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ABSTRACT

Inflammatory stresses underlie endothelial dysfunction and contribute to the development
of chronic cardiovascular disorders such as atherosclerosis and vascular fibrosis. The
initial transcriptional response of endothelial cells to pro-inflammatory cytokines such as
TNF-alpha is well established. However, very few studies uncover the effects of
inflammatory stresses on chromatin architecture. We used integrative analysis of ATAC-
seq and RNA-seq data to investigate chromatin alterations in human endothelial cells in
response to TNF-alpha and febrile-range heat stress exposure. Multi-omics data analysis
suggests a correlation between the transcription of stress-related genes and endothelial
dysfunction drivers with chromatin regions exhibiting differential accessibility. Moreover,
microscopy identified the dynamics in the nuclear organization, specifically, the changes
in a subset of heterochromatic nucleoli-associated chromatin domains, the centromeres.
Upon inflammatory stress exposure, the centromeres decreased association with nucleoli
in a p38-dependent manner and increased the number of transcripts from pericentromeric
regions. Overall, we provide two lines of evidence that suggest chromatin alterations in
vascular endothelial cells during inflammatory stresses.

INTRODUCTION

Inflammation is an evolutionary conserved 600 million-year-old biological response that
is instrumental for the immune response during infections 2. Pro-inflammatory cytokines
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mediate the immune response against viral and bacterial infections. However, prolonged
exposure to pro-inflammatory cytokines contributes to various human pathologies,
including cardiovascular diseases such as atherosclerosis and vascular fibrosis 3.
Atherosclerosis, the leading cause of myocardial infarction, stroke, and peripheral
vascular disease, is a multi-stage disease that initially involves dysfunctional and inflamed
endothelium, which triggers an inflammatory response leading to the recruitment of
inflammatory cells, including monocytes, T-cells, and smooth muscle cells de-
differentiation 4. Endothelial dysfunction is defined as a shift in cellular metabolism
towards an inflammatory response, including cell surface profile alterations and
proliferative changes 3. In contrast, a healthy inner vascular lining consists of non-
migratory endothelial cells with a cell surface molecular profile that prevents the
recruitment of pro-inflammatory factors, thereby preventing the initiation of
atherosclerosis and many more inflammatory vascular diseases °. Exposure of vascular
endothelial cells to pro-inflammatory cytokines, such as tumor necrosis factor-alpha
(TNF-alpha), induces the expression of cell adhesion molecules (CAMs), such as
vascular cell adhesion molecule-1(VCAM-1) and intercellular adhesion molecule-1(ICAM-
1), which are necessary for leukocyte recruitment, thus initiating endothelial dysfunction
48 Consequently, endothelial cells undergo mesenchymal transition (EndMT), thus
changing their cell fate. The EndMT process is often considered as a type of epithelial-
to-mesenchymal transition (EMT) °. EndMT is a prerequisite for vascular fibrosis, a
hallmark of multiple immune-related diseases 3.

At the cellular level, inflammation can manifest through exposure to pro-inflammatory
cytokines such as TNF-alpha and febrile-range heat stress. Exposure to TNF-alpha leads
to cell-type-dependent changes in patients with chronic inflammation °. For example, in
rheumatoid arthritis patients, the non-immune cells responsible for removing debris or
synoviocytes, but not macrophages, demonstrated prolonged expression of genes with a
single TNF-alpha pulse accompanied by an increase in chromatin accessibility °.
Endothelial responses to inflammatory stress largely rely on the mitogen-activated kinase
(MAPK) signal transduction, specifically, p38MAP kinase (p38MAPK) and c-Jun N-
terminal kinase (JNK), both well-known stress-activated protein kinases, due to their
essential roles in orchestrated stress responses, including cytokines 12, Despite the
significant role of inflammation in vascular disorders, the consequences of inflammatory
stimuli on the chromatin organization of vascular endothelial cells and the contribution of
febrile-like fever to endothelial dysfunction are poorly understood.

Centromeres are heterochromatin regions critical for establishing the kinetochores during
mitosis, featuring centromere-specific histone CenpA embedded in the repetitive DNA,
termed alpha-satellite repeats '3. It is well-known that in interphase nuclei, the
centromeres localize close to nucleoli, representing one of the types of nucleoli-
associated chromatin domains, NADs 415, The dynamics between centromere-nucleoli
association is known to change during cell differentiation and cancer '6. Disruption of
centromere-nucleoli association leads to an increase in alpha-satellite transcription .
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In this study, our objective is to explore the impact of inflammatory stresses induced by
either heat stress or cytokine exposure on chromatin accessibility, organization, and
transcriptional responses. Additionally, we investigated the potential impact of TNF-alpha
exposure and febrile-like heat stress on the centromeres - nucleoli association.

RESULTS

Short-term exposure to inflammatory stresses changes chromatin accessibility in
a stress-type-dependent context. Fever is an essential component of inflammation.
However, how febrile-like temperature stress (heat stress, HS) affects chromatin
dynamics in endothelial cells is unknown. Here, we report that human endothelial cells
subjected to short-term (two to six hours) inflammatory stresses alter chromatin
accessibility and transcriptional response. To mimic the fever scenario, we used febrile-
range heat stress of 39-40°C for two hours '8. To investigate genome-wide changes in
chromatin accessibility, we performed ATAC-seq on EC cells, exposed to either 2hr of
39°C febrile-like heat stress or 6hr of 10 ng/ml TNF-alpha (Fig. 1 and Fig. S1). Our
biological replicates were similar to each other with consistently less reads in heat-
stressed cells (Fig. S1A, B, C, D). Most ATAC-seq peaks were located within distal
intergenic and less than one kb promotor regions (Fig. 1A). Out of 79132 peaks, we
observed 18494 differentially accessible regions (DARs) following heat stress as
compared to 6023 after TNF-alpha treatment (Fig.1 B, C), suggesting HS had a greater
effect on chromatin accessibility than the pro-inflammatory cytokine TNF-alpha. The
ATAC-seq motif deviation analysis revealed that TNF-alpha-induced accessible regions
contain multiple binding sites of classic cytokine-mediated sets of transcription factors
such as RelA, NFkB, and STAT1 (Fig. 1D). Similarly, HS-induced accessible regions
contain binding sites of classic heat shock transcription factors (TFs) including HSF1,
HSF2, HSF4, and downstream of MAPKs TFs FOS, and Jun (Fig. 1D). Such stress-
specific responses are also observed in KEGG pathway overrepresentation analysis
(Fig.1 E and F, respectively). For example, TNF-specific response and cytokine-cytokine
pathways are enriched in TNF-treated samples. Meanwhile, there are common enriched
pathways in both heat stress and cytokine exposure, such as cancer pathways and lipid
and atherosclerosis pathways, which are indicative of inflammation-induced changes in
endothelial cells and the initiation of EC dysfunction. Taken together, temperature stress
and pro-inflammatory cytokine exposure lead to changes in chromatin accessibility in
HUVEC cells, and these changes involve stress-specific responses as well as
overlapping pathways that may contribute to EC dysfunction.

Febrile-like HS and TNF-alpha induce a profound transcriptional response,
including stress-specific EC dysfunction drivers. Differences in chromatin
accessibility often underlie changes in gene regulation. Transcriptional response to
inflammatory stresses was assessed using RNA-seq with exactly the same cell
treatments as for ATAC-seq (Fig. 2 and Fig.2S). As expected, the two stresses lead to
profound changes in gene expression (Fig. 2 A, B, C). Notably, HS and TNF-alpha
induced the expression of cell adhesion molecules (CAMs) that are instrumental in the
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adhesion of blood monocytes and other leukocytes to EC cells. Upregulation of CAMs
and genes mediating EndMT is often considered a prerequisite for EC dysfunction. Our
results suggest both the HS and TNF-alpha induced upregulation of EC dysfunction
drivers (Fig. 2 D and E, respectively). Although EC under HS and TNF-alpha exposure
expressed dysfunction markers, the specific genes often differ between the two stresses
(Fig. 2 F). For example, HS but not TNF-alpha-induced PECAM1 (CD31), an adhesive
molecule essential for leukocyte migration through the EC layer '°. Conversely, TNF-
alpha but not HS-induced ICAM1, a cell surface glycoprotein that is also instrumental in
leukocyte recruitment to EC cells during inflammation 2°. Of interest, both stresses
induced KLF4, a multifunctional transcription factor, critical for inflammation resolution in
EC cells.

Similar to ATAC-seq, the two stresses induced stress-specific genes, such as cytokine
signaling that is specific for TNF-alpha and chaperone-mediated protein folding genes,
characteristic of HS (Fig. 2 G). Additionally, KEGG pathway analysis for HS and TNF-
alpha reveals inflammatory yet specific for each stress pathway genes (Fig. 2 H and ).
The stress-specific gene set contains well-characterized transcriptional responses and
the induction of EC dysfunctional genes that differ between the two stresses.

Integrative analysis of ATAC-seq and RNA-seq revealed stress-specific responses
in EC dysfunction genes. To assess whether changes observed in chromatin
accessibility underlie transcriptional response, we performed integrative analysis of
ATAC-seq and RNA-seq data from HUVEC cells. To visualize the integrative analysis
results and determine genes whose transcriptional activation is accompanied by an
increase in chromatin accessibility, we plotted log2 DEG (differentially expressed genes)
changes vs. log2 DAR (differentially accessible regions) changes for HS vs. control and
TNF-alpha vs. control (Fig. 3A and B, Fig. S3 A and B, respectively). The increase in
chromatin accessibility often correlated with an increase in stress-specific and EC
dysfunctional gene expression (Fig. 3A and B). For example, HS induced both DARs and
DEGs in heat shock proteins, HSPs (stress-specific) genes, PECAM1, and HDAC9 (EC
dysfunctional). Similarly, TNF-alpha induced both chromatin and transcriptional changes
in SELE, TNF, CPEB4, and others. One of the critical questions in the field is whether the
3D chromatin organization changes during inflammation. ATAC-seq informs about the
chromatin accessibility, which can be affected by multiple scenarios, including alterations
in transcription factor binding and the organization of densely packaged heterochromatin
domains ?'. We next ask whether the DARs in EC cells during inflammatory exposure
were found in heterochromatin or euchromatin regions. For this purpose, we used Hi-C
data from untreated EC cells (ENCODE data accession number: ENCFF005ZBU) to
visualize heterochromatin and euchromatin domains (gene silenced compartment B
(orange) and gene active compartment A (magenta) in Hi-C data, respectively).
Interestingly, DARs in genes of interest were found in both compartments. Specifically,
VCAM1 DARs were detected in compartment A, while VCAN DARs were detected in
compartment B (Fig. 3C and D, respectively). VCAN encodes for versican protein, a large
protein that contributes to extracellular matrix formation and is expressed by inflamed
endothelium 22, Of particular interest is the observation that in some chromosomes, DARs
were more likely to border compartment B, and in other chromosomes, the changes were
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distributed rather uniformly across the chromosome. For example, in chromosome 9
(chr.9), DARs from HS and TNF samples were found across the whole chromosome.
However, in chromosome 11 (chr.11), DARs are less likely to be found in heterochromatic
compartment B (Fig. 3E). In sum, we identified DARs that are underlying gene expression
responses in EC cells exposed to short-term inflammatory stresses. We also observed a
stress-specific set of DARs/DEGs, but whether they have a cumulative effect during
inflammation remains unknown.

Inflammatory stresses decrease centromere-nucleoli association in a p38 MAPK-
dependent manner. In interphase nuclei, the centromeres typically localize in close
proximity to nucleoli and represent a subset of NADs. In our ATAC seq analysis, we
identified chromatin changes in a number of centromere-related genes, specifically,
centromere-specific histone CENPA, an alpha-satellite-repeat binding centromere protein
CENPB, and centromere protein CENPC which is critical for centromere-nucleoli
association (Fig. 4A). Integrative analysis of ATAC-seq and RNA-seq analysis of febrile-
like heat stress samples vs. control revealed an upregulation of otherwise
developmentally  regulated transcription  factor gene  ZNF423  (Chr.16:
49487524..494859279), located within compartment B in the close proximity to
pericentromeric region (Fig. 4A). Zinc finger (ZNF) clusters often localize around nucleoli
in interphase cells and represent gene-silenced nucleoli-associated heterochromatic
chromatin domains, NADs 23. We, therefore, investigated NADs-nucleoli dynamics during
HAEC and HUVEC exposure to inflammatory stresses using confocal microscopy. First,
we confirmed the inflammatory response in HAEC cells, which includes the expression of
CAM molecules, which are characteristic of the initial stage of TNF-alpha-induced EC
dysfunction. Therefore, we assessed the upregulation of genes such as vascular cell
adhesion molecule-1(VCAM-1), intercellular adhesion molecule-1(ICAM-1), and pro-
inflammatory cytokine IL6 in HAEC cells (Fig. 4E). We next determined nucleoli-
centromere dynamics. For this purpose, we used a well-established centromere marker
CREST to visualize centromeric NADs and nucleolin antibodies to visualize nucleoli (Fig.
4B, C, F, G). We observed an increased dissociation of centromeres from nucleoli in TNF-
alpha-challenged cells (Fig. 4B and C). Centromere-nucleoli association is essential for
the regulation of centromere transcripts, and the depletion of key regulators of this
association, such as CENPC, leads to an increase in pericentromeric alpha-satellite
transcripts (ASAT) 7. We therefore tested whether TNF-alpha-induced dissociation
changes alpha-satellite transcripts using the same as previously published RNA-
fluorescence in situ hybridization (FISH) probe (Fig. 4D) '". Our data suggest that TNF-
alpha exposure induces ASAT transcripts as a consequence of nucleoli-centromere
dissociation. We next confirmed the TNF-induced decrease in nucleoli-centromere
association in HUVEC cells and tested the contribution of HS to nucleoli-centromere
dynamics. HS decreased centromere-nucleoli association, similar to TNF-alpha-treated
cells (Fig. 4F and G). MAPK p38 has pleiotropic effects on cellular metabolism and is
instrumental during inflammatory response 2. We probed for the contribution of p38
activation on nucleoli-centromere dynamics during TNF-alpha and HS exposure (Fig. 4F
and G). For this purpose, we used well-known small molecule inhibitors of p38 kinase
activity, BIRB796 and SB203580, currently in clinical trials 2°. Our data show that
inhibition of p38 kinase activity restored centromere-nucleoli association, suggesting that
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p38 MAPK mediates the nucleoli-centromere dynamics during inflammatory stresses
(Fig. 4F, G, H).

Several molecules were previously reported to contribute to the nucleoli-centromere
association, such as nucleolin interactions 2627 | fibrillarin 17, Ki67 28, chromatin assembly
factor CAF1 29, CenpA 7, and H3K27me3 23. One of the major interacting partners of
CenpA is nucleoli protein nucleophosmin (NPM1) 30, which came as a significantly
changed chromatin accessibility gene in ATAC-seq data from heat stress samples (Fig.
4A). Nucleophosmin decorates the outermost layer of the tri-partite nucleoli structure that
faces nucleoli-associated chromatin domains. Therefore, we tested the nucleophosmin
localization during inflammatory stresses and recovery after febrile-like heat stress (Fig.
41). The centrosome and centromeres are critical for establishing mitotic machinery and
proper separation of genetic material into two daughter cells. Centrosome is an
established stress-sensing organelle that undergoes alteration during heat stress and
returns to normal within 14-24 hr following the treatment 3'. We monitored its bona fide
protein, pericentrin (PCNT, magenta), as an intracellular marker for cell stress recovery
dynamics. Indeed, the pericentrin signal was decreased during stress and recovered after
24 hours of returning to normal temperature (Fig. 4l). In contrast to PCNT, we did not
observe significant changes in NPM1 immediately after HS. Instead, the dramatic
decrease in NPM1 signal occurred during the recovery period, starting at 24 hr. The
dissociation of CenpA-containing centromeres from nucleoli began immediately after heat
stress (Fig. 4F, G), suggesting that dissociation precedes changes in nucleoli integrity.
To summarize, inflammatory stress-mediated alteration of centromere-nucleoli
association depends on p38 and correlates with transcriptional activation of satellite
repeats. Our data outlines previously unreported dynamics in nucleoli protein
nucleophosmin, distinct from another well-established stress-sensing organelle, the
centrosome 31733, This data suggests that the two stress-sensing organelles, the
centrosome and nucleoli, have different timing in their recovery from febrile-like heat
stress. As centrosome is essential for cell division, the question of whether the cells
undergo cell divisions with recovered centrosomes yet with impaired nucleoli composition
remains to be investigated.

Both heat stress and cytokine exposure lead to an increase in the expression of stress-
specific EC dysfunction genes. This transcriptional response was accompanied by an
increase in chromatin accessibility. Moreover, the inflammatory stresses affect chromatin
organization at the level of nucleoli-associated chromatin domains (NADs), specifically, a
subset of NADs, the centromeres. Here, we report that TNF-alpha and heat stress
exposure lead to dissociation of the centromeres from nucleoli in a p38 MAPK kinase-
dependent manner. This dissociation correlates with the alpha-satellite transcriptional
response, and precedes heat stress-induced disruption of nucleoli protein
nucleophosmin. Altogether, we provide evidence that inflammatory stresses induce
changes in the chromatin landscape in human vascular endothelial cells by changing
chromatin accessibility and decreasing the centromere-nucleoli association.
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DISCUSSION

Inflammation-induced changes at the different levels of chromatin organization are an
under-investigated area of research yet are likely to be instrumental in determining the
mechanisms of long-term cellular dysfunction and the cell fate switching, such as EndMT
34 Here, we focused on human vascular endothelial cells as a well-established model of
inflammation-induced cellular dysfunction to investigate the effects of inflammatory
stresses on chromatin accessibility and nucleoli-centromere dynamics.

Current knowledge regarding the chromatin changes in response to pro-inflammatory
cytokines remains limited 4. One study revealed an intriguing phenomenon of a cell-type-
specific prolonged inflammatory response that was accompanied by increased chromatin
accessibility '°. The authors suggested that cells with prolonged high gene expression
lacked adequate repression mechanisms, with potential changes in chromatin
accessibility as one of the contributing factors. In another elegant work, the 3-7 days-long
exposure to 5ng/ml of TNF alpha with high sugar did not lead to profound changes in Hi-
C data but led to dramatic alterations in chromatin-bound RNA . The current work reports
that short-term, six hours of cytokine exposure induced DARs that were much more local
than megabases-long chromatin compartments in Hi-C data (Fig. 3). We also report an
increase in chromatin accessibility related to EC dysfunction genes, ICAM1, VCAM1,
EndMT and classic cytokine-inducible MAPK kinase and NFkB pathways.

The emerging data suggest that heat stress acts as a modifier of chromatin dynamics in
human cells. For example, a dramatic rearrangement in chromatin organization during
1hr at 42°C was reported in human embryonic stem cells %, and the recent publication
suggests significant changes in human K562 cells exposed to 42°C at the chromatin
accessibility level 3. Notably, these changes are reversible as the cells recover from
stress. Our work agrees with previously reported changes in HS-induced chromatin
accessibility, specifically DARs containing binding sites of heat shock transcription factors
and a set of classic HS-response genes. Additionally, we report the DARs for EC-specific
genes, including dysfunctional CAMs such as PECAM1 and anti-inflammatory proteins
such as KLF4. We suggest that although the two inflammatory stresses, TNF-alpha and
febrile-like HS, both induce EC dysfunction genes, these genes are rather stress-specific.
The question regarding the complementary/cumulative effects of these stresses during
inflammation requires further exploration.

The nucleolus is a cellular stress sensor in that during stress, it changes its function and
protein composition, including chromatin modifiers, molecular chaperones, and nucleoli
proteins such as NPM1 3437-3%  Additionally, the nucleoli emerge as a gene silencing hub,
including centromeric NADs in interphase cells, and thus, the possibility that stress-
induced nucleoli changes affect nucleoli-associated chromatin domains arises. Here, we
report that inflammatory stresses lead to the dissociation of centromeres from nucleoli.
Centromere-nucleoli association in untreated interphase nuclei varies between cell types
and healthy vs. cancer cells '®. We speculate that changes in dynamics during
inflammation might have consequences such as an unscheduled gene activation of
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typically silenced chromatin domains. Our initial data support this notion as we observed
an increase in pericentromeric transcripts upon stress and an “unscheduled” activation of
the developmentally regulated gene ZNF423. Heat shock-induced transcription from
pericentromeric regions was reported earlier in different human cells 4°#2, as well as the
elegant study pointing at the importance of nucleoli-centromere association for regulation
of their transcriptional activity 7. Our data connected these findings in the context of
inflammatory stresses in EC cells. We also observed dramatically decreased nuclear
signal for NPM1 protein during cellular recovery from stress. This is an unexpected finding
as a previous study suggested nucleoplasmic localization of NPM1 during short-term heat
stress in human immortalized and tumor cells 3. This discrepancy may be attributed to
the differences in cell types or temperature timing but indicate that the changes of NPM1
follow centromere-nucleoli dissociation rather than being a cause of a loss of
centromeres-nucleoli contact. Thus, we suggest that inflammatory stresses change
pericentromeric gene regulation in EC cells via p38MAPK but not via loss of nucleoli
proteins NPM1 or nucleolin.

The limitation of this study is that it is unclear whether inflammatory stresses change
histone modifications and whether these changes are reversible. It is also unclear
whether an increase in centromere transcripts results in changes in heterochromatin
features of centromere regions as well as NADs in general. Overall, we suggest that
inflammatory stresses induce chromatin dynamics in EC cells in a stress-specific manner,
and these changes are associated with transcriptional response, including cellular
dysfunctional events.

MATERIALS AND METHODS

Cell culture and treatment. Human aortic endothelial cells (HAECs; #PCS-100-011) and
human umbilical vein endothelial cells (HUVECs; #PCS100010) were purchased from
ATCC and cultured in endothelial cell growth basal medium-2 containing bullet kit growth
factor supplements (EBM-2 [endothelial cell growth basal medium-2]; Lonza), 5% fetal
bovine serum, 100 units/mL penicillin, 100 pg/mL streptomycin, and 2 mmol/L L-glutamine
(Invitrogen).

For passaging, the old medium was aspirated, and cells were washed with 5 ml PBS per
10 cm plate. Then 1 ml of 0.05% (w/v) trypsin-EDTA was added, and the plate was
incubated at 37°C until the cells detached. After, 5 ml RT medium was added per 10 cm
plate to quench the trypsin, and the cells were transferred to a 15 ml conical tube and
pelleted by centrifugation for 5 min at 200g at 4°C. Media was aspirated, and cells were
resuspended in 5 ml of fresh room temperature warm medium. Cells were passaged at
dilutions ranging from 1:2 to 1:10. Cultured human cells between passages 3 to 8 were
used for experiments.

Cell treatment regimens are outlined in the table.

Treatment | Concentration | Duration Catalog # (company)
BIRB796 200nM 30 min prior and during TNF | 285983-48-4 (MD Millipore)
and HS
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SB203580 10uM 30 min prior and during TNF | 152121-47-6 (Tocris)

and HS
TNF alpha 10ng/ml 6hrs 210-TA-020 (R&Dsystems)
Heat stress | n/a 2hrs n/a

Quantitative PCR. Control and treated HUVEC and HAEC cells were lysed with the TRIzol
reagent (Life Science Technologies), and total RNA was extracted using the RNeasy Plus
Micro Kit (Qiagen). Total RNA was reverse transcribed with oligo (dT) primers for cDNA
synthesis using an iScript cDNA synthesis kit (Bio-Rad). The expression of mMRNA was
examined by quantitative PCR analysis using a QuantStudio 6 Flex Real-Time PCR
System (Applied Biosystems). TagMan assays were used to quantitate. The
2784¢ method was used for relative quantification of gene expression. Expression
of GAPDH was used to normalize each sample.

Number (Applied
Probe Name Biosystems)

ICAM1 Hs00164932 m1
IL6 Hs00174131 m1
PECAM1 Hs00169777 m1
VCAM1 Hs01003372 m1
KLF4 Hs00358836 m1
GAPDH Hs99999905 m1

RNA-seq. HUVEC cells were grown in dishes, either left untreated or subjected to
inflammatory stressor TNF alpha for 6hrs or febrile-mimicking heat stress for 2hrs and
cryopreserved in 1ml of freezing media containing more than 0.4x10%6 cells. The
experiments were done in biological triplicate. RNA-seq was done by Diagenode Inc.
Specifically, nine cryopreserved samples were used for total RNA extraction using the
Qiagen RNeasy mini kit (Qiagen Cat #74104). The RNA-seq experiment has been
conducted by RNA-seq services (Diagenode Cat# G02030000). RNAs have been firstly
quantified using Qubit™ RNA HS Assay Kit RNA HS Assay Kit (Thermo Fisher Scientific,
Cat# Q32852). The RNA integrity was assessed using a Bioanalyzer, RNA 6000 Pico kit
(Agilent Cat# 5067-1513,) on a 2100 Bioanalyzer system (Agilent). The samples with
RINs above 7 were used for RNA-seq. Library preparation has been done with 250ng of
input RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB #E7490)
followed by NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina (NEB #E7760)
and NEBNext® Multiplex Oligos for lllumina® Index Primers Set 1 (NEB# E6440). The
generated DNA libraries were purified using Agencourt® AMPure® XP (Beckman
Coulter). Purified libraries were quantified, and their size was assessed with QlAxcel
(Qiagen). The library pool was then sequenced on NovaSeq paired-end 50bp.
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ATAC-seq. HUVEC cells were grown in dishes, either left untreated or subjected to
inflammatory stressor TNF alpha for 6hrs or febrile-mimicking heat stress for 2hrs and
cryopreserved in 1ml of media with DMSO containing 0.5-1.5x1076 cells. The experiment
was done in biological duplicate, paired with RNA-seq experiment. The ATAC-seq
experiments have been conducted by the Diagenode ATAC-seq Profiling service
(Diagenode Cat# G02060000).

Transposition. Cell viability and cell counting were evaluated by visualization under the
microscope (AE2000; Matic). 200,000 cells were centrifuged at 500g before proceeding
with the nuclei isolation and transposition reaction using the ATAC-seq Kit from
Diagenode (Diagenode Cat #C01080002). According to the results of the nuclei isolation
optimization, the Tween20/Igepal concentration in Lysis buffer 1 used was 0,1% with an
incubation time of 3 minutes. 50,000 counted nuclei were transferred to a new tube and
were centrifuged at 500g before proceeding with the transposition reaction. Isolated
nuclei were lysed and transposed for 30 minutes at 37°C using the prokaryotic Tn5
transposase system (Nextera DNA library kit, lllumina, FC-121-1030). Transposed DNA
was then purified on Diapure columns (Diagenode Cat# C03040001). Library preparation.
Libraries were prepared from purified transposed DNA using NEBNext High-Fidelity PCR
MasterMix (NEB, M0541) and lllumina indexing primers. The number of library
amplification cycles was determined by qPCR analysis using NEBNext High-Fidelity PCR
MasterMix (NEB, M0541) on LightCycler® 96 System (Roche). After their amplification,
the libraries were size selected and purified using Agencourt® AMPure® XP (Beckman
Coulter) and quantified using Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific,
Q32854). Finally, their fragment size was analyzed by High Sensitivity NGS Fragment
Analysis Kit (DNF-474) on a Fragment Analyzer™ (Advanced Analytical Technologies,
Inc.). Libraries were pooled and sequenced on an lllumina NovaSeq6000 in a 2 x 50-bp,
paired-end mode.

Bioinformatic analysis.

RNA-seq data analysis. Quality of raw reads was assessed using FastQC (v0.11.9)
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Given that the read quality
was high and adaptor sequences were barely detected, no trimming was performed.
Paired-end reads were mapped to the latest human reference genome T2T-CHM13v2.0
(Ensembl rapid release) using STAR (v2.7.10a) *® in a two-pass mode, with the latest
GTF (Ensembl rapid release, July, 2022) as gene annotation. A gene-by-sample count
matrix was generated using featureCounts (v1.6.2 ) %4, All downstream statistical analyses
were done using the R programming language (v4.1.0) Briefly, entries of genes with
extremely low expression were first removed from the gene-by-sample count matrix.
Differential gene analysis was performed using DESeq2 (v1.32.0) #° with the batch effect
considered. Genes with absolute values of logx(fold-change) = 1 and BH method-adjusted
p value < 0.05 were considered as significantly differentially expressed genes (DEGs) 6.
DEGs were \visualized using the EnhancedVolcano package (v1.16.0)
(https://bioconductor.org/packages/EnhancedVolcano/). Over-representation analysis of
DEGs against KEGG pathways was performed using clusterProfiler (v4.0.5) 4’. Gene set
enrichment analysis of expressed genes in descending order of logz(fold-change) against
the MSigDB get sets was carried out using the GSEAPreranked command of the GSEA
software (v4.3.2) 48 49
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ATAC-seq data analysis. Quality of raw reads was assessed using FastQC (v0.11.9)
( https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 3’-end adaptor sequences
were trimmed using Timmomatic (v0.32) *°. The remaining paired-end reads were aligned
to the latest human reference genome T2T-CHM13v2.0 (Ensembl rapid release) using
bwa mem (v0.7.17) 1. Alignment files in the SAM format were first sorted by coordinates
and converted into the BAM format using SAMtools (v1.16.1) %2. Subsequently, PCR
duplicates were removed from the BAM files using the ‘MarkDuplicates’ command of the
Picard tools (v2.27.5) (https://broadinstitute.github.io/picard/). The BAM files were further
filtered to only keep concordant alignments with mapping quality = 20 and insert sizes in
the range of [38, 2000]. The resulting BAM files were name sorted using SAMtools. Post-
alignment quality control was performed using the ATACseqQC package (v1.24.0) 3.
Peaks per condition were called using Genrich (v0.6.1) with the BAM files of all biological
replicates for a given condition and a g-value cutoff of 0.05. Consensus peaks-by-sample
count matrix were generated using DiffBind (v3.4.11) 4. Transcription factor activity was
inferred using the ChromVar package (v1.20.2) % and human core transcription factor
motifs from the JASPAR database (v2016) 6. Peaks were associated to the nearest
genes using the ChlPpeakAnno package (v3.34.1) °’. Differential peak analysis was
conducted using DEseq2 (v1.32.0) 4. Peaks with absolute values of logz(shrunken fold-
change) 21 and BH method adjusted p value < 0.05, *6 were considered as significantly
differential accessible regions (DARs). DARs were visualized using the Enhanced
Volcano package (v1.16.0) (https://bioconductor.org/packages/EnhancedVolcano/). The
nearest genes associated with the DARs were used for KEGG pathway
overrepresentation analysis using clusterProfiler (v4.0.5) 5). Track views were gene-rated
using the Integrative Genomics Viewer (v hg38) 8.

Immunocytochemistry and RNA-FISH. Single-molecule (sm) RNA-FISH experiments
were performed according to the PixelBiotech Protocol (Schriesheim, Germany) and
before immunocytochemistry. Briefly, cells were grown on sterile glass coverslips
(Corning) until 60-80% confluency, treated with TNF alpha or febrile-like heat stress, triple
washed with RT 1xPBS, and fixed with 4%PFA for 10 min at RT, washed with 1xPBS and
stored in 70% ethanol overnight at 4°C or used after an hour of incubation at 4°C. Prior
to hybridization, samples were washed twice with 2x SSC, 2M Urea (HuluWash) at RT
and incubated with HuluProbe at 37°C overnight. In order to eliminate the unbound probe,
coverslips were washed four times with HuluWash at RT for 10 min, then with 1x PBS,
and used for immunocytochemistry.

smRNA-FISH Probe Sequence Catalog #

name (company)

Alpha satellite sense (ASAT-S) | CAAAGAAGTTTCTGAGAATGTGAGTTGAATGCACACATCA PixelBiotech
AAAAGGAAGGTTCAACTCTGTGTTTCAAAACTGCTCTATG GmbH
TGCAGATTCTACAAAAAGAGAAGCGGTCCAAATATCCACT . .
CGTTTCCAACGAAGGCCTCATTTTTATATGAAGATATTCC (Schriesheim,
CTGAGAATGCTTCTGTCTAGCACACATCACAAAGAAGTTT Germany)
TCAACTCTGTGAGTTGAATGTGCTCTATGAAAAGGAAGGT
CAAAAAGAGTGTTTCAAAAC ATATCCACTTGCAGATTCTA
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AAGGCCTCAAAGCGGTCCAA AGATATTCCCGTTTCCAACG (Bury et al,
TCTGTCTAGTTTTTATATGA elLife 2020)

Immunocytochemistry as previously described. Briefly, cells were grown on sterile
coverslips. After treatment, cells were rinsed with 1x PBS and blocked in 1x PBS/ 1%
BSA for 15-30 min at RT. Primary antibodies were diluted in blocking solution and
coverslips were incubated O/N at 4°C. Secondary antibodies for immunofluorescence
were conjugated with: Alexa 488, Cy3 (Jackson ImmunoResearch, West Grove, PA).
Samples were washed with PBS and incubated with secondary antibodies for 1 h at 37
OC. Coverslips were washed with PBS, 1x PBS / 0.1% TritonX-100, and 1x PBS at RT
on a shaker, for 10 min each. Finally, the coverslips were rinsed twice with PBS and one
time with water, and mounted using Prolong Gold antifade reagent (Invitrogen, cat #
P36934).

Antibody Catalog # Dilution Fixation
(company)

nucleolin ab22758 (Abcam) 1:500 MeOH;4%PFA

CREST 15-235 (Antibodies Inc) | 1:100 MeOH;4%PFA

nucleophosmin (Abcam) 1:500 MeOH;4%PFA

pericentrin ab4448 (Abcam) 1:500 MeOH

Microscopy, software, and data analysis. Images were acquired with a Zeiss Axiovert
200M, a Perkin Elmer Ultraview spinning disc microscope, and a Hamamatsu ORCA-ER
camera. (100x NA1.4 Plan-Apocromat QOil objective) and with Nikon ATRHD25 (100x
NA1.45 Plan-Apocromat Oil objective). RNA-FISH probes and centromere/nucleol
association were counted through Z-stacks manually and were scored as “associated”
when no gap between the nucleolar marker and the centromere marker was detected
throughout the Z-stack. For images, fluorescence range intensity was adjusted identically
for each series of panels. Z stacks are shown as 2D maximum projections or as a single
optical section (MetaMorph, Molecular Devices, or Nikon Elements AR software). All
images across each experimental series were taken using the same microscope setting
(such as laser power and gain) to allow equal comparison of fluorescence levels of
samples. All statistical analysis was done using GraphPad Prism software.
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FIGURE LEGENDS.

Figure 1. Chromatin accessibility assessment of febrile-like HS and TNF-alpha-
treated endothelial cells revealed stress response and endothelial dysfunction
drivers. A. Distribution of peaks among genomic features. B. A volcano plot of HS-Cntrl
differentially accessible regions (DARs) ATAC-seq regions. C. A volcano plot of TNF-
Cntrl (DARs) ATAC-seq regions. D. ATAC-seq motif deviation from HUVEC cells treated
with febrile-like HS (39°C for 2hrs) or TNF-alpha (10ng/ml for 6hrs) (C1, C2, T1, T2, and
HS1, HS2 are biological replicates of control, TNF-alpha, and heat stress treated cells).
E. HS-Cntrl up-regulated KEGG pathway overrepresentation analysis. F. TNF-Cntrl up-
regulated KEGG pathway overrepresentation analysis.

Figure 2. Febrile-like HS and TNF-alpha induce a profound transcriptional
response, including EC dysfunction drivers. A. A volcano plot of HS-Cntrl Differentially
Expressed Genes, RNA-seq. B. A volcano plot of TNF-Cntrl Differentially Expressed
Genes, RNA-seq. C. A volcano plot of TNF-HS Differentially Expressed Genes, RNA-seq.
D. Gene Set Enrichment Analysis (GSEA) enrichment plot for cell adhesive molecules,
CAMs. E. GSEA enrichment plot for mesenchymal transition genes. F. Q-PCR to confirm
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stress-induced upregulation of markers for EC dysfunction, CAMs, and anti-inflammatory
protein KLF4. G. GSEA enrichment plots for cytokine signaling and chaperone-mediated
protein folding for TNF-HS. H. KEGG analysis for HS-Cntrl and I. for TNF-Cntrl RNA-seq
samples.

Figure 3. Transcriptional changes in multiple EC dysfunction markers also undergo
alterations at the chromatin accessibility level. A. Integrative analysis of ATAC-seq
and RNA-seq for HS-Cntrl and B. for TNF-Cntrl (in orange color are examples of stress-
specific genes, in red are examples of EC dysfunctional genes). C. An IGV browser
snapshot of a region of chr.1 with human endothelial vein cells Hi-C track (ENCODE data
accession number: ENCFF005ZBU), HS-T upregulated DARs, and TNF-C upregulated
DARs at the site of VCAM1 gene. D. An IGV browser snapshot of a region of chr.5 with
human endothelial vein cells Hi-C track (ENCODE data accession number:
ENCFF005ZBU), HS-T upregulated DARs track and TNF-C upregulated DARs track at
the site of VCAN gene. E. An IGV browser snapshot of a chr.9 and chr.11 with human
endothelial vein cells Hi-C track (ENCODE data accession number: ENCFF005ZBU), HS-
T upregulated and downregulated DARs tracks, and TNF-C upregulated and
downregulated DARSs tracks suggests more ATAC-seq DARs are within compartment A
than compartment B.

Figure 4. Dynamics in centromere-nucleoli association during inflammatory stress
exposure depends on p38 MAPK kinase. A. Changes in centromere genes chromatin
accessibility during exposure to inflammatory stresses. B. Confocal microscopy images
of the centromere (CREST, magenta) -nucleoli (nucleoli, cyan) association in control and
TNF-alpha treated HAEC cells (scale bar 10 ym). C. Quantification of nucleoli-centromere
association: each dot represents the percentage of nucleoli-associated centromeres per
nuclei. D. Quantification of alpha satellite (ASAT) transcripts per cell in control and TNF-
alpha-treated cells. E. Q-PCR for endothelial dysfunction genes ICAM1, VCAM1, and IL-
6 upregulation as a result of TNF-alpha exposure in HAEC cells. F. Quantification of
nucleoli-centromere association in TNF-alpha and HS-treated HUVEC cells; each dot
represents the percentage of nucleoli-associated centromeres per nuclei. When
indicated, cells were exposed to stresses in the presence of p38MAPK inhibitors BIRB
and SB. G. Confocal microscopy images of the centromere (CREST, magenta)-nucleoli
(nucleoli, cyan) association in control and TNF-alpha treated HUVEC cells in the
presence of p38 inhibitors, BIRB and SB (scale bar 10 um). H. Model of the role of p38
in centromere-nucleoli dynamics during inflammatory stress. I. Nucleoli marker
nucleophosmin (cyan, red arrow) disruption during HS recovery. Centrosome (pericentrin
marker, PCNT, magenta, white arrow) is used as an intracellular marker for cellular
recovery from stress in HUVEC cells, scale bar 10 ym.
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