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Abstract

There has been significant recent progress in leveraging large-scale gene expres-
sion data to develop foundation models for single-cell biology. Models such as
Geneformer and scGPT implicitly learn gene and cellular functions from the
gene expression profiles of millions of cells, which requires extensive data cura-
tion and resource-intensive training. Here we explore a much simpler alternative
by leveraging ChatGPT embeddings of genes based on literature. Our proposal,
GenePT, uses NCBI text descriptions of individual genes with GPT-3.5 to gen-
erate gene embeddings. From there, GenePT generates single-cell embeddings in
two ways: (i) by averaging the gene embeddings, weighted by each gene’s expres-
sion level; or (ii) by creating a sentence embedding for each cell, using gene names
ordered by the expression level. Without the need for dataset curation and addi-
tional pretraining, GenePT is efficient and easy to use. On many downstream
tasks used to evaluate recent single-cell foundation models — e.g., classifying
gene properties and cell types — GenePT achieves comparable, and often bet-
ter, performance than Geneformer and other models. GenePT demonstrates that
large language model embedding of literature is a simple and effective path for
biological foundation models.
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1 Introduction

Recently, the field of single-cell biology has seen a surge in interest and efforts to
develop foundation models, i.e., models designed to learn embeddings of genes and cells
to facilitate various downstream analyses. Several methods, such as Geneformer [1]
and scGPT [2], have been recently proposed to tackle this challenge. At a conceptual
level, they adopt similar recipes that consist of the following steps:

1. Adopt a deep learning architecture (often from the transformer family [3]).
2. Gather extensive single-cell gene expression datasets for pretraining the model in

a self-supervised manner (e.g., by imputing some masked-out expression values).
The trained encoder maps input genes and cells to a high-dimensional embedding
vector encapsulating the underlying biology.

3. For downstream tasks, one can optionally utilize a modest amount of task-specific
data to fine-tune the model, boosting its predictive capabilities.

Notably, the approach outlined above derives embeddings only from gene expression
datasets, without making any use of the literature and pre-existing knowledge about
a gene. While this strategy has shown some success in applications to single-cell tran-
scriptomics data and tasks, it has several limitations. First, the computational power
and time required to collect and process large-scale single-cell transcriptomics data
used for pretraining (Step 2 above) can be prohibitive, particularly when researchers
desire early signal detection and rapid iterations. Furthermore, the signals from
extracted embeddings are heavily dependent on the gene expression data used in Step
2, which doesn’t take advantage of the vast research and literature summarizing the
functionalities of a gene, potentially leading to sample inefficiency and suboptimal
results in certain applications. Therefore, in this study, we explored an alternative,
complementary approach and investigated the feasibility of encoding the biology of
genes and cells using natural language.

The intuition for our approach is as follows: large-language models (LLMs) such
as GPT-3.5 and GPT-4 have been trained on extensive text corpus [4], including
biomedical literature, and have demonstrated remarkable ability in understanding,
reasoning, and even generating biomedical text [5–8]. Consequently, we hypothesize
that LLM-derived embeddings of gene summaries and functionalities — which often
are curated from a broad spectrum of experiments and studies — might more directly
capture the underlying biology.

We introduced GenePT — a method that represents genes and cells by utilizing
OpenAI’s ChatGPT text embedding API services [9]. We evaluated the generated
embeddings on several biologically driven tasks and our findings reveal that GenePT
exhibits performance comparable to, and sometimes surpassing, specially designed
models such as Geneformer across a diverse set of downstream tasks. GenePT offers
several advantages to single-cell RNA-seq-based foundation models: (i) it performs
better on several biological tasks; (ii) it doesn’t require expensive single-cell curation
and additional pretraining; and (iii) it’s very simple to use and to generate gene
and cell embeddings. GenePT uses LLM-based embeddings which is an orthogonal
source of information compared to the expression-based representations; this suggests
a promising new direction of combining these two approaches.
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Fig. 1: An overview of the GenePT framework. (a) For each gene, we extract
its corresponding text summary from NCBI and use GPT-3.5 text embedding as its
representation. (b) In the GenePT-w cell embeddings framework, we average gene
embeddings from step (a), weighted by their cell expression levels, and normalize these
cell embeddings to a unit ℓ2 norm. (c) In the GenePT-s cell embeddings framework,
each cell from the input single-cell data is translated into a natural language sentence
based on ranked gene expressions, and the GPT-3.5 embedding of the entire sentence
is used to represent the cell.

2 Related Work

2.1 Foundation models for single-cell transcriptomics

Foundation models have shown unprecedented performance for a myriad of tasks
including text classification, question answering, and text generation [10]. Efforts have
naturally been made to adapt these models to tackle tasks in biology, especially in the
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field of single-cell transcriptomics [1, 2, 11]. Examples of such efforts include cell type
annotation, where a cell is labelled based on its biological identity [12, 13]); gene func-
tional and regulatory network inference, where the functionality of individual genes
and clustered gene groups are examined [2, 14]; and sample integration [13], which
accounts for transcript abundance influenced primarily by technical noise instead of
underlying biology.

With the advent of large-scale, open-source expression datasets such as Gene
Expression Omnibus [15] and the Human Cell Atlas [16], several models have been
trained on such data. The aspiration behind these models is to craft a foundational
model for single-cell transcriptomics, analogous to foundational models in natural lan-
guage processing. These models are intended to display broad capabilities across an
array of biological tasks rather than just a niche subset. For instance, Geneformer [1]
employs extensive pretraining on the ranks of gene expression levels through masked
token prediction across 30 million cells collected from a wide range of sources using
a transformer architecture. It shows good performance in tasks ranging from under-
standing network dynamics to deciphering network hierarchy. Another noteworthy
model is scGPT [2]: it hinges on generative pretraining (with gene expression pre-
diction as the task) and used 33 million cells from the CELLxGENE collection for
training [17]. Its capabilities are demonstrated through downstream evaluations in
perturbation prediction, batch integration, and cell type annotation.

2.2 Using language models for cell biology

Pioneering work in applying language models to gene and cell biology aims to repre-
sent the semantics of biomedical terms by training co-occurrence-based neural network
embeddings that map individual terms (e.g., gene names) to vectors [18–20]. Recently,
researchers have begun exploring the use of LLMs for biomedically-focused tasks, lever-
aging their capability to encode information from the entire input text. This approach
allows for more nuanced and dynamic representations. For example, Hou and Ji [21]
employed ChatGPT for cell type annotation; Wysocki et al. [22] investigated biomed-
ical meanings encoded by BioBERT and BioMegatron embeddings; and Ye et al.
[23] utilized instruction fine-tuning to achieve competitive results on graph data task
benchmarks with an LLM. Compared to prior works that directly query LLMs for
biological tasks, our method solely utilizes the input descriptions of each gene (which
can be sourced from high-quality databases such as NCBI [24]) and the embedding
model of LLMs, which suffers less from problems such as hallucination. While our
paper is under preparation, Levine et al. [25] has independently embarked on a con-
ceptually related approach to ours, where each cell is transformed into a sequence of
gene names, ranked by expression level and truncated at top 100 genes. The emphasis
of their paper, however, is on generating new cells conditional on cell types.

2.3 Deciphering natural language embeddings

Understanding how large-scale unsupervised representations capture linguistic nuances
is a central research question in Natural Language Processing (NLP). One avenue of
exploration, sometimes referred to as “probes”, trains supervised models to predict
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downstream properties from the language model embeddings [26–28]. These techniques
have achieved impressive accuracy across NLP tasks, suggesting that the embeddings
exhibit a substantial amount of understanding of input attributes.

The success of probing and foundational models in biology inspires our primary
research questions (RQs):

RQ1: Do natural language embeddings of genes capture the intrinsic biological function-
alities of a gene?

RQ2: Do natural language embeddings of cells capture the underlying biology of a cell?

In addressing these RQs, our study makes the following contribution to the lit-
erature: we show that natural language embeddings of gene functions — such as
summaries readily available from sources like the NCBI gene database [29] — success-
fully encapsulate the underlying biological relationships and insights associated with
genes, when assessed on biologically relevant tasks. Moreover, for single cells, language
model embeddings of the gene names, ordered by expression levels, encode substantial
biological signals that can be used, e.g., for cell type annotation.

3 Methods

3.1 Data Collection and Transformation:

To obtain embeddings for genes most pertinent to single-cell transcriptomics stud-
ies, we began with unifying the list of gene names provided in Geneformer [1] and
scGPT [2]. The selection of these genes was informed by their expression levels across
the pretraining datasets. In Geneformer cases, the genes were represented as Ensembl
IDs rather than gene names, and we used the mygene package [30] for conversion,
retaining in successful look-up of more than 90% of the Ensembl IDs. Additionally,
we incorporated genes detected in our downstream application datasets, totalling
around 33,000 genes. For each gene, we extracted its information from the NCBI gene
database’s summary section after removing hyperlinks and date information. GPT-
3.5 (text-embedding-ada-002) embeddings were obtained for the summaries for each
gene (mean: 73 words; interquartile range: 25–116). Each embedding has a dimension
of 1,536, which serves as gene representations (see Figure 1). Moreover, we mapped
around 60,000 additional gene name aliases to the NCBI summary embedding using
the HGNC database [31]. We conducted sensitivity analyses using three different levels
of content input for gene summaries: gene names only, gene names and gene summaries,
and all summary card information (see details in Appendix A).

In addition to embedding the gene summaries using GPT-3.5, we conducted com-
parisons with alternative embedding methods, such as gene summary embeddings
using the open-source biomedical language models such as BioLinkBert [32] and
gene-expression-derived embeddings such as Gene2vec [18] and Geneformer [1].

To encode information at the cellular level, we developed two distinct approaches:
GenePT-w (w for weighted) and GenePT-s (s for sentence). In both approaches, we
first normalize and transform the scRNA-seq data as implemented in the scanpy

package as follows: firstly, we row-normalize the count matrix so that each cell has
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10,000 observed RNA transcripts, followed by a log(1 + x) transformation of each
matrix entry.

To construct GenePT-w embeddings, we first take a weighted average of the
GenePT gene embeddings, where the weight is determined by the normalized expres-
sions of each gene, and then normalize the embedding to have unit ℓ2 norm (see
Figure 1(b)). This approach leverages the rich context of each gene embedding, but is
limited by the simplicity of the weighted average. Alternatively, we can represent cells
using natural language sentences by creating a sequence of gene names analogous to
sentences. Here, the sequence is ordered by descending normalized expression levels,
omitting genes with zero counts. We then pass this sentence representation for each
cell to GPT-3.5 to obtain GenePT-s embeddings (see Figure 1(c)).

3.2 Downstream gene-level and cell-level applications:

Geneformer and scGPT demonstrate the biological value offered by their foundation
models using several downstream gene-level and cell-level tasks. In this paper, we eval-
uated the performance of GenePT on the same downstream applications wherever
possible to compare GenePT with Geneformer and other single-cell foundation mod-
els. In particular, for gene-level tasks, we primarily contrast our results with those
from Geneformer, Gene2vec, and scGPT. This is because their results on the same
datasets have been previously documented without the need to re-train or fine-tune.
Regarding cell-level tasks, we leveraged pretrained embeddings from both Geneformer
and scGPT.

The details for the gene-level and cell-level applications are as follows:

• Gene-level Tasks:

– Gene Functionality Class Prediction: This is a multi-class prediction challenge
based on the 15 most common functional gene classes. Labels for these classes
were curated as part of the Geneformer paper.

– Gene Property Prediction Task: This involves four binary classification tasks
using open-source data provided in Theodoris et al. [1]: Distinguishing previously
identified dosage-sensitive from dosage-insensitive transcription factors. Differ-
entiating between bivalent and non-methylated genes. Differentiating between
Lys4-only-methylated and non-methylated genes. Distinguishing long-range from
short-range transcription factors (TFs).

– Gene-Gene Interaction Prediction: We utilized a benchmark for gene-gene inter-
action (GGI) based on shared gene ontology annotations published by Du et al.
[18]. The training and test datasets include over 200,000 pairs of examples in the
tuple (gene 1, gene 2, label), where the binary label indicates whether a pair of
genes is known to interact.

– Protein-Protein Interaction Prediction: We assessed the ability to predict protein-
protein interactions (PPI) using GenePT embeddings with the following three
datasets: (i) The human binary protein interactions (HuRI) dataset collected
by Luck et al. [33] through screening with multiple PPI assays; (ii) comprehensive
binary protein-protein interactions (Lit-BM) that are supported by at least two
traceable pieces of evidence [34]; and (iii) tissue-specific protein-protein functional
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interaction networks derived by Greene et al. [35]. These PPI datasets contain
tuples in the form of (protein 1, protein 2, binary label). The binary label indi-
cates whether there’s an observed interaction between the two proteins. We first
converted the proteome identifiers for proteins into gene names using the UniProt
conversion tool [36]. If multiple genes were returned, we randomly selected one.
Since only positive interactions were reported in the HuRI and Lit-BM dataset,
we constructed an equal amount of negative data by randomly sampling pairs of
proteins examined in Luck et al. [33] that weren’t reported as interacting pairs. We
explored the potential utility of creating context-dependent embeddings by pro-
viding context-dependent gene descriptions for protein-protein interaction tasks
in Appendix B.5.

– Unsupervised Exploration of Gene Programs: To examine the interaction between
genes, we constructed a similarity network of gene-gene interactions using GenePT
embeddings from a dataset of human immune tissues [37]. Our validation process
follows that of Cui et al. [2] and consists of the following steps: 1. constructing
gene networks based on the cosine similarities among the highly variable genes;
2. applying unsupervised Louvain clustering [38] to derive gene programs; and
3. qualitatively comparing the trends of highlighted gene programs with their
cell-specific expression levels.

• Cell-level tasks:

– Assessing Association Between Embeddings and the Underlying Cell States: Here,
we considered the following test datasets representing cells from circulatory sys-
tems (Aorta, a random 20% subset of data originally published in Li et al.
[39]) comprising 11 cell types; and Artery [40] with 10 cell types), bone tissues
(Bones [41] with 7 cell types; Myeloid [42] containing 3 annotated cancer types
and 11 cell types across 13,468 cells)), the Pancreas [37] (containing 11 annotated
cell types across 4,218 cells), and immune cells collected from healthy individuals
and patients with Multiple Sclerosis [43], totalling 18 annotated cell types and
12 donors across 3,430 cells. For each dataset and its associated metadata anno-
tation, we applied k-means clustering on the pretrained GenePT, Geneformer, or
the scGPT embeddings to obtain clusters matching the classes in the metadata
annotations. We select the number of clusters k to match the number of classes
in the metadata annotation. We then computed the Adjusted Rand Index (ARI)
and Adjusted Mutual Information (AMI) to evaluate the concordance between
derived cluster labels and the true metadata labels. A higher alignment, indi-
cated by higher values of ARI or AMI, between the inferred and actual labels,
suggests that the embedding captures more biological structure and signals. We
also calculated the Average Silhouette Width (ASW) using the true annotations
of original samples to assess the cohesion and separation of the clusters.

– Context Awareness and Batch Integration: Pretrained single-cell foundation mod-
els have been demonstrated to be robust against common batch-dependent
technical artifacts while still encoding the underlying biological context. We
assessed whether GenePT-s embeddings were impacted by common batch effects
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such as patient variability on two datasets used in Theodoris et al. [1]: the car-
diomyocyte dataset originally published by Chaffin et al. [44], and the Aorta
dataset originally published in Li et al. [39].

4 Results

4.1 GenePT embeddings capture underlying gene functionality

In Figure 2(a), we display a 2D UMAP of the GenePT embeddings (using the
text-embedding-ada-002 model), for over 34,000 genes that belong to the top 15
most prevalent functional classes (see Table B2 in Appendix B for detailed class
breakdown). The UMAP reveals distinct clusters when coloured by various gene func-
tionality groups, implying that GenePT embeddings encode the functions of the genes.
This confirms that language model embedding retains key biological information, as
functionality is frequently found in NCBI gene summaries. To evaluate the observa-
tions in Figure 2(a) more quantitatively, we further divided the genes into a 70%/30%
train/test split and evaluated the prediction accuracy using an ℓ2 regularized logistic
regression on the 15 classes. The predicted functional class aligns with the true anno-
tation well, with an overall accuracy of 96% and high class-specific accuracies and
only minor misclassifications between closely related functional groups like lincRNA,
lncRNA, and processed transcripts (see Figure 2(b)).

We further assessed the efficacy of GenePT embeddings in predicting gene-gene
interactions (GGI) in Figure 2(c). We compared the ROC-AUC for three meth-
ods on the test GGI dataset provided in Du et al. [18], derived from shared Gene
Ontology (GO) annotations: (i) sum of the GenePT embedding of two genes with
an ℓ2-regularized logistic classifier (LR), yielding an AUC of 0.82; (ii) sum of the
Gene2Vec/scGPT/Geneformer pretrained embeddings with an LR classifier (result-
ing in AUC of 0.65–0.67); and (iii) sum of two random embeddings (d = 1, 536, same
dimension as GenePT) paired with an LR classifier, which served as a negative control
(an AUC of 0.51). As shown in Figure 2(c), GenePT embeddings considerably enhance
performance when compared to the other single-cell foundation models derived embed-
dings using the same downstream classifier. Even when leveraging a more intricate deep
neural network, Du et al. [18] reported an AUC of 0.77, underscoring the competitive
edge of GenePT in this task.

Next, we evaluated the ability to predict protein-protein interactions (PPI) using
GenePT gene embeddings, as depicted in Figure 2(d)–(f). We compared the ROC-
AUC (refer to Appendix B.3 results for the precision-recall curve) for three methods
across three distinct PPI datasets: those derived from the literature (panel (d)), com-
prehensive assays (panel (e)), and biophysical contact annotations (panel (f)). For all
three datasets, using the sum of the GenePT embeddings of two genes as input, com-
bined with an ℓ2-regularized logistic regression, results in better performance than all
other models considered. These results suggest that GenePT’s literature-based embed-
ding captures information relevant to gene and protein interactions; a promising future
direction is to combine GenePT embeddings with protein embeddings learned from
3D structures or protein language models.
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Finally, we delved into cell-type specific activations among the GenePT-derived
gene programs within human immune tissue datasets through a “zero-shot” approach.
We first constructed a similarity graph based on cosine similarities between the
GenePT embeddings by placing an edge between two genes if the cosine similarity is
larger than 0.9 and applied Leiden clustering to the resulting graph at a resolution of
20. Randomly sampled 20 gene programs comprising 10 or more genes are depicted
in Figure 2(g). Here, we display the average expression levels of these gene programs,
stratified by cell types. The observed selective activation of these programs aligns with
established biological knowledge where the identified gene sets are known to be func-
tionally distinct and are differentially expressed across different cell types (e.g., Gene
set 8 comprising of IFI families and gene set 24 comprising of CDC families). These
findings underscore that GenePT-inferred gene programs effectively capture biologi-
cally pertinent functional groups; additional results with different similarity thresholds
can be found in Appendix B.4.

4.2 GenePT embeddings enable accurate predictions in
chromatin dynamics and dosage sensitivity

In this section, we delve into specific biological tasks that predict the roles of genes
in network dynamics with datasets curated from the literature by Theodoris et al. [1]:
dosage-sensitive versus dosage-insensitive TFs, bivalent versus non-methylated genes,
Lys4-only-methylated versus non-methylated genes, and long- versus short-range TFs.
These tasks were used to demonstrate the utility of Geneformer. We assess the perfor-
mance of GenePT and Gene2vec embeddings by five-fold cross-validated ROC-AUC
with either an ℓ2 penalized logistic regression (LR) or a Random Forest (RF) classifier
using default parameters from scikit-learn [45]. By contrast, Geneformer results,
as reported in Theodoris et al. [1], are based on a fine-tuned transformer model. We
also reported some variants of the GenePT framework: BioLinkBert embedding of the
gene summaries; or GPT-3.5 embedding of only the gene names (without context or
descriptions); and random embeddings matching the GenePT dimension (d = 1, 536).

Table 1 illustrates that GenePT embeddings consistently achieve competitive
results, sometimes even surpassing Geneformer, although the latter benefits from a
substantial pre-training dataset and a more intricate classification head. Interest-
ingly, GPT-3.5 embeddings of only gene names also show high accuracies in some
tasks. This might be due to two aspects: 1. gene nomenclature attempts to designate
functionally-related or homologous genes with similar symbols to enable grouping [46];
and 2. the underlying language model and tokenizer for GPT-3.5 might grasp the
biological significance of these gene symbols due to extensive pretraining on scien-
tific text [47]. Open-source embeddings like BioLinkBert and Gene2vec have slightly
less competitive performance. As expected, random embeddings exhibit results similar
to random guessing. The stark contrast in predictive performance between GenePT
and random embeddings indicates that it’s unlikely that the GenePT performance is
simply due to a large embedding dimension (d = 1, 536). In addition, since we used
low-complexity, off-the-shelf ℓ2-regularized logistic regression and random forests, and
reported results based on five-fold cross-validation, it is unlikely that the performance
is due to model overfitting. In summary, these results underscore the potential of
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Fig. 2: GenePT gene embeddings encode underlying biology. (a) 2D UMAP
visualization of GenePT embeddings, colored by different gene functionality groups.
(b) Confusion matrix of gene function prediction utilizing GenePT embeddings, com-
bined with an ℓ2-regularized logistic regression on a randomly held-out 30% test set.
(c) Prediction accuracy on a gene-gene interaction benchmark dataset derived from
GEO expression data [18]. (d) Prediction accuracy for protein-protein interactions
verified by high-quality binary literature datasets [34]. (e) Prediction accuracy on the
human binary protein interactions dataset [33]. (f) Prediction accuracy on human
heart tissue protein-protein functional interactions [35]. (g) Cell-type specific activa-
tion among GenePT-embeddings-extracted gene programs (a random subset of genes
is displayed for each program) in a human immune tissue dataset [37]. The patterns
of average gene expressions for identified gene programs in different cell types are con-
gruent with those previously identified in Cui et al. [2].
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our versatile GenePT approach, which compares favourably with state-of-the-art deep
learning models specifically crafted for single-cell RNA sequencing data.

5-fold CV AUC ± SD

Model Dosage sensitivity Bivalent vs non-methylated Bivalent vs Lys4-methylated TF range

Geneformer (fine-tuned) 0.91± 0.02 0.93±0.07 0.88± 0.09 0.74± 0.08
Gene2Vec + LR 0.91± 0.03 0.66± 0.07 0.91± 0.04 0.83±0.14
Gene2Vec + RF 0.86± 0.05 0.63± 0.14 0.89± 0.04 0.66± 0.15
BiolinkBert + LR 0.87± 0.04 0.78± 0.10 0.87± 0.04 0.31± 0.14
BiolinkBert + RF 0.87± 0.02 0.80± 0.06 0.85± 0.07 0.54± 0.23

Random Embed + LR 0.54± 0.04 0.59± 0.03 0.46± 0.07 0.36± 0.16
Random Embed + RF 0.49± 0.04 0.60± 0.08 0.42± 0.12 0.54± 0.18

GenePT (name only) + LR 0.85± 0.05 0.85± 0.01 0.89± 0.05 0.61± 0.25
GenePT (name only) + RF 0.89± 0.02 0.90± 0.02 0.91± 0.04 0.58± 0.22

GenePT + LR 0.89± 0.03 0.91± 0.06 0.94± 0.03 0.73± 0.25
GenePT + RF 0.92± 0.02 0.92± 0.06 0.95±0.04 0.64± 0.07

GenePT (Llama-7B) + LR 0.93±0.04 0.88± 0.07 0.93± 0.05 0.67± 0.25
GenePT (Llama-7B) + RF 0.92± 0.02 0.89± 0.07 0.93± 0.03 0.63± 0.32

Table 1: Cross-validated AUC for GenePT predictions versus alternative embeddings
for downstream tasks of distinguishing (i) dosage-sensitive vs. insensitive transcrip-
tion factors; (ii) bivalent versus non-methylated gene; (iii) bivalent versus Lys4-only
methylated genes; and (iv) long-range versus short-range transcription factors (TFs).
The performance for Geneformer is reproduced from Theodoris et al. [1] and is based
on a fine-tuned sequence classification model. Here, random embed denotes an embed-
ding identical in size to GenePT with entries drawn from i.i.d. N (0, 1). This serves as
a “negative control” to ensure that signals in GenePT are not merely due to a larger
embedding dimension. We use RF and LR to denote random forest and logistic regres-
sion models with default parameters in scikit-learn, respectively.

Finally, it’s crucial to confirm that the promising results in Sections 4.1 and 4.2
are not simply the result of information leakage, such as test set data being included
in the original NCBI gene summaries used as input for GenePT. We address these
concerns in detail in Appendix B.3.

4.3 GenePT learns representations that reflect cell biology

In this section, we focus on determining the capacity of our cell embedding approaches,
as depicted in Figure 1(b)–(c), in capturing the biology underpinning selected single-
cell datasets. We sought to evaluate whether the GenePT embeddings are congruent
with metadata annotations across six datasets representing cells from circulatory sys-
tems (Aorta and Artery), bone tissues (Bones, Myeloid), the Pancreas, and immune
cells collected from healthy individuals and patients with Multiple Sclerosis.

We quantified the concordance between biological annotations (i.e., cell types,
cancer types, donor ages) and k-means clustering labels inferred from: (i) pretrained
Geneformer embeddings; (ii) pretrained scGPT embeddings; (iii) GenePT-w embed-
dings (as in Figure 1(b)); and (iv) GenePT-s embeddings (as in Figure 1(c)). We
quantified the concordance using both AMI and ARI in Table 2. We see that latent
representations via GenePT-s broadly outperformed both the GenePT-w and Gene-
former embeddings in terms of AMI and ARI metrics and stayed competitive with the
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Geneformer scGPT GenePT-w GenePT-s

Dataset Annotation ARI AMI ASW ARI AMI ASW ARI AMI ASW ARI AMI ASW

Aorta Phenotype 0.10 0.12 -0.005 0.12 0.12 0.01 0.09 0.12 -0.04 0.12 0.11 0.02
Cell type 0.21 0.31 -0.04 0.47 0.64 0.18 0.54 0.60 0.03 0.31 0.47 0.04

Artery Cell type 0.39 0.59 0.10 0.36 0.59 0.15 0.42 0.67 0.16 0.36 0.56 0.06
Bones Cell type 0.09 0.16 -0.01 0.12 0.21 -0.01 0.21 0.29 0.02 0.17 0.28 0.003
Myeloid Cancer type 0.16 0.18 0.03 0.27 0.29 0.08 0.25 0.27 0.02 0.17 0.17 0.06

Cell type 0.19 0.29 -0.02 0.44 0.53 0.13 0.21 0.28 0.001 0.30 0.41 0.03
Pancreas Cell type 0.04 0.11 -0.09 0.21 0.41 0.05 0.49 0.69 0.15 0.30 0.50 0.10

Multiple Sclerosis Age 0.04 0.11 -0.1 0.04 0.11 -0.06 0.07 0.13 -0.07 0.06 0.12 -0.03
Cell type 0.21 0.35 -0.05 0.25 0.44 0.04 0.17 0.32 -0.02 0.19 0.35 0.002

Table 2: Assessing the Association Between Different Latent Cell Represen-
tations and Biological Annotations. This analysis involves datasets representing
cells from circulatory systems (Aorta and Artery), bone tissues (Bones, Myeloid), the
Pancreas, and immune cells collected from healthy individuals and patients with Mul-
tiple Sclerosis. We utilized pretrained Geneformer and scGPT embeddings for this
task. The Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI) were
computed to compare the labels derived from k-means clustering with the true anno-
tations of the original samples (higher values indicate better alignment); the Average
Silhouette Width (ASW) was calculated using the true annotations of original sam-
ples to assess the cohesion and separation of the clusters.

scGPT embeddings: across nine tasks, scGPT and GenePT each provides the most
biological signal on five and four tasks, respectively. This demonstrates that GenePT
cell embeddings capture biological variations comparable to two leading single-cell
foundation models. An important caveat is that concordance with cell types and anno-
tations is a limited measure of the utility of embedding, though it is widely used. We
also included additional classification results for a cell type annotation task via a near-
est neighbour approach on these datasets in Appendix C, which yields very similar
findings that scGPT and GenePT-w are two of the best-performing methods in this
setting, and both consistently outperform Geneformer in terms of prediction accu-
racy. Interestingly, a simple ensembling of the nearest neighbours retrieved by different
embeddings (GenePT-w, GenePT-s, and scGPT) enhanced the predictive performance
(see Table C4 in Appendix C). This suggests that natural language embeddings,
such as GenePT, could provide complementary insights to existing expression-derived
foundation models like scGPT in single-cell biology tasks.

4.4 GenePT embedding removes batch effect while preserving
underlying biology

We next assess whether GenePT embeddings are robust to batch-dependent technical
artifacts such as patient variability. We compared the performance of GenePT with
pretrained Geneformer and scGPT using a 10% random sample from a cardiomyocyte
dataset by Chaffin et al. [44] and a 20% random sample from the Aorta dataset
consisting of cells in healthy and dilated aortas [39], both of which were used to
demonstrate the utility of Geneformer.

In the cardiomyocyte dataset, the scientific question was to distinguish cardiomy-
ocytes in non-failing hearts from those in hypertrophic or dilated cardiomyopathy
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samples. Notably, the original data exhibited significant patient batch effects (see
Figure D8(b) in the Appendix). We performed the following analysis to quantify the
patient-level batch effects: (i) we first project the data (either the original RNA-seq or
one of the pretrained embeddings) into the top 50 principal components; (ii) we then
applied k-means clustering with k = 42, which is the number of distinct patients; (iii)
we compute adjusted Rand index (ARI) between the cell clusters and patient clusters.
Higher ARI values indicate more patient-level batch effects. The original scRNA-seq
data has a high ARI of 0.33, suggesting strong batch effects. Using the GenePT-s,
Geneformer, and scGPT, the ARI dropped to 0.07, 0.01, and 0.01 respectively, showing
that these embeddings are robust to batch effects.

In addition to reducing batch effects, we also investigated whether these embed-
dings could preserve the underlying disease phenotype (i.e., non-failing versus car-
diomyopathy) of the patients from whom the cells were collected. To this end, we
randomly split the cardiomyocytes into 80%/20% train/test sets and evaluated the
predictive performance using the ℓ2-regularized logistic regression on top of the follow-
ing pre-trained embeddings: (i) GenePT-s, (ii) scGPT, and (iii) Geneformer. Overall,
GenePT-s and scGPT achieve nearly identical performance on the held-out test set
(88% accuracy, 88% precision, and 88% recall for both embeddings for predicting dis-
ease label), whereas the performance for pretrained Geneformer trailed behind (71%
accuracy, 72% precision, and 71% recall).

Next, we conducted a similar study with the Aorta dataset, collected over 11
patients (eight patients with Ascending thoracic aortic aneurysm (ATAA) and three
control subjects; the eight ATAA patients are further divided into three different
phenotypes: ascending only, ascending with descending thoracic aortic aneurysm, and
ascending with root aneurysm). We demonstrate the use of GenePT on a random 20%
sample of the original Aorta dataset. In Figure 3, we display the original data (top
panel) and GenePT-s embeddings (bottom panel) using UMAP, colored by patient
phenotype (left panel), annotated cell types (middle panel), and patient identity (right
panel). While the original data was highly influenced by patient batch effect (see
Figure 3(c)) and displayed distinct clusters for identical cell types (e.g., T cells and
Mono/Maph/Dend cells in Figure 3(b)), GenePT-s embeddings clustered primarily
by cell types (Figure 3(e)) as well as disease phenotype (Figure 3(d)). In particular,
GenePT-s embeddings were able to distinguish the phenotype of ascending only aortic
aneurysm (green points in Figure 3(d)), a different phenotype than aortic aneurysm
that includes the root (purple points in Figure 3(d)).

We repeated the clustering analysis above on the Aorta dataset to get a more
quantitative measure of patient-level batch effects. The ARI between patient labels and
the estimated k-means clusters (k = 11) on the original scRNA-seq data is 0.24 versus
0.11, 0.10, and 0.18 when using Geneformer, GenePT-s, and scGPT respectively. We
also evaluated the agreement between the phenotype labels (three ATAA subtypes and
one control) and the clusters derived from embeddings and original scRNA-seq data.
The resulting ARIs are 0.12, 0.11, 0.12, and 0.12 for Geneformer embeddings, GenePT-
s embeddings, scGPT embeddings, and scRNA-seq data, respectively. These findings
suggest that GenePT-s, Geneformer, and scGPT all exhibit some degree of robustness
against batch effects while preserving information on the disease phenotype. This is
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Fig. 3: (a) UMAP visualization of the subsampled Aorta dataset, coloured by dis-
ease phenotype (three different disease phenotypes: ascending only, ascending with
descending thoracic aortic aneurysm, and ascending with root aneurysm; one control
phenotype comprising patients with healthy hearts after transplant) provided in the
original study [39]. (b) Same as (a), but colored by cell types annotated by the origi-
nal study [39]. (c) Same as (a), but colored by patient id. (d) UMAP visualization of
GenePT-s embeddings of the same set of cells as (a), coloured by disease phenotype.
(e) Same as (d), but colored by cell types. (f) Same as (d), but colored by patient
identity.

further corroborated by training a logistic regression model to predict the phenotype:
on the randomly held-out 20% test set, GenePT-s yields an accuracy of 73% (68%
precision, 74% recall), similar to that of scGPT (75% accuracy, 75% precision, 75%
recall) and moderately better than Geneformer (69% accuracy, 68% precision, 69%
recall).

5 Discussion

With the advance of technologies to measure genetic and cellular functionalities,
enhancing our understanding of the underlying biology through latent embedding
representations has attracted much interest. In this work, we introduced GenePT, a
simple yet effective approach that leverages GPT-3.5 to represent genes and cells by
utilizing their text summaries and ranked expression values, respectively. Across vari-
ous contexts, including discerning gene functionality groups and predicting gene-gene
interactions, this straightforward approach proves to be very effective even compared
to state-of-the-art foundational models trained on large-scale single-cell transcrip-
tomics data. Our work underscores the potential of complementing those specially
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crafted foundational models with a simple, natural language-guided representation,
which could be substantially more resource and data-efficient.

It is important to note the limitations in our work, primarily because the current
GenePT framework only makes use of available gene summaries and descriptions.
This may overlook the intricacies of lesser-known functionalities not documented in
databases like NCBI. Furthermore, unlike the embeddings trained on expression data,
GenePT embeddings might not be optimal for specific tissues and cell types. This
might pose challenges in capturing the dynamic and context-dependent roles of genes
and cells within those settings. Lastly, the effectiveness of the embeddings is inherently
constrained by the language models employed, i.e., GPT-3.5. Fine-tuning the language
models could further enhance understanding of the domain-specific language prevalent
in genomics.

Several promising pathways lie ahead for future research. First, extending the cur-
rent GenePT approach to be more dynamic and context-dependent — such as via
fine-tuning models and incorporating tissue, disease, and marker-gene-specific informa-
tion — could enhance its utility in real-world applications. Additionally, investigating
ways to integrate different embeddings across different single-cell foundation models, as
well as leveraging recent developments in dimension reduction techniques [48] to obtain
more compact representations, would be an important realm of future work. More-
over, it’s natural to investigate the performance of GenePT in additional downstream
tasks, such as perturbation predictions and drug-gene interactions. Lastly, while this
paper primarily focuses on gene and cell embeddings, it would be of great interest
to explore whether the approach of leveraging the natural language descriptions with
LLMs embedding could be applied to other biological domains and challenges, such
as protein sequence modeling [49] and Genome-Wide Association Studies [50].

Supplementary information. Supplementary information contains additional
details on the methods and results, as well as Table B2, Figure D8, and Figure 3.

Data availability. All datasets used in the study have been previously published
with pointers provided at https://github.com/yiqunchen/GenePT.

Code availability. GenePT is available at https://github.com/yiqunchen/GenePT.
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Appendix A Assessing GenePT sensitivity to
variations in gene summary inputs

In this section, we present additional details on the example gene summary inputs to
GenePT, as well as sensitivity analyses using three different levels of content input
for gene summaries: gene names only, gene names and gene summaries only, and all
summary card information.

As a concrete example, for the gene CD24, the three levels correspond to:

1. CD24
2. Gene Name CD24 Summary This gene encodes a sialoglycoprotein that is expressed

on mature granulocytes and B cells and modulates growth and differentiation sig-
nals to these cells. The precursor protein is cleaved to a short 32 amino acid mature
peptide which is anchored via a glycosyl phosphatidylinositol (GPI) link to the
cell surface. This gene was missing from previous genome assemblies, but is prop-
erly located on chromosome 6. Non-transcribed pseudogenes have been designated
on chromosomes 1, 15, 20, and Y. Alternative splicing results in multiple tran-
script variants. Expression Biased expression in thyroid (RPKM 586.8), esophagus
(RPKM 431.3) and 12 other tissues

3. CD24 Official Full Name CD24 molecule Primary source HGNC:HGNC:1645 See
related Ensembl:ENSG00000272398 MIM:600074; AllianceGenome:HGNC:1645
Gene type protein coding RefSeq status REVIEWED Also known as CD24A
Summary This gene encodes a sialoglycoprotein that is expressed on mature granu-
locytes and B cells and modulates growth and differentiation signals to these cells.
The precursor protein is cleaved to a short 32 amino acid mature peptide which
is anchored via a glycosyl phosphatidylinositol (GPI) link to the cell surface. This
gene was missing from previous genome assemblies, but is properly located on chro-
mosome 6. Non-transcribed pseudogenes have been designated on chromosomes 1,
15, 20, and Y. Alternative splicing results in multiple transcript variants. Expres-
sion Biased expression in thyroid (RPKM 586.8), esophagus (RPKM 431.3) and 12
other tissues See more Orthologs mouse all.

In the most comprehensive input (item 3, as previously detailed), we observe that
the information provided for a specific gene typically includes two distinct types of con-
tent: (i) various names, symbols, RefSeq status, and orthologs, as well as (ii) detailed
summaries of gene types, functions, and notable expression levels, which are concisely
summarized in item 2 of the list.

To assess the sensitivity of input text to GenePT, we have provided results for gene-
level classification and gene-gene interaction inference below (refer to Table A1 and
Figure A1). Our results indicate that most of the biological information, as expected,
is encoded in the gene summary from the NCBI gene dataset. In addition, adding
gene function summaries substantially improves the performance in the biological
tasks considered, compared to using gene names alone. We expect that our pipeline is
robust to different levels of input cleaning as long as the gene function summaries are
included.
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5-fold CV AUC ± SD

Model Dosage sensitivity Bivalent vs non-methylated Bivalent vs Lys4-methylated TF range

GenePT (name only) + LR 0.85± 0.05 0.85± 0.01 0.89± 0.05 0.61± 0.25
GenePT (name only) + RF 0.89± 0.02 0.90± 0.02 0.95 ± 0.04 0.64± 0.07

GenePT (summary only) + LR 0.87± 0.04 0.91± 0.05 0.95± 0.03 0.74± 0.14
GenePT (summary only) + RF 0.89± 0.04 0.91± 0.07 0.95± 0.04 0.86± 0.14

GenePT + LR 0.89± 0.03 0.91± 0.06 0.94± 0.03 0.73± 0.25
GenePT + RF 0.92± 0.02 0.92± 0.06 0.95 ± 0.04 0.64± 0.07

Table A1: Cross-validated AUC for GenePT predictions versus alternative embed-
dings for downstream tasks of distinguishing (i) dosage-sensitive vs. insensitive
transcription factors; (ii) bivalent versus non-methylated gene; (iii) bivalent versus
Lys4-only methylated genes; and (iv) long-range versus short-range transcription fac-
tors (TFs). We use RF and LR to denote random forest and logistic regression models
with default parameters in the scikit-learn package [45], respectively.

Fig. A1: Test set prediction performance using text-embedding-ada-002 embedding
model on different text input (name only, cleaned gene summary only, all gene infor-
mation) from NCBI dataset. The gene-gene interaction benchmark dataset used here
was derived from GEO expression data [18].

Appendix B Additional results for the gene level
functionality and property predictions

B.1 Gene functionality

In Figure 2(b), we display the results from a prediction task that leverages GenePT
embedding to predict the 15 most prevalent gene functional class, as detailed in
Table B2 below. For baseline comparison, we also applied LR classification using
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Gene2vec embeddings on the subset of the genes that had corresponding Gene2vec
embeddings (21,000 genes). This yielded a five-fold cross-validated accuracy of 0.86
(SD: 0.03). On the same subset of 21, 000 genes, GenePT achieved a considerably
higher average accuracy of 0.95 (SD:0.05).

Type Count Percentage (%)

Protein coding 20,184 71.6
pseudogene 3,725 13.2
miRNA 2,061 7.3
snRNA 1,793 6.4
misc RNA 1,043 3.7
lncRNA 724 2.6
snoRNA 692 2.5
antisense 592 2.1
rRNA 512 1.8
lincRNA 499 1.8
processed transcript 248 0.9
IG V gene 97 0.3
sense intronic 84 0.3
IG V pseudogene 79 0.3
TR J gene 76 0.3

Table B2: Gene functional classes used in the
prediction task of Figure 2(b).

B.2 Protein-protein interaction

In Figure B2, we display the precision-recall curve for the three protein-protein inter-
action prediction tasks (see Section 3 for datasets descriptions and Figure 2(d)–(f) for
ROC curves).

B.3 Addressing potential information leakage

It’s important to ensure that the promising results in Section 4 are not merely due
to the test set being represented in the original NCBI gene summaries used as input
for GenePT gene embeddings. We address the concerns of information leakage by
using a temporal split for gene functionality prediction and quantifying the extent of
information leakage for gene-gene and protein-protein interaction predictions.

1. Temporal Split: In terms of the temporal split, we discovered that the gene
functionality data was released by Theodoris et al. [1], in June 2023 at
https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/example input files.
Conversely, the NCBI gene information does not contain information on these
specific data, and the embedding model was released in December 2022. There-
fore, the information leakage for the gene property prediction should be minimal.
Regarding gene functionality, we intended this as a sanity check to ensure that
our embeddings contain first-order information, and we have adjusted our original
statement accordingly.
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(a)

(b)

(c)

Fig. B2: GenePT gene embeddings lead to the best test set prediction performance
for all protein-protein interaction datasets considered, measured by the Precision-
Recall curve for high-quality binary literature datasets [34] (panel (a)), human binary
protein interactions dataset [33] (panel (b)), and human heart tissue protein-protein
functional interactions [35].
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2. Content Overlap: We have also quantified the extent to which explicit gene-gene
interactions and protein-protein interactions are mentioned in the NCBI gene sum-
maries (see Table B3). This ensures that we are not merely memorizing training
data. In this context, we quantified, for gene-gene interaction and protein-protein
interaction datasets, the number of explicitly mentioned interaction pairs. We note
that the number of present pairs is quite small across these datasets. In particular,
except for the Lit-BM PPI dataset , the small percentage (less than 1%) of leakage
in the other three datasets had a minimal impact on the classification result.

Additionally, to quantify the impact of data leakage in the Lit-BM PPI dataset
(approximately 4%), we removed the positive pairs present in the NCBI summary and
evaluated the performance again. We observed that there is no meaningful difference
between the performance with and without the pairs that were mentioned in the NCBI
summary. Therefore, this establishes that our GenePT approach was able to encode
more information than mere memorization.

Dataset Positive pairs Pairs present in NCBI summary

GGI [18] 141,130 310
HuRI PPI [33] 53,548 583
Lit-BM PPI [34] 12,234 524
Heart tissue PPI [35] 303,932 469

Table B3: Quantifying potential information leakage in gene-gene interaction and
protein-protein interaction datasets.

(a) Performance on full test set (b) Performance after removing overlap

Fig. B3: Test set prediction performance using GenePT gene embeddings on the
Lit-BM protein-protein interaction datasets [34] before (panel (a)) and after (panel
(b)) removing the mentioned pairs of interacting proteins in the NCBI gene summary
database.
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Fig. B4: Cell-type specific activation among GenePT-embeddings-extracted gene
programs (>10 in size) using similarity threshold 0.9 in a human immune tissue
dataset [37].

B.4 Additional results on gene program identification

In this section, we provide additional results on the gene programs we identified in
Figure 2(g). Specifically, we present gene programs comprising more than 10 genes at
two different thresholds: 0.9 (the superset from which programs in Figure 2(g) were
sampled) and 0.7, shown in Figures B4 and B5, respectively. We observe that the
number and composition of different gene programs, as well as the overall cell-type-
specific expression patterns of the identified programs, are similar across these two
thresholds. This similarity indicates that while the optimal threshold may depend on
the specific datasets’ downstream use, identifying programs using GenePT provides a
stable method to group biologically relevant genes in a general context.

B.5 Experiments with tissue-dependent gene emebddings

In this section, we explore the potential utility of creating context-dependent embed-
dings by providing context-dependent gene descriptions. We experimented with this
idea by prompting GPT-4 to generate tissue-specific contexts and then obtaining new
GenePT gene embeddings based on these tissue-specific contexts.

Specifically, we give GPT-4 (model gpt-4-1106-preview) the following prompt:
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Fig. B5: Cell-type specific activation among GenePT-embeddings-extracted gene
programs (>10 in size) using similarity threshold 0.7 in a human immune tissue
dataset [37].

Rewrite (the resulting summary should be approximately similar in
length) the following summary of gene X to emphasize their functionality
in the following different tissues or contexts: tissue name, NCBI gene
summary for gene X.

We then concatenate the gene summary rewriting we get for a gene with the
original NCBI summary and use the resulting text embedding as the tissue-specific
gene embedding. We demonstrate in two protein-protein interaction studies that
these context-specific embeddings were able to boost the prediction performance (see
Figures B6 and B7.

Appendix C Cell type annotation results

In this section, we also consider the cell type annotation task, where the primary
aim is to predict annotated cell type labels based on the input cell representation.
This annotation step is critical in single-cell analysis, as accurately distinguishing
various cell populations within sequenced tissues can significantly enrich downstream
biological insights. Mirroring the experimental design in the scGPT paper [2], we
evaluated different embeddings’ efficacy for cell-type annotation using a 10-nearest-
neighbor classifier on datasets representing cells from circulatory systems (Aorta and
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(a) (b)

Fig. B6: Context-enriched gene embeddings lead to better test set prediction perfor-
mance, measured by the ROC curve for the heart (panel (a)) and bone (panel (b))
tissue protein-protein interaction dataset [35].

(a) (b)

Fig. B7: Context-enriched gene embeddings lead to better test set prediction per-
formance, measured by the Precision-Recall curve for the heart (panel (a)) and bone
(panel (b)) tissue protein-protein interaction dataset [35].

Artery), bone tissues (Bones, Myeloid), the Pancreas, and immune cells collected
from healthy individuals and patients with Multiple Sclerosis. We report the test set
classification accuracy by applying a 10-nearest neighbour classifier on various pre-
trained embeddings in Table C4 and note that GenePT embeddings held the ground
against pretrained scGPT embeddings and outperformed the pretrained Geneformer
embeddings. For the Aorta dataset, we used a random 80%/20% train/test split. Fur-
thermore, we explored an ensemble approach that aggregates the 10 nearest neighbours
from GenePT-w, GenePT-s, and scGPT, resulting in 30 predictions for each cell. This
method demonstrated enhanced performance across various datasets and metrics. This
indicates that literature-based natural language embeddings, such as GenePT-s, and
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Classification metrics on the test set

Dataset Embeddings Accuracy Precision Recall F1

Aorta scGPT 0.95 0.95 0.93 0.93
Geneformer 0.86 0.70 0.60 0.62
GenePT-w 0.88 0.91 0.68 0.72
GenePT-s 0.86 0.70 0.60 0.62

Ensemble scGPT + GenePT-w + GenePT-s 0.93 0.95 0.82 0.86

Artery scGPT 0.94 0.92 0.89 0.90
Geneformer 0.93 0.91 0.84 0.87
GenePT-w 0.95 0.92 0.87 0.88
GenePT-s 0.92 0.88 0.82 0.84

Ensemble scGPT + GenePT-w + GenePT-s 0.95 0.93 0.88 0.90

Bones scGPT 0.34 0.36 0.48 0.25
Geneformer 0.22 0.28 0.37 0.17
GenePT-w 0.49 0.49 0.60 0.36
GenePT-s 0.37 0.37 0.49 0.28

Ensemble scGPT + GenePT-w + GenePT-s 0.45 0.43 0.57 0.33

Myeloid scGPT 0.53 0.34 0.29 0.30
Geneformer 0.44 0.26 0.18 0.20
GenePT-w 0.50 0.35 0.30 0.31
GenePT-s 0.52 0.33 0.27 0.28

Ensemble scGPT + GenePT-w + GenePT-s 0.55 0.38 0.34 0.35

Pancreas scGPT 0.77 0.61 0.56 0.55
Geneformer 0.50 0.25 0.34 0.27
GenePT-w 0.95 0.76 0.65 0.66
GenePT-s 0.89 0.65 0.53 0.56

Ensemble scGPT + GenePT-w + GenePT-s 0.95 0.80 0.67 0.70

Multiple Sclerosis scGPT 0.76 0.67 0.62 0.61
Geneformer 0.44 0.47 0.36 0.34
GenePT-w 0.38 0.46 0.28 0.24
GenePT-s 0.49 0.50 0.41 0.40

Ensemble scGPT + GenePT-w + GenePT-s 0.72 0.66 0.57 0.55

Table C4: Test set performance on cell-type annotation tasks. This analy-
sis involves datasets representing cells from circulatory systems (Aorta and Artery),
bone tissues (Bones, Myeloid), the Pancreas, and immune cells collected from healthy
individuals and patients with Multiple Sclerosis. Reported metrics include accuracy,
precision, recall, and F1 (Macro-weighted), and are based on applying 10-nearest
neighbour classifiers (using cosine similarity as the distance metric) on pretrained
emebddings from scGPT, Geneformer, GenePT-w, and GenePT-s. We also report the
performance of ensembling the nearest neighbours retrieved by scGPT, GenePT-w,
and GenePT-s.

expression-profile-derived embeddings like scGPT, provide complementary insights in
single-cell biology tasks.
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Appendix D Additional visualization on the batch
effect and underlying diseases biology
via GenePT in the cardiomyocytes
and Aorta data

In Figure D8, we visualize the original single-cell data and GenePT embeddings,
coloured by disease type (top row) and patient identity (bottom row). We see that
while the original data was capturing the underlying disease biology (top left; NF:
non-failing heart; HCM: hearts with hypertrophic cardiomyopathy; DCM: hearts with
dilated cardiomyopathy), it also was highly affected by patient batch effect (panel (b)
in Figure D8; different colour indicates individual patients). On the other hand, cell
embeddings generated by GenePT-s clustered primarily by disease phenotype rather
than patients.
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c d
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Fig. D8: (a) UMAP visualization of single-cell data, coloured by disease phenotype
where NF, HCM, and DCM stand for non-failing heart, hearts with hypertrophic
cardiomyopathy, and hearts with dilated cardiomyopathy, respectively. (b) Same as
(a), but colored by patient id. (c) UMAP visualization of GenePT-s embeddings of
the same set of cells as (a), coloured by disease phenotype. (d) Same as (c), but
colored by patient identity.
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