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Abstract

Whole-genome time-series allele frequency data are becoming more prevalent as ancient
DNA (aDNA) sequences and data from evolve-and-resequence (E&R) experiments are generated
at a rapid pace. Such data presents unprecedented opportunities to elucidate the dynamics
of genetic variation under selection. However, despite many methods to infer parameters of
selection models from allele frequency trajectories available in the literature, few provide user-
friendly implementations for large-scale empirical applications. Here, we present diplo-locus,
an open-source Python package that provides functionality to simulate and perform inference
from time-series data under the Wright-Fisher diffusion with general diploid selection. The
package includes Python modules as well as command-line tools and is available at: https:

//github.com/steinrue/diplo_locus.

1 Introduction

With the rapid advancements in sequencing technologies, large datasets of temporally stratified
population genomic samples are increasingly common. On the one hand, improved techniques
for processing ancient DNA (aDNA), that is, DNA from deceased remains, enable the collection
of aDNA sequencing data for many samples in humans and other species. On the other hand,
for evolution experiments with organisms in the laboratory, it has become increasingly affordable
to sequence the genomes of samples taken at multiple time points, bringing forth a fast-growing
body of evolve-and-resequence (E&R) datasets. These datasets enable observing changes in the
genetic composition of a population across multiple time points, allowing detailed inference about
the underlying processes.

One of the most intriguing forces that shape the dynamics of genetic variants is natural or
artificial selection, as it reflects how the population adapts to its environment. The Wright-Fisher
model and its diffusion approximation are commonly used to model the dynamics of allele frequen-
cies over time, especially when selection is acting, and they have been applied to analyze temporal
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genetic data (e.g., Bollback et al., 2008; Malaspinas et al., 2012; Mathieson and McVean, 2013;
Steinrücken et al., 2014; Steinrücken et al., 2016; He et al., 2020). Nevertheless, despite several
existing approaches to infer selection parameters, most analyze the data exclusively under a model
of additive (semi-dominant) selection, and are often applied to time-series at specific loci, rather
than genome-wide. However, some recent approaches do leverage full genomic data (Mathieson
and Terhorst, 2022; Whitehouse and Schrider, 2023).

Here, we present our open-source software package diplo-locus that implements the single-
locus Wright-Fisher diffusion with piece-wise constant general diploid selection in a panmictic
population (see Section S1 in the Supplemental Material). It can be used to simulate and analyze
temporally sampled genetic data under a Hidden Markov Model (HMM) framework (Bollback
et al., 2008). Using efficient Gaussian approximations of the allele frequency dynamics allows for
likelihood-based inference of general diploid selection coefficients. With most of the computation
vectorized, diplo-locus is able to analyze data at a large number of loci simultaneously without
compromising efficiency and speed. We believe this lightweight toolkit is a useful addition to the
suite of methods for the broader scientific community working with temporal genetic samples.

2 Methods

Our software package diplo-locus implements the Wright-Fisher diffusion and the HMM frame-
work (see Section S1 in the Supplemental Material) in Python3. It requires the NumPy (Harris et al.,
2020), SciPy, pandas, and matplotlib packages. Once installed, the command-line interface (CLI),
DiploLocus, can be used to perform analyses in a Unix/Linux environment, or, alternatively, the
respective functions can be imported from the diplo locus module in Python. Both, the CLI im-
plementation of this program and the functions of the module can perform likelihood computation
and simulation with a wide range of customizable options. A detailed manual and tutorials can be
found in the GitHub repository at: https://github.com/steinrue/diplo_locus.

2.1 Command-Line Interface DiploLocus (CLI)

To compute log-likelihoods, the command DiploLocus likelihood reads the genotype data either
from a VCF file with a matching sample information file or from a table of allele counts with
sampling times. The user can use command-line arguments to designate subsets of loci and filter
loci by pooled minor allele frequency. For input as VCF in particular, the user can specify the
subset of samples to be considered. If sampled individuals with pseudo-haploid and individuals
with diploid genotypes should be analyzed together, the program accepts VCF files that contain
both (the command-line options --force hap or --force dip can be used to resolve ambiguities).

In addition to the input files, the user must provide an effective population size (--Ne), per-
generation recurrent mutation rate(s) (--u[01|10]), and the initial allele frequencies (--initCond),
either as a fixed value or a distribution. For values of per-generation selection coefficients, the pro-
gram accommodates two fitness parametrizations at a bi-allelic locus with alleles a and A (see
Table S1 in the Supplemental Material): By relative fitness of heterozygotes saA and homozygotes
sAA, or by selection s = sAA and dominance coefficients h, with saA = h · s. The program provides
options to compute log-likelihoods on a linear or geometric grid of values for each selection param-
eter or at a fixed value. The program also allows for selection models with selection coefficients
changing over time in a piece-wise constant manner.
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Besides computing log-likelihoods on a specified grid, the program can interpolate 1-dimensional
log-likelihood surfaces and output on- and off-grid maximum likelihood estimates (MLEs) of the
selection coefficients at each locus for increased precision. Furthermore, the program offers the
choice to output p-values computed from the likelihood-ratio statistic using a χ2 distribution with
1 degree of freedom (Self and Liang, 1987).

To simulate temporal samples and allele frequency trajectories, the command DiploLocus

simulate allows users to simulate an arbitrary number of independent replicates under specified
population and selection parameters. The tool can simulate using a model of constant selection
throughout time, as well as piece-wise constant selection coefficients. Multiple filtering options
based on sample or population frequencies are also provided. As output, the program produces
sample allele counts at the specified sampling times, and, optionally, their population allele fre-
quency trajectories. Lastly, the program also allows for convenient visualization of the sample and
population frequency trajectories for select replicates.

2.2 Python module diplo locus

The module diplo locus.likelihood contains the class SelHmm, which initializes the HMM for
computation using specified population and selection parameters as described in Section 2.1. The
function SelHmm.computeLikelihood() then computes per-locus log-likelihoods based on these pa-
rameters for a given number of replicates of temporal samples. The module diplo locus.simulate

contains the function simulateSamples() to simulate independent replicates based on given pop-
ulation and selection parameters. It returns replicate samples with the corresponding underlying
trajectories. Both, analysis and simulation can accommodate piece-wise constant temporal changes
in selective pressure.

3 Results

3.1 Statistical Performance

We tested the statistical performance of diplo-locus on data simulated using either diplo-locus,
see Figure 1 and Section S2 in the Supplemental Material, or SLiM4 (Haller and Messer, 2023), see
Section S3. We observe from the ROC curves presented in Figure 1A and Figure 1C, that the
likelihood-ratio of the estimated MLEs divided by neutrality (s = 0) computed using diplo-locus

can distinguish replicates simulated under selection from neutral replicates. Figure 1B and Fig-
ure 1D demonstrate that the MLEs of sAA capture the true value used for the simulations accurately.
Additional simulation results in Section S2 and Section S3 of the Supplemental Material further
demonstrate the power and accuracy of diplo-locus.

3.2 Computational Performance

We compared the performance of diplo-locus against several other methods to infer selection
coefficients from temporal data presented in the literature: LLS (Taus et al., 2017), WFABC (Foll et al.,
2015), and bmws (Mathieson and Terhorst, 2022). We simulated 12,000 replicates of temporal data
in a variety of scenarios of different length: 160 generations or 4000 generations; additive (h = 0.5)
or dominance (h = 1) selection; and constant selection or time varying selection, see Section S4 of
the Supplemental Material for a detailed description. Table 1 shows the runtimes for the different
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Figure 1: Receiver operating characteristic (ROC) curves demonstrate power to distinguish repli-
cates simulated under A) additive selection and C) selection with dominance h = 1 from neutral
replicates using likelihood-ratio tests. Curves based on replicates of 9 temporal samples of 20 diploid
individuals, each 500 generations apart, and the diploid population size is Ne = 104. B) & D)
Boxplots of MLEs ŝAA for the same set of simulated data used in A) & C) (details in Section S2.1
of the Supplemental Material).
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# Gener. h Var. s diplo-locus LLS WFABC bmws

160 0.5 No 0.054 0.006 296.952 162.193
160 0.5 Yes 0.050 - - 90.831
160 1.0 No 0.048 0.046 2055.296 -
160 1.0 Yes 0.047 - - -
4000 0.5 No 0.077 0.006 691.143 357.558
4000 0.5 Yes 0.068 - - 379.343
4000 1.0 No 0.068 0.938 248.255 -
4000 1.0 Yes 0.068 - - -

Table 1: Comparison of runtimes for different methods. # Gener. is number of generations
simulated, h indicates dominance coefficient, and ”Var. s” indicates whether s varies over time.
Runtimes are given as hours required to analyze all 12,000 replicates in each scenario. We ran WFABC

and bmws for 24 hours and extrapolated the runtimes based on number of completed replicates.
Missing value indicates that the method cannot analyze data in respective scenario.

methods to analyze all simulated replicates in each scenario, using a single core of an Intel Ice
Lake processor (2.9GHz) with 32GB RAM. Note that the methods from the literature can only be
applied to a subset of the scenarios, and thus do not have runtimes reported for all. In addition,
Figure S13 and Figure S14 in the Supplemental Material show the accuracy of the estimates for
the respective methods.

In the scenarios with additive selection, the method LLS essentially performs logistic regression,
which is highly optimized, and thus the fastest. In all other scenarios, diplo-locus is faster or
equally fast compared to LLS. Both diplo-locus and LLS are substantially faster than WFABC and
bmws. Due to the vectorized implementation, diplo-locus shares the transition matrices for the
underlying HMM across replicates, resulting in substantial computational speed-up. Furthermore,
Figure S13 and Figure S14 in the Supplemental Material show that diplo-locus is at least as
accurate as the most accurate method among the other three in all scenarios. These results demon-
strate that diplo-locus is an efficient and flexible method that produces accurate estimates of
general diploid selection coefficients in a wide range of scenarios.

3.3 Application to Empirical Data

To showcase the capabilities of diplo-locus, we applied the method to three empirical datasets:
Temporal data for pigmentation alleles at the ASIP locus in ancient horses (Ludwig et al., 2009), see
Section S5.1 in the Supplemental Material ; Chromosome 2 of ancient humans from Great Britain
(GB), dated more recent than 4,500 years before present, extracted from the Allen Ancient DNA
Resource (Mallick et al., 2024, v54.1), see Section S5.2; and E&R data for Chromosome 2L of
Drosophila simulans exposed to a new temperature regime for 60 generations (Barghi et al., 2019),
see Section S5.3.

Figure 1A shows the likelihood surface for general diploid selection at the ASIP locus, which is
consistent with previous findings (Steinrücken et al., 2014). Figure 1B shows the likelihood surface
for the well-characterized SNP rs4988235 on Chromosome 2 in the GB aDNA human dataset,
which regulates expression of the lactase LCT gene (Troelsen et al., 2003), with a point MLE of
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Figure 2: Log-likelihood surface across two-dimensional grid of diploid selection coefficients sAa

and sAA, computed on 101×101 linear grid: A) ASIP locus in ancient horses from Ludwig et al.
(2009) and B) SNP rs4988235 in the LCT/MCM6 locus in ancient human samples from Great
Britain (GB). Diagonal dashed gray lines indicate full dominance (sAa = sAA) and additivity
(sAa = sAA/2). B) Manhattan plot of p-values for filtered SNPs on Chromosome 2 in the GB
aDNA human data. D) Manhattan plot of p-values for filtered SNPs on Chromosome 2L from D.
simulans E&R experiment, combined across 10 biological replicates using Fisher’s method.
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(sAa, sAA) = (0.056, 0.072). Figure 1C shows a Manhattan plot of the p-values under additive
selection for all SNPs on Chromosome 2 in the GB human aDNA dataset, and the SNP rs4988235

is the most significant signal. Figure 1D shows a Manhattan plot of the p-values under additive
selection for Chromosome 2L of the D. simulans E&R data, combined across 10 biological replicates
using Fisher’s method, and Figure S18 and Figure S19 in the Supplemental Material show detailed
plots of the annotated genes in the vicinity of the two clusters of significant p-values. A detailed
analysis of genome-wide results for these datasets is beyond the scope of this manuscript and will
be addressed in future work.

As a benchmark, using an Intel Ice Lake processor (2.9 GHz), it takes about 4 hours to compute
log-likelihoods for the 520 samples of the GB dataset at the 69,903 genotyped SNPs (after filtering)
across a 51-point grid of sAA values. Note that, because the likelihood values are stored in memory
before writing output or maximizing, the program might consume more memory than the user’s
system capacity in cases of a large number of loci or dense parameter grids. Thus, to analyze a
larger number of loci, it might be necessary to split the analysis into several parallel batches.

4 Discussion

We present a toolkit developed in Python for analyzing temporal genetic samples under the Wright-
Fisher model, with a focus on inferring general diploid selection. Our software can compute likeli-
hoods for time series data, perform likelihood-based inference, and simulate replicates of such data.
We assessed the efficiency and accuracy of the inference using our software and showcased the
versatility of the CLI DiploLocus and the python module diplo locus. We believe this package
will be a valuable addition to the toolkit of the population genetics community.

Web Resources

Our software diplo-locus is available at: https://github.com/steinrue/diplo_locus. Scripts
to recreate the simulations and analyses presented in this manuscript are available at: https:

//github.com/steinrue/diplo_locus_manuscript_figs.

Data Availability Statement

The temporal data for the pigmentation alleles in ancient horses is given by Ludwig et al. (2009).
The ancient human data is extracted from the Allen Ancient DNA Resource v54.1 described by
Mallick et al. (2024), available at: https://doi.org/10.7910/DVN/FFIDCW (Dataverse V7). The
E&R data for D. simulans is described by Barghi et al. (2019), available at: https://doi.org/

10.5061/dryad.rr137kn.
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