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Abstract 
 
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 

10-14% of postmarket withdrawals. In this study, we explored the capabilities of various 

chemical and biological data to predict cardiotoxicity, using the recently released Drug-

Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a 

diverse set of data sources, including physicochemical properties, annotated mechanisms of 

action (MOA), Cell Painting, Gene Expression, and more, to identify indications of 

cardiotoxicity. We found that such data, including protein targets, especially those related to 

ion channels (such as hERG), physicochemical properties (such as electrotopological state) 

as well as peak concentration in plasma offer strong predictive ability as well as valuable 

insights into DICT. We also found compounds annotated with particular mechanisms of 

action, such as cyclooxygenase inhibition, could distinguish between most-concern and no-

concern DICT compounds. Cell Painting features related to ER stress discern the most-

concern cardiotoxic compounds from non-toxic compounds. While models based on 

physicochemical properties currently provide substantial predictive accuracy (AUCPR = 

0.93), this study also underscores the potential benefits of incorporating more 

comprehensive biological data in future DICT predictive models. With the availability of -

omics data in the future, using biological data promises enhanced predictability and delivers 

deeper mechanistic insights, paving the way for safer therapeutic drug development. All 

models and data used in this study are publicly released at 

https://broad.io/DICTrank_Predictor  
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Introduction 
 
Drug-induced cardiotoxicity (DICT) is a leading cause of drug withdrawals during post-

market surveillance. One study showed that 10% of withdrawals in the last 4 decades were 

due to cardiovascular safety concerns, including previously successful therapeutics such as 

rofecoxib, tegaserod, sibutramine, and rosiglitazone.1 Another study found that cardiotoxicity 

was the third most common reason for adverse drug reactions and accounted for 14% of 

withdrawals.2 Worryingly, the rate of DICT-related withdrawals may even be increasing, 

accounting for 17 out of 38 cases among drugs approved between 1994 and 2006.1,3  

 
DICT is associated with both functional damage such as arrhythmia, which alters mechanical 

function, and structural damage such as morphological damage in cardiomyocytes; 

functional damage and structural damage in the heart can be interrelated, where one may 

precipitate the other.4 DICT can be attributed to several underlying mechanisms affecting 

myocardial functions and viabilities.5 Some drugs, such as anthracyclines, inflict direct 

myocyte injury via reactive oxygen species production and compromising DNA replication.6 

Electrophysiological disruptions, for example, measured in the hERG potassium channel 

blockers, can lead to arrhythmias by causing QT interval prolongation.7 Cardiac energy 

demands can be affected by drugs that interfere with mitochondrial functionality.1 Drugs may 

also adversely influence vascular supply, inducing ischemic conditions.8 Intracellular calcium 

regulation for cardiomyocyte activity can also disrupt its homeostasis, resulting in contractile 

and rhythm abnormalities.9 Furthermore, alterations in growth factors and cytokine balances 

can induce cardiac conditions like fibrosis, and immunologic drug reactions can also cause 

cardiotoxicity.10,11 Several neurohormonal pathways also offer indirect routes for drug-

induced cardiac stress.12 Notably, a single drug might induce cardiotoxicity via multiple 

mechanisms, and individual patients’ responses (which can often manifest as side effects) 

can be modulated by genetics, concurrent health conditions, and other medications.13  
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To move beyond a limited focus on specific adverse reactions or related proxy assays for 

cardiotoxicity, the FDA recently released the Drug-Induced Cardiotoxicity Rank (DICTrank) 

that categorizes drugs based on their risk of causing cardiotoxicity.14 Similar to the DILIrank 

data for liver injury15, the DICTrank system uses FDA drug labeling to comprehensively 

categorize 1,318 human drugs into four DICT Concern categories based on their potential 

risk for cardiotoxicity: (1) Most-DICT-Concern, (2) Less-DICT-Concern, (3) No-DICT-

Concern and (4) Ambiguous-DICT-Concern. The DICTrank dataset was generated with an 

expertise review from the FDA, keyword searches, and manual curation of FDA labeling 

documents as well as data from clinical trials, post-marketing, and literature surveys. 

 
Predictive models for drug-induced cardiotoxicity (DICT) could save considerable time, 

resources, and human suffering, with the ultimate goal of preventing adverse events in 

clinical trials and the post-market stage. However, predicting any in vivo effect is not a trivial 

classification task, and most predictive models are built on proxy endpoints (which are often 

reduced to binary endpoints) without taking into account in vivo parameters such as 

pharmacokinetic parameters.16 While no models for DICTrank have been publicly available 

yet to the best of our knowledge, various studies have predicted proxy in vitro assays or side 

effect data from SIDER (Side Effects Resource), some of which are related to 

cardiotoxicity.17 Studies focusing on side effects and proxy targets (such as hERG) are 

reasonable given that compounds that have cardiac-related indications are more likely to 

show related side effects as well or activity on ion channels.7  

 
Previously it was shown that adverse events data and biological data can be used for 

identifying mechanism hypotheses leading to cardiotoxicity.18 Wang et al used LINCS L1000 

gene expression features to predict a wide range of drug-induced adverse events from the 

SIDER dataset.19 Particularly for acute myocardial infarction, models developed achieved an 

AUC-ROC of 0.84 when using chemical structural data and 0.76 when using Gene Ontology 

annotations (compared to 0.5 for random models). Gelano et al used a matrix decomposition 
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algorithm to predict side effect frequencies for drugs and provide biologically interpretable 

insights.20 MoleculeNet predictions for SIDER side effects, trained on chemical structure 

data, range from 0.65 to 0.70 AUC-ROC when using a bypass network, a modified version of 

a multi-task network.21  

 
Most predictive models above were built on chemical structure data as input features. 

Although certain structural motifs or patterns in a molecule can be indicative of toxic 

properties and analyzing the chemical structure can flag potential cardiotoxic compounds, 

such models are often limited in their applicability domain, that is, their accuracy is limited to 

the chemical space of the training data, and they fail to generalize to markedly different 

chemical structures. Novel chemical and biological data have been previously used to 

evaluate side effects in general from the SIDER dataset.22 Previous studies have shown that 

Random Forest models trained on a combination of biological, chemical, and phenotypic 

features achieved an AUCPR of 0.76 for cardiac disorders.23  

 
Figure 1: Chemical and biological data sources were used in this study to perform 
exploratory data analysis on DICTrank and training predictive models (further details in 
Table 2). 
 
With the availability of the new DICTrank dataset, we used a novel multi-faceted approach 

using both chemical and biological data (that considers a multitude of possible mechanisms 
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that can lead to DICT) intending to better understand and make mechanistic insights into a 

drug's cardiac safety profile. We evaluated a wide range of chemical and biological 

information, as shown in Figure 1, to determine which feature space is most predictive of 

DICTrank and evaluated these feature spaces to build the first predictive models of 

DICTrank using machine learning. Biological data sources included Cell Painting, gene 

expression, and Gene Ontology,24–28 as well as bioactivity, and annotated mechanisms of 

action (MOA)29 and pharmacokinetic parameters for the peak unbound and total 

concentration of a drug molecule in plasma30; these offer an alternate feature space to 

chemical space.31 We aimed to glean insights from which chemical and biological data best 

capture the carefully curated manual annotations in the DICTrank data. Incorporating data 

from all these sources as feature spaces for predictive models allows for a multifaceted 

assessment of a drug's potential cardiotoxicity, potentially enhancing the model's accuracy 

and reliability. Overall, the use of biological data sources along with chemical data improved 

detection and offered mechanistic insights into the cardiotoxicity of compounds. The models 

based on chemical structures and physicochemical characteristics are readily accessible for 

direct use on <> (owing to the constrained availability of public data for other feature types). 

All code and data for all models can be found on GitHub 

(https://github.com/srijitseal/DICTrank) for local implementation with further details on 

https://broad.io/DICTrank_Predictor. 
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Methods 
Data sources  
 
We obtained the DICTrank dataset, as released by Qu et al. which includes comprehensive 

DICTConcern categories for a diverse set of over 1300 drugs.14 The SIDER database, a 

pharmacovigilance resource, contained associations for drugs with side effects.21,32 We used 

data from cardiac disorders from the SIDER dataset to compare concordance with DICTrank 

and enrich the dataset as described later. To gain insights into the mechanisms of action 

(MOA) of various drugs, we assessed relevant data from the Drug Repurposing Hub33 which 

contained information on 6777 drugs for 1130 MOAs and 2183 known targets. To explore 

the potential targets of drugs, we incorporated the CellScape target predictions on 

inhibition/antagonism for 2,094 targets at four concentrations (0.1, 1, 10, and 100 uM).34 We 

used morphological profiles from the Cell Painting assay24 which considers the impact of 

drugs on cellular morphology and function. This dataset contained a range of circa 1700 

morphological features for over 15,000 compound perturbations. We obtained gene 

expression data from LINCS L1000 data which contains over 19,000 drugs as described in 

Wang et al.19 This study utilized gene expression features derived from LINCS L100025 

transcriptomic data, capturing changes in 978 landmark genes across diverse human cell 

lines in response to compound perturbations. Gene Ontology-transformed expression 

features26, which encode biological processes involved with gene expressions affected by 

the compound perturbations, were extracted from a dataset containing 4,438 annotated 

features linked to these compounds in the study.19 The analysis by Wang et al prioritized the 

strongest signatures across cell line, concentration, and time point for each compound using 

Characteristic Direction (CD) and evaluated the enrichment across various gene set libraries 

via Principal Angle Enrichment Analysis (PAEA).35 Finally we used pharmacokinetic data, 

specifically the maximum unbound and total concentrations (Cmax) of 758 drugs in the 

bloodstream, as compiled by Smith et al.30 This dataset contains Cmax (unbound) for 534 

compounds and Cmax (total) for 749 compounds. 
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Standardization of the SMILES 

 
For each dataset, we standardized chemical SMILES iteratively using RDKit36 and MolVS37 

functionalities. This includes steps for InChI transformation, molecular cleanup, charge 

neutralization, tautomer normalization, and final standardization. We carried out up to five 

iterations of the standardization until a standardized SMILES was finalized, otherwise, we 

chose the most common SMILES from the counter. Finally, the molecule was protonated at 

pH 7.4 using DimorphiteDL to reflect its likely state at physiological pH.38 Hence, we 

obtained a standardized SMILES and a standardized InChI.  

 

Preprocessing data 
 

For the DICTrank dataset, we binarized the dataset considering DICT no-concern as 0 and 

less- and most-concern as 1 as DICTrank labels for machine learning classifiers. We 

removed compounds that were ambiguous and treated a compound as toxic if there was at 

least one record of toxicity among duplicates. For the SIDER dataset, we removed duplicate 

standardized smiles, and similar to the above, labeled a compound as toxic if there was at 

least one evidence of toxicity among the duplicates. Labels from both SIDER and DICTrank 

are described in Table 1. 

 
Table 1: Distribution of compound toxicity labels related to cardiotoxicity/ cardiac disorders 
for all unique compounds from each of the datasets used in this study. 

Dataset Label Number of 
Toxic 
Compounds 

Number of 
Non-Toxic 
Compounds 

Description 

SIDER Cardiac disorders 
(binary) 

829 360 
(Absence of 
Evidence) 

Recorded adverse drug 
reactions from marketed 
medicines. 

DICTrank 
 

DICT Concern 
Category 
(Categorical) 

Most: 299, 
Less: 443,  
 

No: 278 
(Evidence of 
Absence) 

A ranking system from 
DICTrank that categorizes 
drugs according to risk for 
cardiotoxicity. 

DICTrank label 
(binary) 

742 278 
(Evidence of 
Absence) 

Binarized labels obtained 
from DICT Concern 
categories used in this study 
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For the Cell Painting, Gene Expression, and Gene Ontology datasets, we use median cell 

profiles over standardized SMILES obtaining two datasets: 1783 Cell Painting features for 

15,406 compounds, and Gene Expression features for 978 landmark genes and 4,428 Gene 

Ontology annotations for 9132 compounds. For the MOA dataset, we used one hot encoding of 

given annotations for compounds, which effectively gives us data for evidence of the presence 

of MOA/known targets and the absence of evidence. We used a variance threshold of 0.001 to 

identify and remove low-variance features reducing the dimensionality to 264 MOA and 551 

known target features with significant variability. All datasets are released publicly at figshare 

(10.6084/m9.figshare.24312274) and https://broad.io/DICTrank_Predictor. 

 
Analyzing chemical space overlap between SIDER and DICTrank 
 
We used standardized InChI to calculate the overlap between SIDER and DICTrank datasets. 

We assessed the physicochemical space using a t-distributed stochastic neighbor embedding 

(TSNE; as implemented in scikit-learn39) for six physicochemical properties, namely, 

molecular weight, topological polar surface area, number of rotatable bonds, hydrogen bond 

donors and acceptor, and the computed logarithm of the partition coefficient. To analyze the 

chemical space we used a Principal Component analysis (PCA) of the FragFP fingerprints from 

DataWarrior40, which in our experience works better with a higher explained variance in the plot 

of the principal component analysis compared to Morgan fingerprints. 

 
Structural and physicochemical features 

 
For structural features, we used 2048-bit Morgan Fingerprints as implemented in RDKIT.36 

For chemical compounds, we computed 1579 descriptors using Mordred.41 These 

physicochemical descriptors are derived from 2D representations of compounds, that is, we 

did not consider 3D descriptors. We removed the descriptors that failed to compute and 

finally obtained 1038 2-D physicochemical descriptors, and these were used for the machine 

learning models. For the analysis of feature distributions, we used the full set of 208 RDKit 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2023. ; https://doi.org/10.1101/2023.10.15.562398doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562398
http://creativecommons.org/licenses/by/4.0/


 

descriptors, (which are better interpretable compared to Mordred descriptors) as defined in 

the Descriptors module.36 

 

Predicted targets from CellScape 
 
To derive predicted molecular targets for compounds, we utilized the commercially available 

CellScape target prediction package (Ignota Labs, 2023).34 This package applies models 

trained on a mixture of publicly available and proprietary bioactivity data (primarily 

inhibitory/antagonistic mechanisms) at 0.1, 1, 10, and 100uM with chemical structural 

features to output a probability score (between 0 and 1) of predicted activity for 2,094 distinct 

human targets. Although not used in this study, publicly available target prediction 

alternatives are also available such as PIDGINv442,43 and swisstargetpred44. We provide the 

computed CellScape features for compounds in the DICTrank dataset publicly via figshare 

(10.6084/m9.figshare.24312274) and https://broad.io/DICTrank_Predictor.  

 

Substructure analysis and retrospective analysis of DrugBank 
 
For substructure analysis, we used SARpy45 on the DICTrank dataset, in a method similar to 

the one applied by Hemmrich et al.46. SARpy uses a recursive algorithm for fragmentation. 

We used two distinct settings for analysis: (1) using both toxic and non-toxic compounds and 

(2) using only toxic compounds to yield the desired substructures. For both settings, we 

confined the fragment size within a range of two to 18 atoms, with a minimum occurrence of 

five times. Furthermore, the positive predictive value (PPV) was adjusted to minimize false 

negatives. We combined structural alerts from both settings and quantified the frequency of 

these fragments within the entirety of the DICTrank dataset. We eliminated fragments with a 

PPV below 0.5. We then manually assessed the remaining fragments, for example removing 

those having four or fewer atoms, removing substructures like benzene, etc. to obtain 58 

structural alerts. 
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We analyzed all compounds in DrugBank47 for the presence of structural alerts from the 

above to evaluate the risk of the chemical space of drugs for cardiotoxicity. We only used the 

compounds that did not overlap with the DICTrank dataset for this retrospective analysis to 

avoid information leaks. We annotated these compounds with labels for cardiac disorders 

from SIDER and disease area labels from the MOA dataset. We then checked for the 

presence of structural alerts among the subset of compounds that are currently approved, 

investigational, experimental, and/or withdrawn drugs. 

 

Analysis of chemical and biological data for differences in feature distribution for 
DICTrank compounds 
 
We detected features that are predictive of highly cardiotoxic compounds. In order to do this, 

we detected features for each chemical and biological dataset that had a significant 

difference in the distribution for the DICT concern categories. For categorical features 

(SIDER, MOA annotations, and some of the 208 RDKit descriptors), we employed the chi-

squared test (as implemented in SciPy48) to evaluate the association between categorical 

variables. We used a contingency table delineating the frequency distribution for each 

combination of category values. The chi-squared test yielded a statistical value alongside a 

corresponding p-value. For continuous features (as in the Cell Painting, Gene Expression, 

Gene Ontology datasets, and some of the 208 RDKit descriptors), we chose the Kruskal-

Wallis test (as implemented in SciPy48) for evaluating the DICT-Concern labels since it is 

suited for comparisons involving three or more independent groups. Conversely, when 

comparing two classes, pairwise, the Mann-Whitney U test (as implemented in SciPy48) was 

used which is adept at discerning differences in distributions between two independent 

samples. Both tests yield a statistic value alongside its corresponding p-value. For both total 

unbound/plasma concentrations, as in the Cmax dataset, we used the Mann-Whitney U test 

to compare the distribution of Cmax among each DICT concern class and the DICTrank 

label. 
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Enriching DICTrank compounds with SIDER compounds 
 
We next determined the overlap of compounds (and the concordance in their labels) in the 

DICTrank dataset with the compounds in SIDER labeled with “Cardiac disorders” using the 

standardized InChI yielding 776 compounds in common. We next enriched DICTrank with 

SIDER giving a preference to the DICTrank label in case of a conflict. In this manner, we 

obtained three datasets besides the DICTrank dataset with the distribution of toxic/non-toxic 

compounds given in Supplementary Table S1. These are (1) DICTrank, (2) DICTrank 

enriched with cardiotoxic compounds from SIDER, (3) DICTrank enriched with non-

cardiotoxic compounds from SIDER and (4) DICTrank enriched with all compounds from 

SIDER. 

 

Training predictive models for DICTrank 
 
We trained eleven Random Forest models, each using the following features (as listed in 

Table 2): (1) Structural fingerprints, (2) Mordred descriptors, (3) MOA labels, (4) MOA labels 

along with total Cmax, (5) MOA labels along with unbound Cmax, (6) CellScape predicted 

protein targets, (7) CellScape predicted protein targets along with total Cmax, (8) CellScape 

predicted protein targets along with unbound Cmax, (9) Cell Painting features, (10) Gene 

Expression features, and (11) Gene Ontology features. 

 
The training data available for these models depended on the number of compounds for 

which data was available and varied as given in Supplementary Table S1. As the external 

test set, we aimed to keep that fixed for a fair evaluation depending on available data as 

shown in Supplementary Table S2. For models not using Cmax data (where overlaps were 

larger and hence more data was available), we randomly selected 90 compounds (8.8% of 

the dataset, 65 cardiotoxic and 21 non-toxic) for which all annotations of feature spaces 

were available (as described in Supplementary Table S1). These 90 compounds struck a 

similar balance of DICT concern categories (most: 39, less: 26, and no: 25) as the original 
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DICTrank dataset. For models using total Cmax data, we used the same external test set 

comprising 90 compounds since total Cmax data was available for these compounds. 

However, for models using unbound Cmax data (which had smaller overlaps compared to 

the above), we used a subset of 78 compounds (57 cardiotoxic and 21 non-toxic) as the 

external test set as shown in Supplementary Table S2. 

 
Among the models that relied on -omics data (Cell Painting, Gene Expression, and Gene 

Ontology) we checked for each training compound whether a profile (feature set) was 

available. If there was no profile available in the respective datasets, we calculated the 

median profile of all compounds in the original dataset using a v-NN approach, which is 

different from a fixed k-nn approach; v-nn selects the neighbors based on a condition for 

each query compound. We used the median profile on the v training compounds that had a 

Tanimoto similarity greater than 0.70. We ignored any similar compound that appears in the 

external test set to avoid information leaks. Subsequently, we further discarded any 

compounds for which no feature profile was found directly or using the above v-nn approach. 

Thus, while the test sets for the DICTrank and DICTrank enriched datasets are the same, it 

is important to note that the training data for them vary for the models (as described in 

Supplementary Table S1) since we dropped compounds where no feature data could be 

found or matched. 

 
For each of the eleven models, we used a Random Forest classifier, with hyperparameter 

optimization on the training data using a halving random search with a 5-fold stratified cross-

validation with a random oversampling to account for class imbalance (as implemented in 

scikit-learn39). We used the best hyperparameter-optimized estimator and obtained out-of-

fold predictions with a 5-fold stratified cross-validation. We used the out-of-fold predictions 

and the true labels to optimize the decision threshold for binary classification using the J 

statistic, calculated as the difference between the true positive rate and the false positive 

rate. This determines the threshold from ROC curve values where the J statistic is 
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maximized. The model was finally refitted on the entire training dataset, and we used the 

optimized threshold to make final predictions based on the predicted probabilities of the 

external test set. 

 
We trained two ensemble models to combine the models from the eleven feature spaces 

above. These were based on soft voting, which considered the mean of the scaled predicted 

probabilities of each mode (scaled according to the best threshold of each model). The first 

model considered only the six best-performing models (structural, physicochemical, MOA, 

CellScape, MOA with Cmax total, and CellScape with Cmax total) in the cross-validation 

(AUC>0.65). The second ensemble model considers all eleven models and thus is evaluated 

on the reduced external test set of 78 compounds where data from all feature spaces were 

available.  

 

Model evaluation and applicability domain 
 
We evaluated the classifiers using the balanced accuracy, sensitivity (or recall), specificity, 

F1 score, Matthews Correlation Coefficient (MCC), AUC-ROC, and the AUC-PR, or 

precision-recall curve, which focuses on the positive class. 

To evaluate the applicability domain of the models, for each compound in the external test 

set, we calculated the Tanimoto similarity of the nearest neighbor of the same DICTrank 

label (toxic/non-toxic) in the training dataset. We grouped compounds in 5 equal bins from 

Tanimoto similarity of 0.0 to 1.0 and evaluated the balanced accuracy and AUCPR in this 

range for the models used in this study.  

 

Statistics and Reproducibility   
 
We have released the datasets used in this study which are publicly available at 

10.6084/m9.figshare.24312274. We released the Python code for the models which are 

publicly available at https://github.com/srijitseal/DICTrank. 
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Results and Discussion 
 
In this study, we used various biological and chemical datasets to discern among the DICT 

concern categories, driving insights into the carefully annotated FDA DICTrank dataset. We 

also trained predictive models using these feature spaces. In particular, we used the Cell 

Painting data from Bray et al, which captures a wide array of cellular phenotypes after 

perturbation e.g. drug treatment, and has been shown to have a signal for various in vitro 

toxicity.24,49 We also used experimental (from the Repurposing Hub29) and predicted 

bioactivity data derived from models trained on a mixture of publicly available and proprietary 

datasets (Ignota Labs CellScape34), mostly relating to inhibitory/antagonist mechanisms). 

For structure-derived feature spaces, we used Morgan fingerprints derived from chemical 

structures as well as physicochemical Mordred descriptors which are often related to 

pharmacokinetic properties (such as logD, molecular weight, solubility, permeability, etc.) 

and implicitly encode the bias between bioactivity classes and chemical structures.50 Finally, 

we looked at pharmacokinetic parameters for the peak unbound and total concentration of a 

drug molecule in plasma (Cmax).51 We organized and standardized various chemical and 

biological data, as shown in Table 2, to analyze their ability to predict DICTrank labels.  
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Table 2: The description of various feature spaces used in this study. 

Feature Space Dimensions 
after feature 
selection 
(where 
applicable) 

Description Signal Expected Source 

Chemical 
Structure 

2048-bit vector ECFP4 (Morgan) 
fingerprints representing 
chemical structures 

Distinctive patterns of 
chemical bonding and 
arrangement 

52 

Physicochemi
cal properties 
(Mordred 
Descriptors) 

1038 2-D 
descriptors  

Properties such as 
lipophilicity, solubility, 
molecular weight, 
ionizing potential, etc. 

Properties that are associated 
with negative impacts on ion 
channels in the heart 

41 

MOA dataset 264 binary 
encoded 
MOAs + 551 
known targets 

Annotations for 
mechanism of action and 
known targets based on 
knowledge. 
 

Mechanism of action for drugs 
that inhibit certain ion 
channels 

29 

CellScape 
Target 
Prediction 
dataset 

1893 
predictions for 
817 unique 
targets and 
concentration 
combinations 
(0.1, 1, 10, and 
100uM)  

Predicted protein target 
for inhibition/antagonism; 
does not consider the 
functionality; prediction is 
based on chemical 
structure; updated 
algorithm from 
PIDGINv443 

Understanding how a drug 
interacts with various 
biological targets (not just its 
primary target) can provide 
insights into potential off-target 
effects 

34,43 

Cell Painting 1783 features Morphological changes in 
U2OS cells by a 
chemical perturbation, 
using a 5-channel 
fluorescence microscopy 
assay 

Morphological changes in cells 
that reflect basic biological 
processes 

24,53 

Gene 
Expression 

978 features Transcriptomic changes 
in response to chemicals 
using the L1000 assay 

Upregulation or 
downregulation of genes 
associated with cardiac stress, 
apoptosis in cardiac cells, or 
ion channel function 

19,25 

Gene 
Ontology 

4438 
annotations 

Gene Ontology manual 
annotations based on 
collective knowledge 

Understanding the biological 
processes, cellular 
components, and molecular 
functions affected, e.g., 
related to cardiac function, 
cardiac muscle tissue 
development, or ion 
homeostasis  

19,26 

Cmax 2 features The maximum total and 
unbound concentration of 
a drug in plasma 

High Cmax would indicate a 
high risk of cardiotoxicity  

30 
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DICTrank labels are highly concordant with SIDER labels 
 
Among the 776 compounds present in both DICTrank and SIDER cardiac disorders datasets 

(Figure 2a), we found an 87.24% concordance rate in the annotations (labels) between the 

two datasets (Supplementary Table S3; SIDER labels have an F1 score of 0.91 when 

compared against DICTrank labels). This suggests that SIDER labels which ascertain 

cardiac disorder events reported as associated with each drug and are often dependent on 

aggregated dispersed public information and package inserts, agree with DICTrank labels 

which ascertain if a compound is classified as cardiotoxic by the FDA. 

The physicochemical space of SIDER and DICTrank generally overlap (Figure 2b), defined 

as a TSNE space for six physicochemical properties, namely, molecular weight, topological 

polar surface area, number of rotatable bonds, hydrogen bond donors and acceptor, and the 

computed logarithm of the partition coefficient. Still, compounds exclusively available in the 

SIDER dataset could help enrich nontoxic compounds in areas of the chemical space where 

DICTrank only covers toxic compounds. We see a similar trend for a chemical space defined 

in fragment fingerprints space from DataWarrior40 (Supplementary Figure S1). Therefore, we 

chose to assess whether adding SIDER compounds to DICTrank compounds improved 

predictive ability. Interestingly, other categories of SIDER adverse effects were highly 

correlated to DICTrank (Figure 2c); the interrelationships of vascular disorders and nervous 

system disorders are well known.5,54 Overall, drug adverse events, as recorded in SIDER, 

have a high concordance with DICTrank labels from the FDA and there is a strong rationale 

to rely on both resources. 
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Figure 2: Comparison of the SIDER dataset with DICTrank: (a) the overlap and 
concordance (percentage of the total compounds with the same annotation) of DICTrank 
labels with SIDER cardiac disorder labels, (b) the overlay of SIDER and DICTrank chemical 
space in a principal component analysis using physicochemical properties, and (c) the 
positive predictive value of other side effects in SIDER for DICTrank labels (toxic/non-toxic). 
 
 
Maximum total and unbound compound concentration in plasma predict 
cardiotoxicity 
 
We next determined if a high Cmax indicated compounds more likely to be cardiotoxic as 

seen in the case of doxorubicin where cardiotoxicity was found to be Cmax dependent.55 As 
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a single parameter, Cmax was not sufficiently discerning to differentiate between 

compounds that fall under the 'most-concern' and 'less-concern' categories as per the DICT 

concern classification (Figure 3). However, for both peak total plasma levels and peak 

unbound (active) plasma levels’ Cmax, the median distributions were significantly 

distinguishable between cardiotoxic and non-toxic compounds (Figure 3) suggesting that 

Cmax can be a useful parameter in determining cardiotoxicity. 

Figure 3: The distribution of (a) peak total concentration in plasma and (b) peak unbound 
(active) concentration in plasma for each drug in the DICTrank dataset across the three 
DICT concern categories. 
 
 
Cyclooxygenase inhibition is predictive of cardiotoxicity concern 
 
Turning to manual annotations of compound mechanisms of action and/or targets, we found 

that cyclooxygenase inhibitors56 along with tyrosine kinase receptor inhibitors were the most 

significant annotations differentiating the various DICT concern categories (Table 3); this is 

plausible given cyclooxygenase inhibition, besides reducing inflammation, can also lead to 

increased blood pressure57 while tyrosine kinase receptor inhibition can induce endoplasmic 

reticulum stress and inflammation in cardiomyocytes.58 In agreement with this, known targets 

of prostaglandin endoperoxide synthases (PTGS1 and PTGS2 genes, which encode 
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cyclooxygenases COX-1 and COX-2) could significantly distinguish among most-, less- and 

no-DICT concern categories (Table 3).  

 
CellScape-predicted protein targets such as hERG are predictive of cardiotoxicity 
 
Among CellScape-predicted protein targets, the predicted activity of compounds against 

KCNH2 is best differentiated among the three DICT concern categories. The KCNH2 gene, 

also known as the human ether-à-go-go-related gene (hERG), is well known for its 

significance in the cardiac electrical cycle and hERG inhibition can lead to cardiac 

arrhythmias.59 We also found that the top three features to distinguish the two DICTrank 

labels (cardiotoxic versus non-toxic) were α-l-fucosidase I, P-selectin, and carbonic 

anhydrase IX. The activity of plasma α-l-fucosidase has been pinpointed as a potential 

biomarker for cardiac hypertrophy and complements the currently used marker, atrial 

natriuretic peptide.60 Elevated amounts of soluble P-selectin in the blood are evident in 

various heart-related conditions, like coronary artery disease, hypertension, and atrial 

fibrillation.61 Carbonic anhydrase IX plays a role in managing the intracellular pH in the heart 

muscle, a vital for the heart's functionality.62 
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Table 3: Features from chemical and biological data sources that have a particularly high significance in the difference of distributions for the 
three DICT Concern Categories (Most, Less, No-concern). 

Feature P-value 
(statistical 
test) 

Test 
applied 

Feature space Description/Biological interpretation Source 

Cmax (total) 2.97e-04  Mann 
Whitney 
Wilcoxon 
test two-
sided with 
Bonferroni 
correction 
(most vs. 
no) 

Pharmacokinetic 
parameters30 
 

The peak total concentration of a drug in plasma indicates how much of 
the drug reaches the bloodstream. 

55 

Cmax (unbound) 7.58e-04  The peak unbound (active) concentration of a drug in plasma, indicates 
how much of the drug is available for interaction with its target. 

Cyclooxygenase 
inhibitor 

2.98e-06 Chi-
squared 
test 

MOA (Drug 
Repurposing 
Hub29) 
 

Inhibits cyclooxygenase enzymes, often leading to reduced inflammation 
but also increased blood pressure. 

57 

Tyrosine kinase 
receptor inhibitor 

3.24e-05 Inhibition of tyrosine kinase receptors can affect cell growth and 
proliferation and can also induce endoplasmic reticulum stress, 
hypertension, heart failure, myocardial infarction, and cardiac arrhythmias. 

58 

PDGFR tyrosine 
kinase receptor 
inhibitor 

3.24e-05 

PTGS2 9.67e-07 Chi-
squared 
test 

Known targets 
(Drug 
Repurposing 
Hub29) 
 
 

Prostaglandin-endoperoxide synthase 2 (an enzyme) also known as COX-
2. 

57 

PTGS1 9.67e-07 Prostaglandin-endoperoxide synthase 1 (an enzyme) also known as COX-
1. 

HTR1D 1.27e-05 5-hydroxytryptamine receptor 1D, a serotonin receptor subtype. Previous 
enrichment analysis for methylation differences identified HTR1D among 
the genes with decreased promoter methylation, suggesting its 
involvement with serotonin receptors, which influences human cardiac 

63,64 
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function 

Q12809 at 100uM 
(KCNH2) 
(hERG) 

1.21e-18  
Kruskal- 
Wallis test 
Chi-
squared 
test 

CellScape 
Predicted 
Target34  

The hERG gene encodes Kv11.1 channels crucial for heart function, 
linked to genetic and drug-induced arrhythmias 

59 

Cytoplasm 
Granularity 2 ER 

4.64e-04 Cell Painting24 Fine-grained smoothness of the ER staining. Disruptions in ER function 
can lead to ER stress, which is associated with various cardiovascular 
diseases.  
 

65 

Cells Granularity 2 
ER 

1.05e-03 

Nuclei Texture 
Contrast RNA 3 0 

1.19e-03 Contains information about the size, shape, number, or texture of nucleoli 
within the nucleus. This could encode signals for cellular stress. 

66 

222103 at  
(ATF1) 

1.01e-04 Gene 
Expression19,25 

ATF1 is essential for cardiomyocyte function.  67 

201080 at 
(PIP4K2B) 

6.29e-04 The role of PIP4k2 in cardiac disorders remains uncertain. PIP4Ks 
regulate insulin production and immune response, with PIP4k2c impacting 
TGFβ1 signaling which is vital in heart disease and other fibrotic 
conditions. 

68 

209092 s at 
(GLOD4) 

8.14e-04 The physiological function of GLOD4 remains largely unexplored. The 
glyoxalase gene family, comprising six enzymes with roles in metabolism 
and disease prevention, is crucial for detoxifying reactive dicarbonyls and 
maintaining cellular homeostasis. 

69 

transport vesicle 
(GO:0030133) 
 

5.53e-04 Gene 
Ontology19,26 
 

Extracellular vesicles play important roles in cardiovascular 
communication, transporting bioactive molecules that both maintain heart 
health and contribute to cardiovascular diseases. 

70 

negative regulation 
of potassium ion 

1.04e-03
  

Cardiac K+ channels play a crucial role in cardiac repolarization and their 
dysfunction can lead to arrhythmias. 

71 
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transmembrane 
transport 
(GO:1901380) 
 

response to 
methylmercury 
(GO:0051597)  

1.56e-03 Exposure to mercury (Hg) is considered to be an increased risk of 
developing cardiovascular system 

72 

VSA EState6 6.67e-09 Physicochemical 
Descriptors from 
RDKit36 

VSA EState Descriptor 6 (6.00 <= x < 6.07) related to molecular surface 
area and electronic state. 

73 

Qed 1.20e-07 Quantitative estimate of drug-likeness, a measure indicating how drug-like 
a molecule is. 

74 

NumHAcceptors 1.26e-07
  

Number of hydrogen bond acceptors in the molecule. 75 
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Hypothesis-free omics data for cardiotoxicity are related to mechanisms of action 
 
Omics data sources such as Cell Painting (imaging), gene expression, and Gene Ontology 

features cover a broad swath of biology, not specifically targeted to cardiac function. For Cell 

Painting, the fine-grained smoothness of the ER in the cytoplasm and RNA in the nucleus 

were the top features that differed significantly among toxicity classes. This is plausible given 

disruptions in ER function can lead to ER stress, which is associated with various 

cardiovascular diseases.65 For the gene expression feature space, activating transcription 

factor 1 (ATF1), which is essential for cardiomyocyte function, was the top feature. The other 

two gene expression features that could distinguish DICT concern categories were 

phosphatidylinositol-5-phosphate 4-kinase type 2 beta (PIP4K2B) and glyoxalase domain 

containing 4 (GLOD4); both have indirect links to heart disease and other fibrotic conditions 

(Table 3). Among Gene Ontology annotations, we found that biological processes related to 

vesicle transport, potassium ion transmembrane transport, and response to methylmercury 

could best differentiate signals for concern categories. This is plausible given 

cardiomyocytes rely on vesicular transport for various functions, including the delivery of 

membrane proteins and lipids. The potassium ion channels play crucial roles in cardiac cell 

electrical activity and dysregulation can lead to arrhythmias and other heart 

complications.70,71 Exposure to mercury (Hg) is also considered a risk for ischemic heart 

disease.72 

 

Physicochemical Properties can differ among DICT concern categories 
 
Among the various molecular descriptors evaluated in our study, VSA_EState6 could 

significantly distinguish among the DICT-concern categories. This electrotopological state 

descriptor aggregates the differences in electronegativity between an atom and its 

neighboring atoms in a molecule, adjusted by their relative distances while focusing on 

atoms with specific van der Waals surface area.73 This suggests that specific electronic and 

spatial properties are captured by the VSA_EState6 descriptor, although difficult to interpret 
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directly. The second predictive feature, Qed, captures a quantitative estimation of the drug-

likeness score that encapsulates the underlying distribution data for a range of drug 

properties.74 The third predictive feature, NumHAcceptors refers to the number of hydrogen 

bond acceptors in the compound. Munawar et al. showed that the most potent hERG 

inhibitors typically possess two aromatic groups, one hydrophobic group, and one hydrogen 

bond acceptor, at specific relative distances from each other.75 

 

Structural alerts from DICTrank can detect compounds causing cardiac disorders 
from a retrospective analysis of DrugBank 
 
We determined 59 structural alerts that distinguish cardiotoxic and non-toxic compounds in 

the DICTrank dataset (Figure 4). Two structural alerts had a high positive predictive value 

(PPV) for the DICT most-concern category, including one with aromatic rings. Aromatic rings 

can lead to π-stacking or hydrophobic interactions with aromatic rings of amino acids within 

the hERG channel cavity increasing the potential for blocking and subsequent cardiotoxic 

effects.76 Six structural alerts distinguished toxic versus non-toxic compounds with a positive 

predictive value of 1 and more than ten occurrences in the dataset (the PPV was used to 

filter the structural alerts, hence is not an evaluation metric here). Structural alerts with 

tertiary amines were consistently protonated at physiological pH in the DICTrank dataset, 

suggesting their importance in biological activity and hERG channel binding.77,78 It is also 

known that compounds with secondary amine (more hydrogen bond donor number) are 

likely to be less potent hERG inhibitors compared to tertiary amine (less hydrogen bond 

donor number).78 
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Figure 4: Structural alerts for (top) the most-concern DICT category and (bottom) DICTrank 
labels with more than ten occurrences and a PPV>0.6 for compounds in the DICTrank 
dataset. 
 
 

We next analyzed compounds in DrugBank47 for the presence of at least one of the two 

structural alerts above for the most-concern category. We annotated these hits with heart-

related side effects from SIDER32 and their current status (approved, withdrawn, etc.) as 

indicated in DrugBank. We found six approved drugs, some experimental/investigational, 
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with reported cardiac disorders from SIDER (Table 4). These compounds spanned different 

classes of compounds, with the presence of a tertiary amine that remains protonated or 

aminopyridine rings as defined by the structural alerts. We found evidence in the literature 

for the risk of cardiovascular disorders for three of the six compounds, namely, ipratropium, 

tiotropium, and mivacurium.79–81 Overall, our analysis shows that the DICTrank dataset is a 

rich source of cardiotoxicity-causing compounds, with the potential to be used to build 

pharmacophore models and evaluate compounds with reported adverse events for their 

potential mechanisms of toxicity. Overall, we could detect multiple approved drugs that 

match the structural alerts for both the DICT most-concern category (as shown in Table 4) 

and for DICTrank labels for cardiotoxicity (further details in Supplementary Figure S2). 
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Table 4: Six hits from SIDER with the structural alerts for the DICT most-concern category.  

Compounds 
Name Compound Structure Structural Alert 

Present Status in DrugBank Comment based on Literature 

Delavirdine 

  

Approved  

Ipratropium 

 
 

Approved, Experimental 
Use of ipratropium bromide within the past 6 
months is associated with an increased risk of 
cardiovascular events.79 

Butylscopola
mine 

 
 

Approved, Investigational  

Dabigatran 

 
 

Approved, Investigational 

Dabigatran effectively treats various 
cardiovascular diseases, with emerging studies 
assessing its use in malignancy associated VTE 
and other conditions.82 
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Tiotropium 

 
 

Approved 
Tiotropium may increase the risk of coronary 
heart disease in patients over 55, especially 
high-exposure users.80 

Mivacurium 

 
 

Approved 
Mivacurium chloride affects blood pressure and 
heart rate varying with dosage while rapid 
injections lead to pronounced changes.81 
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Predictive models for DICTrank labels 
 
Finally, given the promising signals seen in each data type as described above, we 

evaluated whether cardiotoxicity might be predicted using the data sources currently publicly 

available. Several data sources contained sufficient information to successfully train models 

to predict DICTrank labels (Table 2). We trained 11 models on four types of training data: the 

DICTrank compounds alone and DICTrank compounds enriched with cardiotoxic/non-

toxic/all compounds in the SIDER dataset (as shown in Supplementary Table S1). A direct 

comparison of the predictive value of data sources is not possible due to the incomplete 

intersection of compounds with available data of each type. Still, we fixed the held-out test 

set of compounds to be those where data was available for all feature spaces such that only 

the training set of compounds varied among data sources. We trained two ensemble 

models, one using six models (structural, physicochemical, MOA, CellScape, MOA with 

Cmax total, and CellScape with Cmax total) that performed relatively well on the internal 

cross-validation (evaluation metrics from cross-validation for all feature space and dataset 

combinations, are given in Supplementary Table S4). This ensemble model was evaluated 

on an external test set of 90 compounds. Another ensemble model was built on all eleven 

models, which required testing on a smaller held-out test set due to the limited overlap of 

data. Evaluation metrics for all models are given in Supplementary Table S5.  

Looking at each data source independently, we found that models using Mordred descriptors 

evaluated on the 90 compounds held-out test set (AUC: 0.84, AUCPR: 0.93; random AUC: 

0.50, AUCPR: 0.72) performed better compared to models trained on predicted protein 

targets (AUC: 0.77, AUCPR: 0.89) and MOA annotations with Cmax (total) (AUC: 0.77, 

AUCPR: 0.90) (Figure 5a, b). In fact, models using Mordred descriptors were as good as the 

ensemble of six selected models (AUC: 0.83, AUCPR: 0.92; random AUCPR: 0.72) also 

evaluated on the 90 compounds held-out test set (Supplementary Figure S3). Further, 

models across most datasets performed with high AUCPR and F1 scores, with top-

performing models using Mordred descriptors (AUCPR: 0.93; random AUCPR: 0.72) and 
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ensemble models (AUCPR: 0.93 for both ensemble models) when using the DICTrank 

dataset directly (Supplementary Figures S3a and S3b). Exceptions were models using the 

broad-based omics data - Cell Painting, Gene Expression, and Gene Ontology - where the 

performance was relatively poor and similar to random predictions according to the 

distribution of respective training data. This lack of predictive power may be inherent to the 

data sources but could also be due to the highly unbalanced and sparse training data 

available for these data sources (see Supplementary Table S2). When comparing the 

models evaluated with the smaller test set (Supplementary Figure S3), we found that models 

trained on the DICTrank dataset enriched with all SIDER compounds and using MOA data 

with Cmax (unbound) (AUCPR: 0.93, random AUCPR: 0.73) performed equally as the 

ensemble models that used predictions from all eleven models trained on just the DICTrank 

dataset (AUCPR: 0.93; random AUCPR: 0.73). Overall, a strong detection of cardiotoxicity 

was seen equally among the ensemble model and models using physicochemical 

descriptors. 

We next analyzed the applicability domain of these models based on evaluating the quality 

of prediction for groups of compounds that are structurally dissimilar to the training data. We 

found that ensemble models and models using MOA annotations perform consistently well 

across the similarity range (Figure 5c). Models using Mordred descriptors, on the other hand, 

perform with slightly lower AUC-PR when compounds are structurally dissimilar to training 

data.  

Finally, we predicted the DICTrank labels for 82 unique compounds that were labeled 

ambiguous in the original DICTrank dataset (Supplementary Table S6). We used Mordred 

descriptors and retrained the model on all 1020 compounds (training and held-out 

compounds) in DICTrank, except for the ambiguous compounds. We found that 43 of the 82 

compounds were predicted to be cardiotoxic and 39 were predicted to be non-toxic and 

provided this list to the community for further study (Supplementary Data S6).  
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Figure 5: Comparison of evaluation metrics models built in this study with an external test 
set of 90 compounds evaluated by the (a) AUC-ROC and (b) AUCPR and (c) the 
performance of each model across compounds that are similar (dissimilar) to the training 
data. The ensemble mode in (c) is based on the models built on six data sources listed in the 
main text and evaluation is for 90 held-out compounds; results for the ensemble using 11 
data sources and 78 held-out compounds are in Supplementary Figure S3. 
 
 
Limitations of this Study 
 
While we considered in this study various chemical and biological data sources, it is 

important to remember that conclusions are based on limited data. Certain feature spaces 

contain features that are computed based on chemical structure, such as CellScape target 

predictions and physicochemical properties, while datasets such as MOA and SIDER are 

manually gathered and have evidence of the presence and absence of evidence 

annotations. To train models using feature spaces such as Cell Painting, Gene Expression, 
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and Gene Ontology datasets, we dropped compounds where we could not find profiles 

(whether experimentally captured or imputed based on matching to highly similar compound 

profiles using the v-nn approach). The amount of training data (and also the class balance of 

SIDER/DICTrank labels) is lower for these models. Although we compare data sources 

using the same test compounds, the varying amounts of training data, and the differing types 

of compounds represented therein, can disadvantage some data sources versus others, 

such that we cannot with certainty compare the signal contained across the feature spaces. 

The poor performance of -omics data should therefore not yet be attributed to representing 

the signal in the feature space. Rather in this study, we aim to evaluate the signal present in 

the data that is available and build the best predictive models possible with public data. In 

the future, the availability of more data, for example, Cell Painting from JUMP-CP83 and 

Recursion RxRx384 will significantly improve our ability to ascertain the presence of a signal 

for cardiotoxicity in -omics data. 

 

Conclusions 
 
In this work, we used biological data and chemical data (Figure 1) to predict drug-induced 

cardiotoxicity. We determined the feature contained in each data source that most differed 

between the most-concern versus non-toxic category for DICTrank and found these could 

drive mechanistic insights. Features from data sources such as predicted protein targets and 

annotated MOAs that could distinguish the DICT concern categories resembled activity 

against targets (ion channels in particular) that are mechanistically most plausible. We 

further evaluated these feature spaces using machine learning to build the first predictive 

models of DICTrank. Our findings indicate that models relying on physicochemical properties 

trained on larger training datasets performed on par with the ensemble models based on 

diverse data sources. The exploratory data analysis in this study suggests that as more -

omics data becomes accessible in the future, it will enhance our ability to predict 

cardiotoxicity. Therefore, for the present, when constructing models using public datasets, 
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we advocate the use of Mordred descriptors and predicted targets (based on chemical 

structure), since these computed properties are readily available for compounds; they do not 

require experimental data and could be used to build models for cardiotoxicity. In the future, 

using biological data we can look into the biological pathways and mechanisms of DICT 

leading to better drug design and safer therapeutic strategies.  
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