to represent complete or near-complete viral genomes [51], viromes 372 from all environments had a greater yield than metagenomes (Figure S2C). Similarly, 373 after dereplicating vMAGs to species-level clusters within samples, viromes had a

Figure 2. Read recruitment and the enrichment of viral sequences were higher in viromes than metagenomes. Points indicate an individual metagenome/virome assembly. Significance was inferred by Wilcoxon rank sum test: ns *p* >0.05; * *^p* [≤]0.05; ** *^p* [≤]0.01; *** *^p* [≤] 0.001; **** *^p* [≤] 0.0001. (A) While virome samples yielded significantly more read pairs after quality filtering in freshwater and human gut samples, marine metagenomes had greater sequencing depth than viromes, and there was no difference in soil samples. (B) With a minimum alignment identity cutoff of 90%, filtered read pairs from all environments mapped back to assembled contigs >10 kb at a significantly higher rate than metagenomes. (C) In all tested environments, virome assemblies contained more read pairs mapping to viral contigs as a proportion of all quality-filtered read pairs (mapped or unmapped) than metagenome assemblies. (D) All tested environments except human gut samples contained a greater proportion of viral contigs to all assembled contigs >10 kb.

374 higher viral species richness than metagenomes among marine and soil assemblies. 375 However, there was no difference in viral species richness between methods among 376 freshwater and human gut assemblies (Figure S2D).

378 *The abundance of lytic and lysogenic viruses in viromes* **vs***. metagenomes* 379 *varied*

380 Among human gut assemblies, there was no significant difference between the number 381 of lytic vMAGs from viromes compared to metagenomes, while freshwater, marine, and 382 soil assemblies had a higher number of lytic vMAGs in viromes compared to 383 metagenomes (Figure S3A). In contrast, there was no difference in the number of 384 lysogenic vMAGs between viromes and metagenomes of freshwater and human gut 385 assemblies, while marine and soil viromes contained significantly more lysogenic 386 vMAGs than metagenomes (Fig S3B). Freshwater metagenomes contained significantly 387 more vMAGs predicted to represent integrated prophage (Figure S3C). Integrated 388 prophage vMAGs were found in viromes across all four environments (Figure S3C). 389 Strikingly, marine and soil viromes contained significantly more integrated prophage 390 vMAGs than metagenomes (Figure 3C). Closer inspection revealed that soil 391 metagenomes did not contain any vMAGs predicted to represent integrated prophages 392 at all. Given that the total number of vMAGs generated from marine and soil 393 metagenomes was so low compared to their viromes (Figure S2B), these striking 394 differences are explained by the low virus richness in these metagenomes overall. Last, 395 while there was a small observable increase in the normalized number of integrated 396 prophages in human gut metagenomes, these differences were not significant (Figure 397 S3C).

398

377

399 *Viromes and metagenomes have unique and shared vMAGs*

400 Dereplication and read mapping yielded 24,761 unique species-representative vMAGs 401 in freshwater assemblies, 18,331 in marine assemblies, 9,039 in soil assemblies, and 402 2,271 in human gut assemblies, with a total of 54,402 unique vMAGs identified across 403 all environments (Figure 3A). Of this total, 2,539 were found only in metagenome 404 assemblies, 32,601 were found only in virome assemblies, and 19,262 were found in 405 both (Figure 3B). Overall, virome assemblies from all four environments contained more 406 unique vMAGs than metagenome assemblies (Figure 3C). Soil virome assemblies 407 contained nearly all vMAGs detected in soil metagenomes, except for a single vMAG 408 found unique to soil metagenomes (Figure 3C). Notably, more vMAGs were detected in 409 both viromes and metagenomes of freshwater and human gut samples than were 410 detected in either method, alone (Figure 3C).

411

412 We also examined the presence and absence of vMAGs in viromes and metagenomes 413 separated by their predicted lytic state. More lytic vMAGs (Figure 3D), lysogenic vMAGs 414 (Figure 3E), and integrated prophages (Figure 3F) were detected in viromes than 415 metagenomes for all environments. However, freshwater assemblies had more lytic 416 vMAGs detected in both methods than lytic vMAGs present in only one method (Figure 417 3D). Similarly, the human gut had more lysogenic vMAGs and integrated prophages 418 present in both methods than those present in only one method (Figure 3E-F). However, 419 the patterns of detection for integrated prophages may have been caused by virome

420 reads originating from excised lysogenic/temperate virus genomes that had mapped to 421 metagenome vMAGs integrated in host DNA.

Figure 3. vMAGs assembled from viromes were not detected in most metagenome samples. Euler diagrams generated using eulerr (CRAN.R-project.org/package=eulerr) [58,59] with IDs of unique species-level vMAGs detected in the labeled category; quantities within areas are given beneath labels. An individual vMAG was marked as detected in a virome/metagenome if reads from the virome/metagenome mapped to the contigs in the vMAG with a minimum breadth of 75% across the entire vMAG. (A) Total number of vMAGs in each environment, regardless of method. (B) All vMAGs and environments, separated by method. (C) All vMAGs, separated by environment and method. (D) Predicted lytic vMAGs, separated by environment and method. (E) Predicted lysogenic vMAGs, separated by environment and method. (F) Predicted integrated prophage vMAGs, separated by environment and method.

423

424 *Virome assembly resulted in a more complete viral genome*

425 Past arguments in favor of utilizing virome extractions to study viral communities have 426 cited a tendency to assemble more complete viral genomes with greater depth than 427 those assembled from metagenomes [21,27,60]. To test this, we identified the same 428 species vMAG from a virome and from a metagenome. The virome-assembled viral

429 genome was nearly 38 kb in length with 70 gene predictions (Figure 4, Table S2), and 430 was predicted to be complete by CheckV [51] due to the presence of direct terminal 431 repeats. The metagenome-assembled viral genome, however, was predicted by 432 CheckV to be incomplete and was nearly 5 kb shorter than the virome assembly and 433 contained only 57 gene predictions (Figure 4, Table S2).

434

435 The missing regions in the metagenome-assembled viral genome spanned both ends of 436 the contig (Figure 4). These regions covered eleven genes with unknown functions that 437 were present in the virome but not the metagenome assembly, as well as the first 527 438 bases of a phage portal protein (Figure 4, Table S2). Additionally, the virome-assembled 439 viral genome contained a 130 bp region spanning two genes predicted to encode a 440 hypothetical protein and a tail protein (Figure 4, Table S2). This 130 bp region was 441 absent from the metagenome assembly, resulting in a single, fused gene prediction for 442 a phage tail protein (Figure 4, Table S2). The only region we identified in the 443 metagenome-assembled viral genome that was absent from the virome assembly was a 444 single 3 bp sequence over the portal protein (Table S2). Finally, although this genome 445 was incompletely assembled from the metagenome, metagenome reads mapped over 446 the entire length of the virome-assembled genome (Figure 4, Table S3). Virome reads 447 also mapped to both assemblies of the same genome with a depth up to two orders of 448 magnitude greater than metagenome reads (Figure 4, Table S3).

449 450

predictions.

Figure 4. An incomplete metagenome-assembled viral genome was complete in its corresponding virome. A single-contig, complete viral genome identified from a virome assembly was detected but was incompletely assembled in the sample's corresponding metagenome. Areas highlighted in gray represent regions in the virome-assembled genome that were absent from the metagenome-assembled genome. Reads yielded from the virome and metagenome of the same sample source were each mapped to both versions of the genome assembly. Arrows along the x-axis represent predicted genes that are colored by the extraction method of their genome's origin, except for a selection of genes of interest that are colored by their functional

451 *Viral genes are differentially abundant across viromes and metagenomes*

452 We identified a total of 414,780 protein-coding viral genes after dereplication across all 453 environments and extraction methods. Of these, 13,099 proteins came from human gut 454 assemblies, 206,127 from freshwater assemblies, 116,900 from marine assemblies, and 455 78,654 from soil assemblies (Table 2, Table S4). Out of all dereplicated genes, a total of 456 72,082 unique genes were differentially abundant across extraction methods (Wald test 457 *P* <0.05, FDR adjusted) (Table 2, Table S4). Only 55 of these genes were from the 458 human gut, while 64,999 genes were from freshwater samples, 5,722 from marine 459 samples, and 1,306 from soil samples (Table 2, Table S4). Using a minimum fold 460 change cutoff of \pm 1.5, we found that 67,521 of the differentially abundant genes were 461 enriched in either virome or metagenome samples (Table 2, Table S4, Figure 5A). The 462 remaining 4,561 genes were differentially abundant but did not meet the minimum fold 463 change of 1.5 (Table 2, Table S4, Figure 5A). We did not identify any genes that were 464 enriched in either virome or metagenome samples from the human gut (Table 2, Figure 465 5A). However, 37,683 and 25,328 genes were enriched in viromes and metagenomes 466 from freshwater samples, respectively (Table 2, Table S4, Figure 5A). Among marine 467 samples, only 222 genes were enriched in viromes whereas 3,265 were enriched in 468 metagenome samples (Table 2, Table S4, Figure 5A). Finally, 432 genes were enriched 469 in soil viromes and 591 were enriched in soil metagenomes (Table 2, Table S4, Figure 470 5A). 471

473

474 To predict potential functions for the differentially abundant genes enriched in either 475 viromes or metagenomes, we used PHROG [68] functional categories predicted by 476 Pharokka [63]. Out of the 67,521 unique genes enriched in viromes or metagenomes 477 across all environments, Pharokka assigned PHROG functional categories to a total of 478 11,115 genes (16%), 6,247 in viromes and 4,868 in metagenomes (Table S4). Because 479 predicted PHROG functional categories were largely present in both virome- and 480 metagenome-enriched genes across the three environments (Figure 5B), we performed 481 hypergeometric tests on enriched genes from each environment to determine whether 482 any functional categories were over or underrepresented in viromes or metagenomes. 483 We found nine PHROG categories that were significantly over- or underrepresented 484 between viromes and metagenomes across freshwater, marine, and soil samples

485 (hypergeometric test *P* <0.05, FDR adjusted) (Figure 5C, Table S5). Generally, genes 486 encoding viral structural proteins such as head-tail connectors, packaging proteins, and 487 tail proteins were underrepresented in metagenomes and overrepresented in viromes 488 across freshwater and soil samples, while marine samples displayed the opposite 489 pattern (Figure 5C, Table S5). Integration and excision coding genes were 490 overrepresented in freshwater and marine metagenomes but underrepresented in 491 freshwater viromes (Figure 5C, Table S5). Conversely, lysis genes were 492 underrepresented in freshwater metagenomes and overrepresented in viromes, but 493 were overrepresented in marine metagenomes. 494

Figure 5. Protein-coding viral genes are differentially abundant across viromes and metagenomes and have predictable functions. (A) Differential abundance of protein-coding viral genes as inferred by DESeq2 [67]. Points indicate unique, dereplicated protein-coding viral genes that were annotated from viral contigs assembled from the environment indicated by the panel labels. Enrichment of a given gene in virome or metagenome samples was determined if the resulting fold change was at least 1.5. (Wald test *P* <0.05, FDR adjusted). No protein-coding viral genes were determined to be significantly enriched in the virome or metagenome human gut assemblies. (B) Relative abundance and (C) over/underrepresentation of PHROG [68] functional categories assigned to differentially abundant genes displayed in (A) (hypergeometric test *P* <0.05, FDR adjusted). Categories without an arrow in a given environment/method were not significantly over or underrepresented in that environment/method.

495 496 497

498

499 **DISCUSSION**

500

501 The sequencing of whole virus communities in recent years has resulted in an explosion 502 of known viral diversity and viral community ecology studies [12,13,16,17,57,71]. 503 Assembly of virus communities can be achieved either by sequencing extracted DNA 504 from the total, mixed community of prokaryotes, eukaryotes, and viruses within a 505 sample to generate metagenomes. Viral communities can also be assembled by 506 enriching for virus-like particle DNA during extraction to generate viromes. Although 507 viromes can generally offer a more focused view of viruses in a sample compared to 508 metagenomes [33], the consequences of choosing one sampling method over the other 509 have been relatively unexplored and limited to individual study ecosystems [5,6,27]. 510 Here, we applied the same analytical methods to collections of paired virome and 511 metagenome sequence reads to directly infer the unique and shared results gained 512 from each sample method. We assembled, annotated, and analyzed 60 pairs of viromes 513 and metagenomes across four different environments and found that the similarities and 514 differences between each method varied across environments.

515

516 Viromes, by design, typically allow more viral species and genome coverage to be 517 obtained compared to metagenomes [33]. In support of this, virome assemblies here 518 generally contained more viral contigs, more binned vMAGs, higher species richness, 519 and greater read recruitment to vMAGs. Interestingly, there were some exceptions 520 among freshwater and human gut samples. We observed no difference in the number of 521 vMAGs or in viral species richness between viromes and metagenomes of the human 522 gut or freshwater. There was additionally no difference in the number of viral contigs 523 from the human gut.

524

525 While there have been a handful of studies in the past that have examined viral 526 community data resulting from viromes in comparison to metagenomes [6,11,27,72,73], 527 even fewer have taken a closer look at specific genome-level differences that result 528 across the two methods. While we only focused on one viral species in this context, we 529 found that a virome assembly resulted in a more complete viral genome with greater 530 sequencing depth than the genome assembled from a metagenome of the same 531 sample. Notably, the metagenome sample contained reads that mapped over the entire 532 length of the complete version of the genome. Although some viral genomes may be 533 incompletely assembled in metagenomes, their full sequences may be assembled if the 534 metagenome reads are mapped to a higher quality virome assembly or reference 535 genome.

536

537 Freshwater and marine metagenome samples used here were recovered from >0.22 538 um size fractions, while human gut and soil metagenomes were unfiltered by particle
539 size. Considering this, any observed differences between viromes and metagenomes size. Considering this, any observed differences between viromes and metagenomes 540 from freshwater and marine assemblies may have been driven by the approach used to 541 generate the metagenomes. On the other hand, differences (or lack thereof) between 542 viromes and metagenomes from soil and human gut assemblies may have been driven 543 by the low abundance of viral DNA relative to nonviral DNA in bulk, unfiltered samples.

544 Nonetheless, both freshwater and marine metagenomes contained substantial numbers 545 of viral contigs and vMAGs despite efforts to filter the viral fraction. Furthermore, there 546 were striking differences between viromes and metagenomes from soil samples, as well 547 as in human gut samples to a lesser extent, both of which did not have their viral 548 fraction filtered from the metagenome fraction. Altogether, this highlights the importance 549 of utilizing enrichment techniques that are tailored to the environment of interest and the 550 research questions being asked.

551

552 Whether the purpose is to assign taxonomy [74], reveal mechanisms to avoid host 553 defenses [75], identify auxiliary metabolic genes [76], or investigate mobile reservoirs 554 for antimicrobial resistance genes [77,78], obtaining functional gene predictions is a 555 critical step in analyses of viral communities. However, it can be quite challenging to 556 assign functional predictions to viral genes annotated from metagenomic environmental 557 data due to their large sequence diversity and the undercharacterization of viruses. 558 Thus, annotating genes in complex viral communities often reveals a substantial 559 amount of viral "dark matter" represented as genes with no known function that encode 560 "hypothetical" proteins [23,79,80]. This challenge was indeed present here, as we could 561 obtain functional predictions for only 16% of genes enriched in viromes or 562 metagenomes. Nonetheless, we identified several functional categories across the three 563 environments where genes were differentially abundant.

564

565 Our results show that one's choice of extraction method does indeed influence the 566 identification of gene families, but the significance and magnitude of differences vary 567 between environments. We found an overrepresentation of integration and excision 568 genes in freshwater and marine metagenomes with an underrepresentation in 569 freshwater viromes. However, lysis genes were underrepresented in freshwater 570 metagenomes and overrepresented in freshwater viromes. This is consistent with our 571 observations that freshwater metagenomes contained a greater number of integrated 572 prophage vMAGs than viromes. On the other hand, this contrasts with our observation 573 that there was no difference in the proportion of lysogenic vMAGs between freshwater 574 viromes and metagenomes, and that marine viromes contained more lysogenic and 575 integrated vMAGs than metagenomes. Regardless of the exact mechanism(s), as a 576 consequence, the choice between viromes and metagenomes can significantly 577 influence one's interpretation of viral communities based on gene annotations. 578

579 **CONCLUSIONS**

580

581 In many contexts, viromes revealed more viral sequences and diversity than 582 metagenomes. Hence, extracting viromes may be more advantageous than 583 metagenomes when studying viral communities (Table 3). However, a noticeable 584 number of viruses were detected only in metagenomes in all four environments tested 585 here. Thus, we recommend that researchers investigating viral communities extract both 586 viromes and mixed-community metagenomes in pairs from the same biological 587 samples, when possible (Table 3). However, if one is restricted to using just one 588 method, viromes present the better option for virus-focused studies in most 589 environments.

590

591

592 **Table 3. Recommendations for choosing extraction methods depending on** 593 **research context.**

594

595 **ABBREVIATIONS**

- 596 *VLP:* Virus-like particle
- 597 *ANI:* Average nucleotide identity
- 598 *PEG:* Polyethylene glycol
- 599 *vMAG:* Viral metagenome-assembled genome
- 600 *AKC:* Amended 1% potassium citrate
- 601 *vOTU:* Viral operational taxonomic unit
- 602 *DA:* Differentially abundant

603 604 **DECLARATIONS**

- 605 *Ethics approval and consent to participate*
- 606 Not applicable.
- 607
- 608 *Consent for publication*
- 609 Not applicable.
- 610
- 611 *Availability of data and materials*

612 The datasets analyzed during the current study are available in the following 613 repositories: Freshwater, originally presented by Tran et al. [6] and deposited to the JGI 614 Genome Portal under Proposal ID 506328; Marine, originally presented by Pesant et al. 615 [38] and Sunagawa et al. [39] and deposited to the NCBI Sequence Read Archive under 616 BioProject accessions PRJEB1787 and PRJEB4419; Human gut, originally presented 617 by Shkoporov et al. [11] and deposited to the NCBI Sequence Read Archive under 618 BioProject accession PRJNA545408; Soil, originally presented by Santos-Medellin et al. 619 [27] and deposited to the NCBI Sequence Read Archive under BioProject accession 620 PRJNA646773. All scripts and intermediate files to reproduce the figures and tables 621 presented here are available at github.com/jamesck2/ViromeVsMetagenome. 622

623 *Competing interests*

624 The authors declare that they have no competing interests.

625 626 *Funding*

627 This research was supported by National Institute of General Medical Sciences of the 628 National Institutes of Health under award number R35GM143024, and by the National 629 Science Foundation under grant numbers DBI2047598 and OCE2049478.

630

631 *Authors' contributions*

632 Conceptualization, J.C.K. and K.A.; Methodology, J.C.K. and K.A.; Software, J.C.K.; 633 Validation, J.C.K.; Formal Analysis, J.C.K.; Investigation, J.C.K., K.M.K., M.V.L., P.Q.T., 634 and K.A.; Resources, K.A.; Data curation, J.C.K., P.Q.T., and K.A.; Writing — Original 635 Draft, J.C.K., K.A. ; Writing — Review & Editing, J.C.K., K.M.K., M.V.L., P.Q.T., and K.A.; 636 Visualization, J.C.K.; Supervision, K.A.; Project Administration, K.A.; Funding 637 Acquisition, K.A.

638

639 *Acknowledgments*

640 We are thankful to all authors of the studies that originally generated and distributed the 641 data analyzed here. We also gratefully acknowledge the insights provided by Cody 642 Martin during this study.

643

644 **REFERENCES**

645 1. Wommack KE, Colwell RR. Virioplankton: Viruses in Aquatic Ecosystems [Internet]. 646 MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS. 2000. Available from:

- 647 https://journals.asm.org/journal/mmbr
- 648 2. Cesar Ignacio-Espinoza J, Solonenko SA, Sullivan MB. The global virome: Not as big 649 as we thought? Curr Opin Virol. Elsevier B.V.; 2013. p. 566–71.
- 650 3. Stern A, Sorek R. The phage-host arms race: Shaping the evolution of microbes. 651 BioEssays. 2011. p. 43–51.
- 652 4. Kosmopoulos JC, Campbell DE, Whitaker RJ, Wilbanks EG. Horizontal Gene 653 Transfer and CRISPR Targeting Drive Phage-Bacterial Host Interactions and
- 654 Coevolution in "Pink Berry" Marine Microbial Aggregates. Vives M, editor. Appl Environ
- 655 Microbiol [Internet]. 2023;89. Available from:
- 656 https://journals.asm.org/doi/10.1128/aem.00177-23
- 657 5. Santos-Medellín C, Blazewicz SJ, Pett-Ridge J, Emerson JB. Viral but not bacterial 658 community succession is characterized by extreme turnover shortly after rewetting dry 659 soils. bioRxiv. 2023;
- 660 6. Tran PQ, Bachand SC, Peterson B, He S, Anantharaman K. Viral impacts on 661 microbial activity and biogeochemical cycling in a seasonally anoxic freshwater lake. 662 bioRxiv [Internet]. 2023; Available from: https://doi.org/10.1101/2023.04.19.537559
- 663 7. Hurwitz BL, U'Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr
- 664 Opin Microbiol. Elsevier Ltd; 2016. p. 161–8.
- 665 8. Kieft K, Zhou Z, Anderson RE, Buchan A, Campbell BJ, Hallam SJ, et al. Ecology of 666 inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat Commun. 667 2021;12.
- 668 9. Fujimoto K, Kimura Y, Shimohigoshi M, Satoh T, Sato S, Tremmel G, et al. 669 Metagenome Data on Intestinal Phage-Bacteria Associations Aids the Development of 670 Phage Therapy against Pathobionts. Cell Host Microbe. 2020;28:380-389.e9.
- 671 10. Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. Clin 672 Microbiol Rev [Internet]. 2019;32. Available from: http://cmr.asm.org/
- 673 11. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al. The 674 Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host Microbe. 675 2019;26:527-541.e5.
- 676 12. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive 677 expansion of human gut bacteriophage diversity. Cell. 2021;184:1098-1109.e9.
- 678 13. Shah SA, Deng L, Thorsen J, Pedersen AG, Dion MB, Castro-Mejía JL, et al. 679 Expanding known viral diversity in the healthy infant gut. Nat Microbiol. 2023;8:986–98.
- 680 14. Paez-Espino D, Zhou J, Roux S, Nayfach S, Pavlopoulos GA, Schulz F, et al. 681 Diversity, evolution, and classification of virophages uncovered through global 682 metagenomics. Microbiome. 2019;7.
- 683 15. Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. 684 Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell. 2019;177:1109- 685 1123.e14.
- 686 16. Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, et al. 687 Mirusviruses link herpesviruses to giant viruses. Nature [Internet]. 2023; Available from: 688 https://www.nature.com/articles/s41586-023-05962-4
- 689 17. Hillary LS, Adriaenssens EM, Jones DL, McDonald JE. RNA-viromics reveals 690 diverse communities of soil RNA viruses with the potential to affect grassland 691 ecosystems across multiple trophic levels. ISME Communications. 2022;2.
- 692 18. Roux S, Emerson JB. Diversity in the soil virosphere: to infinity and beyond? Trends 693 Microbiol. 2022;30:1025–35.
- 694 19. Roux S, Adriaenssens EM, Dutilh BE, Koonin E V., Kropinski AM, Krupovic M, et al. 695 Minimum information about an uncultivated virus genome (MIUVIG). Nat Biotechnol. 696 2019;37:29–37.
- 697 20. Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an *in* 698 *silico* evaluation of metagenome-enabled estimates of viral community composition and
- 699 diversity. PeerJ. 2017;5:e3817.
- 700 21. Kieft K, Anantharaman K. Virus genomics: what is being overlooked? Curr Opin
- 701 Virol. Elsevier B.V.; 2022.

702 22. Roux S, Camargo AP, Coutinho FH, Dabdoub SM, Dutilh BE, Nayfach S, et al. 703 iPHoP: An integrated machine learning framework to maximize host prediction for 704 metagenome-derived viruses of archaea and bacteria. PLoS Biol. 2023;21.

705 23. Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host 706 interactions resolved from publicly available microbial genomes. Elife. 2015;4.

707 24. Holmfeldt K, Solonenko N, Shah M, Corrier K, Riemann L, VerBerkmoes NC, et al. 708 Twelve previously unknown phage genera are ubiquitous in global oceans. Proc Natl

- 709 Acad Sci U S A. 2013;110:12798–803.
- 710 25. Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: Current concepts,
- 711 methods and ecological principles. FEMS Microbiol Ecol. Oxford University Press; 2021.
- 712 26. Garin-Fernandez A, Pereira-Flores E, Glöckner FO, Wichels A. The North Sea goes 713 viral: Occurrence and distribution of North Sea bacteriophages. Mar Genomics. 714 2018;41:31–41.
- 715 27. Santos-Medellin C, Zinke LA, ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB.
- 716 Viromes outperform total metagenomes in revealing the spatiotemporal patterns of 717 agricultural soil viral communities. ISME Journal. 2021;15:1956–70.
- 718 28. Lücking D, Mercier C, Alarcón-Schumacher T, Erdmann S. Extracellular vesicles are 719 the main contributor to the non-viral protected extracellular sequence space. ISME 720 Communications. 2023;3:112.
- 721 29. Forterre P. Manipulation of cellular syntheses and the nature of viruses: The virocell 722 concept. Comptes Rendus Chimie. Elsevier Masson SAS; 2011. p. 392–9.
- 723 30. López-Pérez M, Haro-Moreno JM, Gonzalez-Serrano R, Parras-Moltó M, 724 Rodriguez-Valera F. Genome diversity of marine phages recovered from Mediterranean 725 metagenomes: Size matters. PLoS Genet. 2017;13.
- 726 31. Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine 727 microbial realm. Nat Microbiol. 2018;3:754–66.
- 728 32. Chen C, Yan Q, Yao X, Li S, Lv Q, Wang G, et al. Alterations of the gut virome in 729 patients with systemic lupus erythematosus. Front Immunol. 2023;13.
- 730 33. Roux S, Matthijnssens J, Dutilh BE. Metagenomics in Virology. Encyclopedia of 731 Virology. Elsevier; 2021. p. 133–40.
- 732 34. Trubl G, Hyman P, Roux S, Abedon ST. Coming-of-Age Characterization of Soil
- 733 Viruses: A User's Guide to Virus Isolation, Detection within Metagenomes, and Viromics. 734 Soil Syst. 2020;4:23.
- 735 35. Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat 736 Rev Microbiol. 2020;18:125–38.
- 737 36. Mavrich TN, Hatfull GF. Bacteriophage evolution differs by host, lifestyle and 738 genome. Nat Microbiol. 2017;2:17112.
- 739 37. Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al.
- 740 Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell. 2019;177:1109- 741 1123.e14.
- 742 38. Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open
- 743 science resources for the discovery and analysis of Tara Oceans data. Sci Data. 744 2015;2:150023.
- 745 39. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al.
- 746 Structure and function of the global ocean microbiome. Science (1979). 2015;348.
- 747 40. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database 748 resources of the national center for biotechnology information. Nucleic Acids Res.
- 749 2022;50:D20–6.
- 750 41. Clum A, Huntemann M, Bushnell B, Foster B, Foster B, Roux S, et al. DOE JGI 751 Metagenome Workflow. Segata N, editor. mSystems [Internet]. 2021;6:D723–33.
- 752 Available from: https://journals.asm.org/doi/10.1128/mSystems.00804-20
- 753 42. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: A new versatile 754 metagenomic assembler. Genome Res. 2017;27:824–34.
- 755 43. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome 756 assemblies. Bioinformatics. 2016;32:1088–90.
- 757 44. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. 758 Vienna, Austria; 2020. Available from: https://www.R-project.org/
- 759 45. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-760 Verlag; 2016.
- 761 46. Zhou Z, Martin C, Kosmopoulos JC, Anantharaman K. ViWrap: A modular pipeline to
- 762 identify, bin, classify, and predict viral–host relationships for viruses from metagenomes.
- 763 iMeta [Internet]. 2023; Available from: 764 https://onlinelibrary.wiley.com/doi/10.1002/imt2.118
- 765 47. Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and
- 766 curation of microbial viruses, and evaluation of viral community function from genomic 767 sequences. Microbiome. 2020;8:90.
- 768 48. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 769 Methods. 2012;9:357–9.
- 770 49. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve 771 years of SAMtools and BCFtools. Gigascience. 2021;10.
- 772 50. Kieft K, Adams A, Salamzade R, Kalan L, Anantharaman K. vRhyme enables 773 binning of viral genomes from metagenomes. Nucleic Acids Res. 2022;50:e83–e83.
- 774 51. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV 775 assesses the quality and completeness of metagenome-assembled viral genomes. Nat 776 Biotechnol. 2021;39:578–85.
- 777 52. Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. 778 Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-
- 779 sharing networks. Nat Biotechnol. 2019;37:632–9.
- 780 53. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate 781 genomic comparisons that enables improved genome recovery from metagenomes 782 through de-replication. ISME J. 2017;11:2864–8.
- 783 54. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using 784 DIAMOND. Nat Methods. 2015;12:59–60.
- 785 55. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. 786 Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, 787 and functional annotation. Nucleic Acids Res. 2016;44:D733–45.
- 788 56. Grazziotin AL, Koonin E V., Kristensen DM. Prokaryotic Virus Orthologous Groups
- 789 (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic 790 Acids Res. 2017;45:D491–8.
- 791 57. Camargo AP, Nayfach S, Chen IMA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR 792 v4: an expanded database of uncultivated virus genomes within a framework of
- 793 extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 794 2023;51:D733–43.
- 795 58. Wilkinson L. Exact and Approximate Area-Proportional Circular Venn and Euler 796 Diagrams. IEEE Trans Vis Comput Graph. 2012;18:321–31.
- 797 59. Micallef L, Rodgers P. eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using 798 Ellipses. PLoS One. 2014;9:e101717.
- 799 60. Roux S, Matthijnssens J, Dutilh BE. Metagenomics in Virology. Encyclopedia of 800 Virology. Elsevier; 2021. p. 133–40.
- 801 61. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple Alignment of 802 Conserved Genomic Sequence With Rearrangements. Genome Res. 2004;14:1394– 803 403.
- 804 62. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 805 BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
- 806 63. Bouras G, Nepal R, Houtak G, Psaltis AJ, Wormald P-J, Vreugde S. Pharokka: a 807 fast scalable bacteriophage annotation tool. Bioinformatics. 2023;39.
- 808 64. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: 809 prokaryotic gene recognition and translation initiation site identification. BMC 810 Bioinformatics. 2010;11:119.
- 811 65. Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat 812 Commun. 2018;9:2542.
- 813 66. Van Dongen S. Graph Clustering Via a Discrete Uncoupling Process. SIAM Journal 814 on Matrix Analysis and Applications. 2008;30:121–41.
- 815 67. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion 816 for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
- 817 68. Terzian P, Olo Ndela E, Galiez C, Lossouarn J, Pérez Bucio RE, Mom R, et al.
- 818 PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR 819 Genom Bioinform. 2021;3.
- 820 69. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. 821 Thousands of microbial genomes shed light on interconnected biogeochemical 822 processes in an aquifer system. Nat Commun. 2016;7:13219.
- 823 70. Fierer N. Embracing the unknown: disentangling the complexities of the soil 824 microbiome. Nat Rev Microbiol. 2017;15:579–90.
- 825 71. Sunagawa S, Acinas SG, Bork P, Bowler C, Babin M, Boss E, et al. Tara Oceans: 826 towards global ocean ecosystems biology. Nat Rev Microbiol. Nature Research; 2020. 827 p. 428–45.
- 828 72. Santos-Medellín C, Blazewicz SJ, Pett-Ridge J, Firestone MK, Emerson JB. Viral 829 but not bacterial community successional patterns reflect extreme turnover shortly after 830 rewetting dry soils. Nat Ecol Evol. 2023;
- 831 73. ter Horst AM, Santos-Medellín C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER,
- 832 et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local 833 and global viral populations. Microbiome. 2021;9.
- 834 74. Moreno-Gallego JL, Reyes A. Informative Regions In Viral Genomes. Viruses. 835 2021;13:1164.
- 836 75. Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity.
- 837 Front Microbiol. 2023;14.

- 838 76. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. 839 DRAM for distilling microbial metabolism to automate the curation of microbiome
- 840 function. Nucleic Acids Res. 2020;48:8883–900.
- 841 77. Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha C-J, et al. Freshwater viral 842 metagenome reveals novel and functional phage-borne antibiotic resistance genes. 843 Microbiome. 2020;8:75.
- 844 78. Strange JES, Leekitcharoenphon P, Møller FD, Aarestrup FM. Metagenomics
- 845 analysis of bacteriophages and antimicrobial resistance from global urban sewage. Sci 846 Rep. 2021;11:1600.
- 847 79. Hurwitz BL, Sullivan MB. The Pacific Ocean Virome (POV): A Marine Viral 848 Metagenomic Dataset and Associated Protein Clusters for Quantitative Viral Ecology. 849 PLoS One. 2013;8:e57355.
- 850 80. Brum JR, Ignacio-Espinoza JC, Kim EH, Trubl G, Jones RM, Roux S, et al.
- 851 Illuminating structural proteins in viral "dark matter" with metaproteomics. Proc Natl 852 Acad Sci U S A. 2016;113:2436–41.
- 853

854 **ADDITIONAL FILES**

- 855 **Additional file 1. Supplementary data and tables.** Includes Tables S1-S5 as 856 referenced in the main manuscript text. File format: .xlsx.
- 857 **Additional file 2. Supplementary text and figures**. Includes supplementary methods,
- 858 supplementary results, Figures S1-S6, and associated references. File format: .docx.