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ABSTRACT 1 

We have adapted the eXcision Repair-sequencing (XR-seq) method to generate single-nucleotide 2 

resolution dynamic repair maps of UV-induced cyclobutane pyrimidine dimers and (6-4) pyrimidine-3 

pyrimidone photoproducts in the Caenorhabditis elegans (C. elegans) genome. We focus on the C. elegans 4 

ortholog of the human XPC-deficient strain (xpc-1) and its exclusive use of transcription-coupled repair. 5 

We provide evidence demonstrating the utility of xpc-1 XR-seq as a remarkable tool for detecting nascent 6 

transcription and identifying new transcripts. The integration of epigenetic markers, chromatin states, 7 

enhancer RNA and long intergenic non-coding RNA annotations supports the robust detection of 8 

intergenic nascent transcription by XR-seq. Overall, our results provide a comprehensive view of the 9 

transcription-coupled repair landscape in C. elegans, highlighting its potential contributions to our 10 

understanding of DNA repair mechanisms and non-coding RNA biology.  11 
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INTRODUCTION 12 

Genome integrity is a fundamental requirement for the maintenance of life. Organisms have evolved 13 

intricate mechanisms to ensure the fidelity of their genetic material1. One such mechanism, nucleotide 14 

excision repair, is responsible for repairing DNA lesions that distort the DNA helix, including those caused 15 

by exposure to ultraviolet (UV) radiation2. The solar energy in UV light can induce the formation of DNA 16 

lesions such as cyclobutane pyrimidine dimers (CPDs) and 6–4 pyrimidine-pyrimidone photoproducts 17 

((6-4)PPs) between adjacent pyrimidine bases3. These aberrant DNA structures disrupt normal cellular 18 

processes, necessitating their removal. 19 

 20 

Nucleotide excision repair operates by precisely excising damaged DNA bases through a dual incision 21 

process, creating single-stranded, damage-containing oligonucleotides. The length of these 22 

oligonucleotides varies between prokaryotes (12-13 nucleotides) and eukaryotes (24-32 nucleotides)4,5. In 23 

humans, the recognition of DNA damage occurs through two pathways of nucleotide excision repair: 24 

global repair and transcription-coupled repair6. In the global repair pathway, damage is recognized by 25 

cooperative interactions of  XPC, RPA, and XPA, followed by kinetic proofreading by TFIIH  to achieve 26 

high specificity7,8. In the transcription-coupled repair pathway, these same factors except for XPC are 27 

required, and the stalling of RNA polymerase II (Pol II) at damaged sites triggers repair, aided by CSB 28 

and CSA proteins9. Subsequent processes in both pathways involve the recruitment of XPG and XPF 29 

endonucleases. Excised oligonucleotides are approximately 25-30 nucleotides in length and carry the 30 

damage at 6-7 nucleotide from 3' end10,11. Repair is then completed through gap filling and ligation12. 31 

 32 

The nematode Caenorhabditis elegans (C. elegans), with its relatively small, fully sequenced genome and 33 

conservation of major cellular events with humans, serves as a valuable model organism in the field of 34 

DNA repair. Studies have demonstrated that C. elegans employs both global and transcription-coupled 35 

repair mechanisms, mirroring the repair processes found in humans13–15. To enhance our understanding of 36 

these repair mechanisms, we have adapted the eXcision Repair Sequencing (XR-seq) method to C. 37 

elegans. 38 

 39 

XR-seq offers a powerful tool for mapping repair events with single-nucleotide precision3. In this study, 40 

we focus on the C. elegans ortholog of the human XPC-deficient strain (xpc-1) and its exclusive use of 41 

transcription-coupled repair. We provide evidence demonstrating the utility of xpc-1 XR-seq as a 42 
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remarkable tool for detecting nascent transcription and identifying new transcripts. Our results reveal that 43 

a substantial portion of repair reads aligned to intergenic regions in XR-seq exhibit significant overlap 44 

with reads from short- and long-capped RNA sequencing (RNA-seq), far surpassing the capabilities of the 45 

polyadenylated RNA-seq16. Furthermore, the integration of epigenetic markers, chromatin states, 46 

enhancer RNA (eRNA) and long intergenic non-coding RNA (lincRNA) annotations supports the robust 47 

detection of intergenic nascent transcription by XR-seq16–19. In this article, we provide comprehensive 48 

results, which shed light on the transcription-coupled repair landscape in C. elegans and its relevance to 49 

intergenic transcription. Finally, we discuss the implications of our findings and their potential 50 

contributions to our understanding of DNA repair mechanisms and non-coding RNA biology. 51 

 52 

RESULTS 53 

Transcription-coupled repair measured by XR-seq in xpc-1 C. elegans serves as an RNA-independent 54 

proxy for transcription. 55 

We employed XR-seq to evaluate genome-wide excision repair dynamics in xpc-1 C. elegans at distinct 56 

time points following UV exposure, specifically at 5 minutes, 1 hour, 8 hours, 16 hours, 24 hours, and 48 57 

hours post-treatment (Figure 1A). UV irradiation induced the formation of CPDs and (6-4)PPs,  located 6 58 

nucleotides from the 3' terminus of the excised oligonucleotides, with lengths spanning from 19 to 28 base 59 

pairs (Supplementary Figure 1). For subsequent analyses, we judiciously selected reads in the 19-24 60 

nucleotide length range, as they exhibited the most pronounced enrichment of dipyrimidine sequences 61 

across all samples. Following normalization through reads per kilobase per million reads (RPKM; 62 

Supplementary Figure 2), as detailed in the Materials and Methods section, we observed a robust 63 

correlation in repair patterns across the genome between the two replicates collected at each time point, 64 

underscoring the high reproducibility of our findings (Supplementary Figure 3). Moreover, pairwise 65 

correlation analysis of transcription-coupled repair patterns revealed sample clustering based on the type 66 

of DNA damage ((6-4)PP vs. CPD) as well as temporal ordering of samples collected at different time 67 

intervals (Supplementary Figure 4). 68 

 69 

Our experimental data unequivocally affirm that xpc-1 C. elegans predominantly employs transcription-70 

coupled repair to rectify DNA adducts, as evidenced by significantly higher repair of both (6-4)PP and 71 

CPD damages on the transcribed strand (TS) compared to the non-transcribed strand (NTS) 72 

(Supplementary Figure 5). Figure 1B shows an Integrative Genomics Viewer (IGV) screenshot of a 13-73 
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kilobase region on chromosome I, featuring XR-seq, RNA-seq, and epigenomic profiles. When juxtaposed 74 

with RNA-seq, XR-seq offers more consistent and comprehensive insights into unspliced and nascent 75 

transcripts, encompassing both exons and introns. As depicted in Figure 1B, we illustrate a representative 76 

gene whose transcription is detected through long-capped RNA-seq, while simultaneously unveiling 77 

transcription-coupled repair through XR-seq. It is noteworthy that the reads acquired from XR-seq align 78 

to the template strand and are complementary to those obtained from RNA-seq, which align with the 79 

coding strand of the gene. Additionally, within the gene body, the signals derived from long-capped RNA-80 

seq and XR-seq manifest a notably more uniform distribution compared to those obtained from RNA-seq 81 

analyses.  82 

 83 

Intriguingly, we also observed instances of transcription-coupled repair within numerous intergenic 84 

regions, as exemplified in Figure 1C. To comprehensively explore intergenic transcription and its 85 

relationship with transcription-coupled repair, we systematically constructed consecutive genomic bins 86 

within intergenic regions and assayed their respective RNA-seq, capped RNA-seq, and XR-seq 87 

measurements (see Materials and Methods for details). Our investigations demonstrate a high degree of 88 

concordance between genome-wide signals obtained from XR-seq and those derived from capped RNA-89 

seq, a method capable of capturing nuclear RNAs, irrespective of their polyadenylation (poly(A)) status. 90 

Conversely, conventional RNA-seq techniques primarily target RNAs with poly(A) tails, thereby falling 91 

short in capturing the entirety of intergenic transcriptional activity. Consequently, there is a near-zero 92 

correlation coefficient when comparing these conventional RNA-seq results to the capped RNA-seq and 93 

XR-seq datasets (Supplementary Figure 6). While gene-specific excision repair mechanisms have been 94 

extensively explored across various model organisms3,20–26, our current investigation centers on the 95 

domain of intergenic transcription-coupled repair and its juxtaposition with transcriptional events 96 

detectable by RNA-seq and capped RNA-seq (Figure 1A).  97 

 98 

Epigenetic markers and chromatin states validate the intergenic transcription detected by XR-seq. 99 

To validate the nascent and intergenic transcription detected by XR-seq, we retrieved both genic and 100 

intergenic annotations of the C. elegans genome (ce11). First, the genome was systematically divided into 101 

three distinct categories: intergenic regions, regions within 2 kilobases upstream of transcription start sites 102 

(TSS), and transcript regions. Our analysis revealed a noteworthy distinction when comparing RNA-seq, 103 

capped RNA-seq, and XR-seq. Figure 2A illustrates that, in contrast to RNA-seq, both capped RNA-seq 104 
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and XR-seq generate a significantly higher number of reads that map to intergenic regions and regions 105 

located within 2 kilobases upstream of TSS. This observation underscores the superior capability of 106 

capped RNA-seq and XR-seq in capturing transcriptional activity in these specific genomic locations. 107 

 108 

Expanding our investigation further, we incorporated annotation of chromatin states of C. elegans18. As 109 

illustrated in Figure 2B, our analysis of chromatin states has unveiled intriguing distinctions among the 110 

different sequencing methods. Notably, when we examine the distribution of chromatin states, RNA-seq 111 

appears to predominantly align with 5' proximal regions, gene bodies, and exons. However, it displays 112 

relatively lower read counts in categories associated with retrotransposons, pseudogenes, and tissue-113 

specific regions. In stark contrast, both capped RNA-seq and XR-seq exhibit notably similar chromatin 114 

state patterns, although some nuanced differences do exist between the two. A closer examination 115 

demonstrates that both short-capped RNA-seq and long-capped RNA-seq reveal genic and intergenic 116 

transcription, including intergenic enhancers. Short-capped RNA-seq indicates shorter transcripts, 117 

corresponding to transcription initiation events and enhancers shorter than 200 base pairs. In contrast, 118 

long-capped RNA-seq captures longer transcripts within the nucleus, encompassing both pre-mature and 119 

mature RNAs. These longer transcripts relate to transcription elongation, enhancer regions, and tissue-120 

specific transcription. Furthermore, categories that align with both (6-4)PP XR-seq and CPD XR-seq 121 

results encompass a combination of short- and long-capped RNA-seq signals, indicating the concordance 122 

between XR-seq and capped RNA-seq in capturing transcriptional events. 123 

 124 

In our comprehensive analysis of transcribed intergenic regions identified by XR-seq (not detected by 125 

RNA-seq), we focused on histone markers and chromatin accessibility (Figure 2C)16,18. When compared 126 

to randomly selected genomic regions spanning the entire genome, the regions uniquely pinpointed by 127 

XR-seq exhibited distinct epigenomic signatures. Specifically, these regions displayed significantly 128 

heightened chromatin accessibility, indicating a more open chromatin structure conducive to transcription. 129 

Additionally, we observed increased intensities of histone markers such as H3K4me1 and H3K4me3, 130 

typically associated with promoters and enhancers. Conversely, the intensities of histone marker 131 

H3K27me3, associated with gene repression, were diminished in these regions (Figure 2C). These 132 

corroborating epigenomic signatures serve as compelling evidence reaffirming the existence of intergenic 133 

transcription detected by XR-seq. Furthermore, they underscore the utility of XR-seq, utilizing 134 
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transcription-coupled repair of DNA damage as a proxy, in uncovering previously elusive intergenic 135 

transcriptional events within the genome. 136 

 137 

Transcription-coupled repair employs on annotated eRNA and lincRNA. 138 

We next sought to examine the presence of transcription-coupled repair within annotated eRNAs and 139 

lincRNAs17,19. Previous studies, involving patients with XP-C, have provided evidence of XR-seq's 140 

capability to detect eRNA transcription3. Building upon this knowledge, we systematically examined both 141 

excision repair and transcription within these annotated regions. Our findings, as depicted in Figure 3, 142 

reveal that eRNAs (Figure 3 A, B) and lincRNAs (Figure 3 C, D) exhibit a notable presence in the data 143 

obtained from XR-seq, short-capped RNA-seq, and long-capped RNA-seq. In contrast, conventional 144 

RNA-seq methods show a limited ability to detect these transcripts. This discrepancy can be attributed to 145 

the intrinsic instability of eRNAs and lincRNAs, which renders them challenging to capture using 146 

conventional RNA-seq techniques. Remarkably, despite the inherent instability of eRNAs and lincRNAs, 147 

XR-seq proves to be a robust method for capturing transcription-coupled repair events within these 148 

regions, highlighting its sensitivity and utility in studying intergenic transcription. 149 

 150 

XR-seq is a tool to detect intergenic transcription. 151 

Upon overlaying the intergenic regions identified by (6-4)PP XR-seq, CPD XR-seq, RNA-seq, and capped 152 

RNA-seq, our observations, as meticulously depicted in the Venn diagrams presented in Figure 4, unveil 153 

compelling insights. First, our analysis demonstrates that intergenic transcription-coupled repair regions 154 

identified by (6-4)PP XR-seq and CPD XR-seq exhibit a remarkable level of concordance, with a complete 155 

overlap between these two damages. This remarkable alignment underscores the high reproducibility and 156 

accuracy of nascent transcript detection facilitated by XR-seq. Moreover, our investigations reveal an 157 

intriguing contrast when comparing XR-seq with RNA-seq. XR-seq, which distinguishes itself by 158 

employing transcription repair as a proxy for transcription, effectively complements capped RNA-seq and 159 

offers a comprehensive view of transcription in intergenic regions. In Figure 4A, we elucidate these 160 

regions detected in both replicates (representing higher specificity) show that XR-seq identifies a striking 161 

55% additional regions beyond what RNA-seq detects. Furthermore, the regions detected in either 162 

replicate (reflecting higher sensitivity) display XR-seq's capacity to uncover 46% additional regions 163 

compared to RNA-seq alone. These findings underscore the enhanced sensitivity and specificity of XR-164 

seq in delineating intergenic transcription compared to RNA-seq. Importantly, XR-seq's ability to capture 165 
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transcription independent of RNA itself positions it as a powerful tool for investigating transcription in 166 

various genomic contexts. 167 

 168 

MATERIALS AND METHODS 169 

Biological Resources  170 

The C. elegans wild-type (N2 ancestral) and xpc-1 (tm3886) strains were obtained from the 171 

Caenorhabditis Genetics Center and were cultured under standard conditions at room temperature on 172 

nematode growth media plates with E. coli strain OP50. 173 

 174 

XR-seq 175 

To obtain L1 larvae, eggs were collected from adult animals by hypochlorite treatment, and kept in M9 176 

buffer at 22℃ for 16 hours with gentle rotation. L1 larvae were exposed to 4,000 J/m2 of UVB radiation 177 

(313 nm). The animals were collected in M9 buffer at 5 minutes, 1 hour, 8 hours, 16 hours, 24 hours, and 178 

48 hours after irradiation, and washed until the supernatant became clear. The pelleted C. elegans (~50 μl 179 

for each) were then incubated for 2 hours at 62°C with 450 μl of Worm Hirt Lysis Buffer (0.15M Tris pH 180 

8.5, 0.1M NaCl, 5mM EDTA, 1% SDS) and 20 μl of Proteinase K (NEB, cat. no. P8107S). Subsequently, 181 

120 μl of 5M NaCl was added, and the mixture was inverted to ensure proper mixing, followed by an 182 

overnight incubation and one hour centrifugation at 4°C. Supernatants were processed for XR-seq assay 183 

as described previously27. In brief, supernatants were incubated with 5μL RNase A and then 5μL 184 

Proteinase K, purified, and then immunoprecipitated with either anti-CPD or anti-(6-4)PP antibodies. 185 

Immunoprecipitations were ligated to the adaptors, purified with the antibody used in the first purification, 186 

and DNA damage was reversed by either CPD or (6-4)PP photolyase. After PCR amplification, the library 187 

was sequenced with either Illumina HiSeq 4000 or NextSeq 2000 platforms. 188 

 189 

RNA-seq 190 

We followed existing protocol28 for total RNA extracting in C. elegans. Briefly, L1 stage wild-type (WT) 191 

and xpc-1 C. elegans were collected in M9 and washed until the supernatant was clear, followed by 192 

incubation with TRizol and chloroform. After centrifugation at 14,000g for 15min at 4°C, the aqueous 193 

phase was mixed with an equal volume of isopropanol. Following centrifugation, the RNA pellet was 194 

washed several times and then resuspended in RNase-free water. Quality control, followed by stranded 195 

and poly(A) enriched library preparation and sequencing, was performed by Novogene. 196 
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 197 

Bioinformatic processing 198 

For XR-seq, cutadapt was used to trim reads with adaptor sequence 199 

TGGAATTCTCGGGTGCCAAGGAACTCCAGTNNNNNNACGATCTCGTATGCCGTCTTCTGCTT200 

G at the 3′-end and to discard untrimmed reads29. Bowtie 2 was used for read alignment to the ce11 201 

reference genome, followed by filtering, sorting, deduplication, and indexing30. Post-alignment filtering 202 

steps were adopted using Rsamtools (http://bioconductor.org/packages/Rsamtools). We only keep reads 203 

that: (i) have mapping quality greater than 20; (ii) are from chromosome I, II, III, IV, V, and X; and (iii) 204 

are of length 19-24 bp. For plotting strand-based average repair profiles of the genes, we selected 7061 205 

genes longer than 1 kilobase pair, situated at least 500 base pairs away from neighboring genes. Each gene 206 

was evenly divided into 100 bins from the Transcription Start Site (TSS) to the Transcription End Site 207 

(TES), and 25 bins (2 kbp) upstream of TSS, 25 bins (2 kbp) downstream of TES. Bed files of the reads 208 

were intersected to the 150 bin-divided-gene list by Bedtools intersect with the following commands -d -209 

wa -F 0.5 -S or -s for TS and NTS, respectively31. We present the descriptive properties of our data in 210 

Supplementary Table 1. For RNA-seq, reads were aligned using STAR, followed by a filtering step to 211 

remove unmapped reads, reads with unmapped mates, reads that do not pass quality controls, reads that 212 

are unpaired, and reads that are not properly paired32. We only kept the first read from the mate pair to 213 

ensure independent measures. Read counts for each gene were obtained using FeatureCounts33. 214 

 215 

Quality control and data normalization 216 

For gene-specific XR-seq and RNA-seq measurements, we used RPKM for within-sample normalization, 217 

since the number of TT and TC dinucleotides are highly correlated with the gene lengths from both the 218 

transcribed (TS) and non-transcribed (NTS) strands (Supplementary Figure 2). To investigate the 219 

relationship between gene expression, chromatin states and excision repair, we adopted a stringent quality 220 

control (QC) procedure and only retained 26,058 genes that: (i) had at least ten TT or TC dinucleotides in 221 

the TS or the NTS; (ii) were less than 300 Kb; and (iii) had at least ten reads in total across all XR-seq 222 

samples. 223 

 224 

To assess excision repair and transcription from non-coding intergenic regions, we generated consecutive 225 

and non-overlapping genomic bins of 200 bp long for a total of 501,436 bins. We then removed bins that 226 

overlap with annotated genes (gene bodies + 2 Kb upstream of the transcription start sites) and those that 227 
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overlap with blacklist regions in the ce11 genome, resulting in 85,418 bins34. For XR-seq, RNA-seq, and 228 

short- and long-capped RNA-seq, we adjusted for library size (total number of reads divided by 106) for 229 

each bin. When times-series XR-seq data were reported in a combined fashion, we took the median repair 230 

across all timepoints to get the (6-4)PP and CPD repair in replicate 1 and replicate 2, respectively. 231 

 232 

Capped RNA-seq and epigenomic data 233 

Capped RNA-seq captures nuclear RNAs that are with or without poly(A) tails and is thus much more 234 

sensitive in detecting non-coding RNAs compared to RNA-seq. We took advantage of short- and long-235 

capped RNA-seq data of wildtype L1 C. elegans that are strand-specific16. Additionally, we accessed and 236 

cross-compared publicly available epigenomic profiles of L1 C. elegans, including chromatin accessibility 237 

by ATAC-seq, DNase I hypersensitivity by DNase-seq, and histone modifications (H3K4me1, H3K4me3, 238 

and H3K27me3) by ChIP-seq16. All data were downloaded as processed bigwig files (Supplementary 239 

Table 2), and the regions were overlapped with the genomic regions to obtain the epigenetic measurements 240 

for each intergenic region. 241 

 242 

Chromatin state, eRNA, and lincRNA annotations 243 

The genic and intergenic regions of C. elegans (ce11) were annotated using the GenomicFeatures R 244 

package in conjunction with the TxDb.Celegans.UCSC.ce11.refGene annotation package. Chromatin 245 

states in the L3 stage of C. elegans were previously inferred, consisting of 20 distinct states as detailed in 246 

Figure 2B18. Each annotated chromatin region was mapped from ce10 to ce11 and intersected with RNA-247 

seq, capped RNA-seq, and XR-seq reads. For eRNAs, 90 % of which are bidirectionally transcribed, non-248 

polyadenylated and unspliced, we retrieved 505 annotated eRNAs in C. elegans from the eRNAdb 249 

database35,19. We removed eRNAs that overlap with either annotated genes or blacklist regions, resulting 250 

in a total of 324 eRNAs, which are presented in Figure 3 A and B. Similarly, we obtained 170 long 251 

intergenic non-coding RNAs (lincRNAs) in C. elegans from existing annotations17. After lifting over the 252 

coordinates from ce6 to ce11 and filtering out ones that overlap with genes or blacklist regions, we were 253 

left with 103 lincRNAs, which are visualized in the Figure 3 C and D. 254 

 255 

DISCUSSION 256 

The concept of transcription-coupled repair first surfaced in mammalian cells in 1987, and since then, a 257 

multitude of in vitro and in vivo methodologies have been developed to unravel the intricate mechanisms 258 
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of repair factors and repair events9,36,37. Among these methods, XR-seq, distinguished by its single-259 

nucleotide resolution, has been applied across a spectrum of organisms, including bacteria, yeast, flies, 260 

plants, and mammals3,20–26,38. While previous studies in C. elegans have suggested the existence of 261 

transcription-coupled repair through QPCR assay, our study stands as the pioneering high-resolution, 262 

genome-wide transcription-coupled repair map in response to UV damage in C. elegans13. Leveraging the 263 

precision of our data, we aimed to delve into the realm of intergenic transcription, a domain that has posed 264 

persistent challenges for conventional RNA-seq methods. 265 

 266 

Based on the RNAPII disassociation model in response to UV-induced damage, RNAPII encounters 267 

transcription blockage and initiates a process of transcription-coupled repair. During this repair process, 268 

RNAPII dissociates from the DNA strand, facilitating the sequential removal of lesions from the template 269 

in the 5' to 3' direction. This concerted repair mechanism eventually leads to the clearance of adducts from 270 

the template, thereby enabling the synthesis of full-length transcripts39. To comprehensively investigate 271 

these intricate transcription dynamics, we conducted XR-seq at six distinct time points, ranging from 5 272 

minutes to 48 hours following UV treatment. As a result, our dataset encompasses both transcription 273 

initiation and elongation events, providing a comprehensive view of the entire transcriptional process. 274 

 275 

Detection of non-coding RNAs has long been a formidable task due to their relatively low abundance and 276 

inherent instability. The development of cutting-edge technologies, such as RNA polymerase II chromatin 277 

immunoprecipitation coupled with high-throughput sequencing (RNAPII ChIP-seq), Global Run-On 278 

sequencing (GRO-seq), Precision Run-On Sequencing (PRO-seq), and cap analysis gene expression 279 

(CAGE)-seq has been driven by the desire to discern transcription start sites and ncRNAs with heightened 280 

precision16,40–45. A comprehensive evaluation of the strengths and limitations of these methods can be 281 

found in46.  282 

 283 

In the context of C. elegans research, efforts to specifically target nascent RNAs and identify transcription 284 

start sites have utilized two primary techniques: GRO-seq and capped RNA-seq (CapSeq), as reported in 285 

previous studies 16,18,44,47–49. Capped RNA-seq represents a modified version of CAGE-seq, where 286 

enzymatic background reduction is applied instead of affinity purification. It has been demonstrated that 287 

CapSeq exhibits greater precision in identifying transcription start sites compared to GRO-seq specifically 288 

within the C. elegans model48. Both of these methods rely on nuclei isolation, which exhibits an efficiency 289 
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of approximately 50% 50. Consequently, they necessitate a substantial amount of initial material for 290 

analysis. In the case of CapSeq, a multistep enzymatic degradation process is employed to remove 291 

uncapped RNAs, and it is important to note that this method may not detect noncanonical capped 292 

RNAs51,52.  293 

 294 

XR-seq presents a noteworthy advantage in its ability to directly detect transcription events at the DNA 295 

level, thus circumventing the inherent limitations associated with indirect transcription detection 296 

techniques, such as RNAPII ChIP-seq and RNA sequencing. These conventional methods are prone to 297 

challenges stemming from the low abundance and instability of RNA molecules. Furthermore, RNA 298 

sequencing is susceptible to sequence bias resulting from early transcriptional events that introduce 299 

differences between RNA and DNA sequences53,54. XR-seq, conversely, by its nature of sequencing 300 

transcribed DNA, effectively eliminates this sequence bias, ensuring a more accurate representation of 301 

transcriptional activity. An additional advantage of XR-seq is its applicability to prokaryotic organisms, 302 

mirroring its utility in eukaryotes, a distinction not shared by other nascent RNA sequencing methods. 303 

 304 

Our findings demonstrate the efficacy of XR-seq in capturing transcription events within both genic and 305 

intergenic regions. Notably, XR-seq exhibits sensitivity comparable to that of capped RNA-seq in 306 

detecting annotated enhancer RNAs (eRNAs) and long intergenic non-coding RNAs (lincRNAs). While 307 

RNA-seq detects only 19-44% of intergenic transcription, our data reveal that up to 70% of the overall 308 

intergenic transcription landscape is shared between XR-seq and capped RNA-seq, highlighting the 309 

substantial overlap and providing valuable insights into nascent transcription dynamics and the intricate 310 

interplay between transcription-coupled repair and intergenic regions. 311 
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 332 

FIGURE LEGENDS 333 

Figure 1. Detection of Transcription-Coupled Repair and Genome-Wide Transcription by XR-seq. 334 

(A) Overview of the study design illustrating the comparative analysis of RNA-seq, capped-RNA-seq, 335 

and XR-seq reads for their capacity to identify genome-wide transcription. (B) Distribution of the XR-seq 336 

signal over the 13Kb region, separated by strand, for CPD and (6-4)PP 1 hour after 4,000J/m2 UVB 337 

treatment. Stranded xpc-1 RNA-seq, long and short capped RNA-seq tracks in blue (plus strand) and red 338 

(minus strand) are plotted above, and ATAC-seq (dark green), DNase (dark green), H3K4me3 (light 339 

green), H3K4me1 (light green) and H3K27me3 (gray) ChIP-seq tracks are plotted below the XR-seq 340 

tracks. Browser view of representative genes clearly demonstrates the occurrence of transcription-coupled 341 

repair within the gene body. XR-seq and long-capped RNA-seq methods provide comprehensive coverage 342 

of the entire transcript, encompassing both intronic and exonic regions, in annotated genes, in contrast to 343 

RNA-seq. The expression of these genes is further substantiated by the presence of high levels of open 344 

chromatin and expression-associated markers, including ATAC-seq, DNase-seq, and H3k4me3. The 345 

minus strand denotes the transcribed strand, depicted in brown color in the XR-seq representation. (C) 346 

Browser view of a representative intergenic region reveals transcription events detected by long-capped 347 

RNA-seq and XR-seq but not by RNA-seq. Expression in this intergenic region is corroborated by the 348 

presence of elevated levels of open chromatin and expression markers, including ATAC-seq, DNase-seq, 349 

H3k4me3, and H3Kme1.  350 

 351 
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Figure 2. Transcription-Coupled Repair in Intergenic Regions Detected by XR-seq Supported by 352 

Epigenomic Signatures. (A) Bar graphs depict the genome-wide distribution of reads obtained from 353 

various sequencing methods, including CPD XR-seq, (6-4)PP XR-seq, long-capped RNA-seq, short-354 

capped RNA-seq, xpc-1 RNA-seq, and wild-type (WT) RNA-seq. Notably, both XR-seq and capped 355 

RNA-seq techniques reveal transcription events occurring outside of annotated transcripts. (B) 356 

Overlapping reads from XR-seq, capped RNA-seq, and RNA-seq were analyzed within genomic intervals 357 

corresponding to 20 distinct chromatin states predicted for the autosomes of L3 stage C. elegans. Values 358 

were normalized with respect to read depth and interval length. (C) Examination of intergenic XR-seq 359 

reads, which are undetectable by RNA-seq, in association with ATAC-seq, DNase-seq, H3K4me3, 360 

H3K4me1, and H3K27me3 peaks. XR-seq reads exhibit a strong correlation with active transcription 361 

markers, contrasting with the repressive marker H4K27me3, when compared to randomly selected 362 

genomic regions. All p-values obtained are highly significant (< 2.2e-16) according to nonparametric 363 

Wilcoxon rank sum tests. 364 

 365 

Figure 3. XR-seq Reveals Transcription-Coupled Repair in eRNAs and lincRNAs overlooked by 366 

RNA-seq. Heatmaps display log-normalized gene expression and transcription-coupled repair for 367 

annotated enhancer RNAs (eRNAs) (A) and long intergenic non-coding RNAs (lincRNAs) (C), 368 

segregated by chromosomes. Bar graphs represent log-normalized read counts for eRNA (B) and lincRNA 369 

(D). Data are presented for WT RNA-seq, xpc-1 RNA-seq, short-capped RNA-seq, long-capped RNA-370 

seq, and two independent replicates of (6-4)PP and CPD XR-seq experiments. 371 

 372 

Figure 4. XR-seq identifies intergenic transcription-coupled repair, in high concordance with 373 

intergenic transcription identified by capped RNA-seq. For the 85,418 intergenic bins, we identified 374 

regions with non-zero read counts by short- or long-capped RNA-seq, RNA-seq, (6-4)PP XR-seq, and 375 

CPD XR-seq, respectively. We require non-zero read counts to be detected in both (A) or either replicate 376 

(B) and report the overlapping results separately. 377 

  378 
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