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Abstract 

Macaque area V4 includes neurons that exhibit exquisite selectivity for visual form and 

surface texture, but their functional organization across laminae is unknown. We used 

high-density Neuropixels probes in two awake monkeys to characterize shape and 

texture tuning of dozens of neurons simultaneously across layers. We found sporadic 

clusters of neurons that exhibit similar tuning for shape and texture: ~20% exhibited 

similar tuning with their neighbors. Importantly, these clusters were confined to a few 

layers, seldom ‘columnar’ in structure. This was the case even when neurons were 

strongly driven, and exhibited robust contrast invariance for shape and texture tuning. 

We conclude that functional organization in area V4 is not columnar for shape and 

texture stimulus features and in general organization maybe at a coarse scale (e.g. 

encoding of 2D vs 3D shape) rather than at a fine scale in terms of similarity in tuning 

for specific features (as in the orientation columns in V1). We speculate that this may be 

a direct consequence of the great diversity of inputs integrated by V4 neurons to build 

variegated tuning manifolds in a high-dimensional space.  
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Significance Statement 

In primary visual cortex of the macaque monkey, studies have demonstrated columnar 

functional organization, i.e. shared tuning across layers for stimulus orientation, spatial 

frequency, ocular dominance, etc. In mid and higher level visual form processing stages, 

where neurons exhibit high-dimensional tuning, functional organization has been harder 

to evaluate. Here, leveraging the use of the high-density Neuropixels probes to record 

simultaneously from dozens of neurons across cortical layers, we demonstrate that 

functional organization is not columnar for shape and texture tuning in area V4, a 

midlevel stage critical for form processing. Our results contribute to the debate about 

the functional significance of cortical columns providing support to the idea that they 

emerge due to one-to-many representational expansion.  
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Introduction  

More than six decades ago, Mountcastle and colleagues first discovered cortical 

“columns” in the somatosensory cortex of the cat, where neurons responsive to 

stimulation of different peripheral receptors were organized in bands spanning all 

cortical layers (Mountcastle, 1957). Since that groundbreaking discovery, scientists 

have demonstrated columnar structure in many cortical regions in a variety of species. 

Here we use “columns” in a broad sense, focusing on evaluating whether organization 

runs across layers without any claim of discreteness. In the primate visual system, 

columns for ocular dominance, stimulus orientation and spatial frequency have been 

demonstrated in primary visual area (V1) (Albright et al., 1984; DeAngelis and 

Newsome, 1999), and for motion direction (Albright et al., 1984) and disparity 

(DeAngelis and Newsome, 1999) in the middle temporal visual area (MT). These 

demonstrations of columnar structure as well as its absence in some species (Jang et 

al., 2020) have stimulated intense debate about anatomical origin and functional 

significance (Horton and Adams, 2005; Purves et al., 1992): do columns represent a 

critical functional unit or do they result simply from representational expansion (Jang et 

al., 2020; Ringach 2004, 2007), i.e. a small number of inputs projecting onto a large 

number of neurons? Here we probe area V4, a midlevel stage in the primate ventral 

stream, both to gain insight into its functional architecture and to contribute to the 

debate on the significance of columns.  

 

Columnar structure has been hard to evaluate in the mid- and higher cortical stages of 

the ventral visual stream critical for form processing. This is primarily because of 
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technical challenges. Unlike tuning for motion direction or orientation, detailed 

characterization of shape selectivity often requires 100s of stimuli. This makes 

sequential study of neurons along a recording track, needed to assess columnar 

structure, difficult because of constraints on experimental time in the awake animal. In 

the face of this hurdle, studies in V4 and inferior temporal cortex have typically used 

optical imaging, and more recently multiphoton imaging, to evaluate clustered tuning at 

a categorical level, e.g. preferred tuning for curved vs rectilinear stimuli or 2D vs 3D 

shapes, and across the cortical sheet rather than across laminae (Hu et al., 2020; Jiang 

et al., 2021; Li et al., 2013; Lu et al., 2018; Sato et al., 2009; Srinath et al., 2021; Tang 

et al., 2020; Tanigawa et al., 2010). Here, for the first time, we leverage the use of high-

density Neuropixels probes to examine the fine-scale columnar structure, namely the 

similarity in the profile of the tuning curve, for shape and texture encoding in cortical 

area V4 of the awake primate. 

 

Many neurons in area V4 encode information about the shape and texture features of 

visual stimuli (Desimone and Schein, 1987; Gallant et al., 1993; Kim et al.,2019; 

Kobatake and Tanaka, 1994; Okazawa et al., 2015; Pasupathy and Connor, 1999). To 

determine if neurons with similar shape and texture selectivities are clustered across 

cortical laminae, we probed neuronal responses with a set of 2D shape silhouettes and 

textures. We assessed similarity in tuning for shape/texture by quantifying the 

correlation in responses of all pairs of simultaneously studied neurons. To evaluate 

whether a lack of similarity in tuning was due to tuning dependence on stimulus contrast 

or stimulus position, we presented our stimuli at two luminance contrasts relative to the 
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background and at multiple positions within the aggregate receptive field (RF). Our 

results reveal that similarity of shape and texture tuning across laminae is rare in V4: 

even neurons that exhibit strong shape/texture selectivity that is invariant across 

contrasts are surrounded by neurons with different tuning preferences.  
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Materials and Methods 

Animal preparation and recording sites 

Two rhesus macaques (Macaque mulatta) weighing 6.0 kg (female monkey M1) and 9.2 

kg (male monkey M2) participated in the experiments. Animals were surgically 

implanted with custom-built head posts attached to the skull with orthopedic screws. 

After behavioral training, a metal ring was chronically implanted on the skull surface of 

each monkey, followed by a craniotomy in a subsequent surgery and the installation of 

a metal/plastic recording chamber. Since we performed acute Neuropixels probe 

insertion via native dura each day (see below) it was critical to maintain a thin dural 

layer with periodic (once every 2-3 weeks) dural debridement under Ketamine (with pain 

medication). All animal procedures conformed to National Institutes of Health guidelines 

and were approved by the Institutional Animal Care and Use Committee at the 

University of Washington. 

 

Positioning of the recording chamber was guided by stereotaxic coordinates based on 

structural magnetic resonance images taken prior to implant placement, and allowed 

access to dorsal V4 gyrus between lunate and superior temporal sulci on the right 

hemisphere. In both animals, locations of probe insertions were visually confirmed post 

mortem on the cortical surface of dorsal V4 gyrus.  

  

Experimental design 

Experimental apparatus and fixation task. During each experimental session, 

animals were seated in front of a visual display–a liquid crystal display monitor (24 
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inches; 100 Hz frame rate; 1920 × 1080 pixel size, XL2430-B, BENQ) calibrated with 

spectrophotoradiometer (PR650; PhotoResearch)--at a distance of 55 cm (M1) or 52 cm 

(M2). Visual stimulus presentation and behavioral tasks were controlled by custom 

software written in Python (Pype2, Mazer 2013). Eye position was monitored with a 1 

kHz infrared eye-tracker (Eyelink 1000, SR Research). Stimulus onset times were 

based on photodiode detection of synchronized pulses at the lower left corner of the 

display monitor (25 kHz sampling rates).  

 

During data collection in this study, animals were engaged in a passive fixation task. 

Each trial began with the presentation of a white fixation dot (FP; 0.1 degree). Animals 

were required to maintain eye position within a fixation window of 1.1 degrees for a total 

duration of 1.6-3.2 sec for water or juice reward. As animals maintained fixation, a 

sequence of 4-8 stimuli were presented, each for 200 ms, separated by 200 ms inter-

stimulus intervals. The first/last stimulus was preceded/followed by a 100 ms blank 

interval.  
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Electrophysiology 

Probe and Data acquisition configuration. Neuropixels 1.0 and Neuropixels NP1010 

(IMEC) were used for recordings in M1 and M2, respectively. Neural signals from the 

probe and non-neural event signals from other devices (eye-tracker, sync pulse 

generator, and photodiode) were acquired using PXIe acquisition module (PXIe_1000, 

IMEC) and multifunction I/O module (PXI-6224, National Instruments-NI), and 

transmitted to data acquisition Windows computer via the PXI Chassis (PXIe-1071, NI) 

(Putzeys et al., 2019). Action potential (AP) and local field (LF) signals from the 384 

probe contacts (AP: 30 kHz sampling rates; LF: 2.5 kHz sampling rates) were amplified 

and bandpass-filtered (AP: 0.3-10 kHz; LF: 0.5-500 Hz), and stored for offline analysis 

(spikeGLX, Janelia Research Campus). Square-wave sync pulses generated with a 

microcontroller board (Arduino R3, Arduino) were stored in both the neural and non-

neural event data recording streams so that spike timing and photodiode detection 

could be synchronized in offline analysis.  

 

Probe insertion. We tracked our probe insertion locations using a custom-built plastic 

grid with 1 mm spacing. Each day, we marked the target insertion location with india ink 

on the dural surface using a needle inserted through the grid. We then removed the 

needle and grid, stabilized the dural surface with a custom-built wire presser foot held 

by an ultracompact micromanipulator (MO-903B, Narishige), and used one of two 

methods to insert the Neuropixels probe. For recordings in M1 with the rodent probe 

(Neuropixels 1.0), which is too fragile to penetrate primate dura, we created a dural 

eyelet by inserting a short guide tube (3-4 mm length of 27G hypodermic needle, BD) 1-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.15.562424doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562424
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

2 mm into the dura and then carefully threading the probe through the eyelet under 

magnification; the probe itself was mounted on a holder (uMp-NPH, Sensapex) which 

was mounted on a hydraulic microdrive (MO-97A, Narishige). The short guide tubes 

were custom made with a blob of epoxy on one end to serve as an anchor against the 

dura. We used a custom-built guide tube holder and the hydraulic microdrive (MO-97A, 

Narishige) to insert the short guide tube into the dura and retract the holder to create the 

dural eyelet. For recordings with the primate probe (Neuropixels NP1010) in M2, we first 

sharpened the probe using a micropipette grinder (EG-45, Narishige) and then inserted 

the probe through native dura. In both methods, the experimenter monitored signals 

from the probe on spikeGLX activity map as the probe was being inserted. Probe 

reference and ground were connected to the head post of the animal prior to probe 

insertion. See Namima et al., (2023) for more detailed insertion procedure. 

 

Preliminary characterization 

At the start of each recording session, we used a hand mapping procedure to identify 

the aggregate receptive field (RF) of neurons recorded along the length of the probe 

(Figure 1A). Using a gray rectangular bar stimulus of variable length, orientation, aspect 

ratio, and luminance contrast relative to the background, we mapped the outer 

boundary of evoked responses from a single recording channel, fit a circle to the 

mapped RF boundary and the center of the fitted circle was considered to be the RF 

position. We performed this manual RF mapping for 2-4 channels. choosing channels 

that were spatially well segregated along the length of the probe, and were associated 

with a large signal amplitude on spikeGLX AP activity map as well as visually 
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recognizable waveforms on AP spike trace view. The average of the mapped RF 

locations across the sampled channels was referred to as the “aggregate RF center”, 

and was used as the center location for the presentation of visual stimuli.  

 

RF localization 

To facilitate more precise post-hoc characterization of the RF location of individual 

neurons along the length of the probe, we conducted an automated RF localization 

experiment. As animals fixated, visual stimuli were presented on a 31 × 31 or 41 × 41 

square grid, centered on and scaled to cover the aggregate RF identified during 

preliminary characterization. Each grid location was sampled once, with either a shape 

or a texture stimulus chosen randomly from our main stimulus sets described next. The 

size was common across the grid locations in the same penetration. Stimuli were 

presented for 80 or 100 ms duration with a 100 ms interstimulus interval. 

 

Visual stimuli 

During the main experiment, visual shape and texture stimuli were presented against an 

achromatic background (8 cd/m2; x = 0.33 and y = 0.33 in CIE-xy chromaticity 

coordinates) at the aggregate RF center (see Preliminary characterization). The shape 

set included 15 simple geometric shapes each presented at 8 different rotations in 45° 

increments, resulting in a total of 120 shape stimuli (Figure 1B; also see Pasupathy and 

Connor, 2001). For this study we presented shapes filled with a uniform cyan (x = 0.196, 

y = 0.188), either darker or brighter than the background luminance (4 cd/m2 or 12 

cd/m2). The shapes were typically sized to fit entirely within the estimated V4 RF scaled 
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for eccentricity (based on Gattass et al., 1988; see Pasupathy and Connor, 1999) 

except for five experiments in M1 where the shapes were larger in order to overlap a 

greater fraction of the RFs of the neurons being recorded. 

 

The texture stimulus set was composed of 40 naturalistic grayscale textures (Figure 1C) 

with pixel values ranging from 1 cd/m2 to 30 cd/m2 (mean luminance 13 cd/m2). 

Textures were presented either in their original version or as contrast-reversed images, 

where pixel luminance contrast was inverted relative to the mean luminance of 13 cd/m2. 

All texture images were presented through a circular aperture with a blurred boundary 

and were sized to cover the area occupied by the RFs of multiple single neurons 

characterized each day during manual mapping (see Preliminary characterization). On 

each stimulus presentation, texture images were presented at one of 8 randomly 

chosen rotations at 45° increments to assess similarity in tuning for higher order texture 

statistics rather than tuning for local oriented features. For both experiments, we 

included blank stimulus periods to assess baseline activity.  

 

To evaluate whether scatter in the RF position across neurons contributed to the sparse 

clustering observed in the shape experiments, we conducted a position control test. We 

used the same 15 shapes (Figure 1B) each at a single orientation, with the shape 

orientations chosen to provide roughly even sampling of curvatures across angular 

position. Each stimulus was presented in 5 positions: at the aggregate RF center and at 

four positions displaced ½ × RF diameter (north, south, east, and west) relative to the 
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aggregate RF center. In the position control experiment, shape stimuli were evenly filled 

with dark cyan (4 cd/m2) and were sized as in the main experiment. 

 

Dataset and data inclusion criteria 

We conducted 30 and 44 sessions of main shape test in M1 and M2, respectively. The 

position control experiment with shape stimuli was conducted in 33 of 44 sessions in M2 

only. The texture test was conducted in 17 and 34 sessions in M1 and M2, respectively. 

Shape and texture tests were conducted in different experimental sessions in M1. In M2, 

we conducted shape and texture tests in 34 sessions, of which 30 sessions included 6 

or more neurons that were visually driven by both shape and texture stimuli; these 

sessions were used to compare invariance in shape and texture tuning across stimulus 

contrasts. The automated RF localization experiment was conducted in all recording 

sessions. Even when all four tests were conducted in the same penetration, they were 

conducted in separate blocks. Across experiments, the median number of repetitions for 

individual shape stimuli was 5 (minimum = 3) and for texture stimuli and position control 

was 8 (minimum = 4). All clusters deemed “good” after automatic and manual curation 

(see Data preprocessing below) were included in our analysis to identify the most 

superficial neuron (see Depth from superficial neuron). For assessments of tuning 

similarity, we excluded neurons that were not visually driven. For this we used a very 

liberal definition of responsiveness: each neuron had to exhibit a response that was ≥ 

5spikes/sec above baseline for one shape or texture stimulus at either luminance 

contrast level. This excluded 461 and 366 neurons across our dataset for shape and 

texture analyses, and left 1850 and 979 neurons respectively. Thus, a very liberal 
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criterion excluded roughly 20% of data from our shape test and 27% from our texture 

test. These excluded neurons presumably require other stimulus dimensions (motion, 

3D cues, etc.) and/or other shapes and textures not tested here. 

 

Data preprocessing 

The flow chart in Figure S9 summarizes the preprocessing steps. Each day, binary data 

files collected across experiments were combined into a single binary file using custom-

built MATLAB code (Mathworks Inc.). The combined binary files were then processed 

with open source automated spike sorting software (high pass filtering with 300 Hz; 

Kilosort 2.0 (Pachitariu et al., 2023), or Kilosort 2.5 (Pachitariu et al., 2023; Steinmetz et 

al., 2021)) with default parameters, followed by manual curation with open source 

software (phy2 template-gui, cortex-lab). During manual curation, we categorized 

Kilosort-detected waveform clusters as “good”, “multi-unit activity (mua)” or “noise”. 

Waveform clusters associated with low firing rate (< 0.1 spikes/sec) and/or low 

amplitude waveforms (almost flat waveforms) were classified as ”noise”. Clusters with 

waveforms that were large in amplitude, with minimal high frequency fluctuations across 

time, and distinct in shape from other clusters isolated on nearby electrode channels, 

were categorized as good clusters (also see Bigelow et al., 2023). Because Kilosort 

allows overlapped spikes to be fit with different templates, some good clusters may be 

double-counted (because the residuals may be fit with a second template). We 

identified this duplication based on the similarity of the inter spike interval (ISI) 

histogram and the cross-correlogram and excluded one of the two clusters from our 

dataset. Specifically, we examined the cross-correlogram between pairs of putative 
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good clusters and excluded one cluster as a double-count if the cross-correlogram 

exhibited a zero-centered distribution with a very large, narrow peak. All other waveform 

clusters were categorized as “mua”. Finally, we examined the ISI distribution of good 

clusters and rejected a subset when > 5% of the ISIs violated the 2 ms refractory period 

and/or the mode of the ISI histogram was less than 2 ms. All remaining waveform 

clusters labeled as “good” were included in all further analyses.  

After automatic and manual sorting, one final pre-processing step involved the 

alignment of the different data recording streams. Because the neural and non-neural 

event signals were stored in separate streams with independent clocks with rates that 

could vary with temperature, we linearly regressed the sync pulse edge times stored in 

the two streams to bring the spike times, event timestamps and photodiode signals into 

register. Analyses of spike times were performed using custom-built MATLAB code 

using freely-distributed MATLAB toolboxes (Spikes, cortex-lab; npy-matlab, Kwik Team).  

 

Data analysis 

Firing rate computation. Spike counts from single neurons in response to individual 

stimuli were computed within a 30-200 ms window after stimulus onset. Then, firing 

rates (FRs) averaged across stimulus repetitions were computed. Baseline FRs were 

similarly computed during blank stimulus presentations.  

 

Depth from superficial neuron. For both probes used in these studies, the default 

channel maps of recording contacts are organized into three banks, and during each 

recording session data may be collected from one bank of 384 contacts. We used the 
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deepest bank (Bank0, closest to the tip of the probe) for all recording sessions. To 

estimate the depth of individual neurons from the cortical surface, we first assessed the 

axial position of each neuron along the probe by computing the center mass of the 

waveform template across all channel positions where the waveform was detected 

(templatePositionsAmplitudes.m, Spikes toolbox). The depth of each neuron was then 

calculated as the relative distance between its position and that of the most superficial 

neuron along the probe length. 

 

Current source and sink profile along the probe.  We conducted current source 

density (CSD) analysis to estimate the position of the cortical input layer along probe 

length. First, for individual channels, we down-sampled local field (LF) signal from 2.5 

kHz to 1 kHz and then subtracted the mean from the down sampled LF signal. The 

ground-subtracted LF signal was transformed from 16-bit data format (i) to actual 

voltage unit (V). Then, we applied a 3rd order Butterworth bandpass filter with a range of 

[0.5 100] Hz to the LF signal. LF signal to first stimulus presented in each trial was 

averaged across multiple trials and smoothed using a Gaussian function across 

adjacent 10 contacts. For the trial averaged LF signal, we computed standard current 

source density (Freeman and Nicholson, 1975): second derivative between LF signals 

from neighboring 3 contacts. The CSD were calculated separately for four channel 

columns along the probe length but one of CSDs were visualized. Our CSD 

visualization was accomplished by applying a Gaussian smoothing with surrounding 10 

contacts and a sign-inversion over the calculated CSD values.  
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Tuning similarity and contrast invariance. We computed the correlation coefficient 

between responses of two neurons to assess similarity in tuning, and between 

responses of a neuron to two stimulus types (e.g. bright and dark) to assess contrast 

invariance in tuning across stimulus attributes. However, when the number of stimulus 

repeats are low, Pearson's correlation coefficient can be heavily biased, and this bias is 

related to the trial-to-trial variability of neuronal responses (see detail in Pospisil and 

Bair 2021). We corrected the attenuation in correlation using methods developed by 

Pospisil and Bair. Briefly, we measured spike counts on individual stimulus repeats and 

used a square root transform to stabilize variance. We then computed the numerator 

and denominator of the correlation coefficient squared, estimated, and subtracted the 

bias terms from the numerator and the denominator separately, divided the bias-

corrected numerator by the denominator and took the square root of the quotient to 

calculate the noise-corrected correlation coefficient. Finally, the sign of the noise-

corrected correlation coefficient was set to that based on the Pearson’s correlation 

coefficient and the values were truncated to lie in the [-1 1] range. We assessed a 

confidence interval for each noise-corrected coefficient by conducting bootstrap 

resampling (number of bootstraps = 500) with repetition of spike counts on individual 

stimulus repeats. The noise-corrected coefficient was considered unreliable if the 

confidence limit was > 0.5, which is the case when the signal-to-noise ratio is weak.  

 

Clusters of similarly tuned neurons. To assess tuning similarity among neighboring 

neurons, we related tuning similarity between a neuron and its neighbors to interneuron 

distance by linear regression (fit.m, MATLAB). We assessed the significance of the fit at 
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the 95% confidence level (confint.m, MATLAB). If tuning similarity is high for nearby 

neurons, and similarity declines with distance, we would expect a positive y-intercept 

(Isimilarity) and a negative slope (Ssimilarity). Nearby neurons with dissimilar tuning would be 

associated with an intercept close to zero. We excluded some neurons from our 

clustering analysis (shape: n = 1/1850, texture: n = 74/979) because we had too few 

data points (two or less) of tuning similarity at a given contrast level and thus we were 

unable to quantify confidence limits for slope and intercept of linear regression fit. This 

exclusion was necessary because for assessing tuning similarity, we included all 

neurons that responded to either bright or dark stimuli (see Dataset and data inclusion), 

but tuning similarity was evaluated separately for bright and dark stimuli. Therefore, the 

tuning similarity estimates for one contrast could be unreliable when both neurons of the 

pair were not driven or exhibited poor signal-to-noise ratio (see white pixels in Figure 3). 

If this was the case for a neuron when paired with many others within a penetration, 

either the regression line per se or the confidence limits could be un-computable for a 

neuron. 

 

Statistical tests.  

To assess whether clustering of selectivity based on responses at two luminance 

contrasts were similar, we computed the Spearman’s rank correlation between the y-

intercept of individual neurons at the two luminance contrast levels.  

To compare tuning invariance for shape vs texture within individual penetrations where 

we studied both, for each penetration we computed the mean and standard deviation of 

tuning invariance of all recorded neurons within a penetration, separately for shape and 
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texture. Then we assessed the linear relationship between the means (and standard 

deviations) for shape and texture by computing the Pearson's correlation coefficient.  

Wilcoxon rank sum test was conducted to evaluate whether there was a statistically 

significant difference in shape/texture tuning invariance between subpopulations of 

neurons with and without significant intercept.  

 

RF localization.  

To estimate the location of each neuron's RF, we computed the firing rate of neurons at 

each grid location during stimulus presentation (spikes/sec; either 0-80 ms or 0-100 ms 

after stimulus onset), smoothed the firing rate over a 3 × 3 grid (conv2.m, MATLAB) and 

subtracted the baseline FR. After truncating negative values to zero, the smoothed RF 

maps were fitted with 2D Gaussian kernels to identify the RF center. For each neuron, 

the RF fit was considered reliable only when the mean FR over a 3 × 3 grid centered on 

the peak was > 5 spikes/sec. In the position test, we aimed to determine the optimal 

stimulus location for each neuron. We calculated the dispersion of responses across 15 

shapes at five locations relative to the aggregate RF center (center, north, south, east, 

and west of aggregate RF) by computing the ratio of variance to mean of the FRs 

across stimuli at each location. The location with the greatest dispersion for each 

neuron was referred to as the optimal stimulus location and was used to estimate 

optimized tuning similarity. 
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Simulation.  

We conducted simulations to visualize the tuning similarity matrices we might observe 

for different patterns of tuning progression along the length of the probe. We created a 

sub-population of 30 model V4 neurons that were tuned to boundary curvature as 

quantified by the angular position × curvature model (Pasupathy and Connor, 2001). 

Specifically, shape responses of each neuron were dictated by a 2D Gaussian function 

in the angular position × curvature space. The peak position along the angular position 

and curvature dimensions were chosen either based on a systematic progression with 

small fluctuations, or at random (see Results, Figure 10). Peak amplitude and standard 

deviations were set for individual neurons; standard deviations were set to random 

values from the normal distribution with μ = 60° (σ = 10) and μ = 0.5 (σ = 0.1) along the 

angular position and curvature dimensions, respectively. For each of the 30 neurons, 

we first predicted responses to the 120 shapes in accordance with the model. Then, to 

simulate noisy neuronal responses, for each shape we constructed 200 ms long spike 

trains using a Poisson process with mean specified by the predicted response. We 

computed similarity matrices between all neuronal pairs as described above. Because 

our stimulated responses were with trial-to-trial variability, we used noise-corrected 

correlation coefficient to assess shape tuning similarity between model neurons. 
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Results  

We studied the responses of subpopulations of V4 neurons across cortical laminae 

using high-density multi-contact probes (Neuropixels, Figure 1A) while monkeys 

performed a passive fixation task. Each day, we identified an aggregate receptive field 

(RF) for all neurons simultaneously studied in a penetration (see Materials and 

Methods), and presented either two-dimensional shape silhouettes (Figure 1B) or 

naturalistic texture stimuli (Figure 1C) centered within the aggregate RF. From data 

collected during each recording session, we assessed the similarity in shape/texture 
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tuning between all pairs of recorded neurons. Because V4 neurons are sensitive to 

luminance contrasts (Bushnell et al., 2011; Desimone and Schein, 1987) we presented 

stimuli at two luminance contrasts. This allowed us to assess the invariance in 

shape/texture tuning across contrast reversals for each neuron. Using these metrics 

(tuning similarity and tuning invariance, respectively) we evaluated whether there were 

clusters of neurons that exhibit similar shape and texture tuning. We also examined 

whether any lack of tuning similarity could be attributed to heterogeneity in RF profiles 

across simultaneously recorded neurons. 
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Example penetration: Similarity in shape tuning 

Figures 2 and 3 summarize results from one recording session where we observed a 

cluster of neurons that were similarly shape-tuned. We recorded from 24 well-isolated 

neurons in this session (Figure 2A, left: #1-#24; superficial to deep) over a ~2400 μm 

length of the probe. Current source density analysis (CSD, see Materials and Methods) 

reveals a current-sink at ~53 msec after stimulus onset at a recording depth of ~1073 

μm relative to the most superficially recorded neuron in this session. We also confirmed 

that these simultaneously studied neurons were indeed distinct by comparing their 

waveforms (Figure 2A, right), response latency (Figure 2C), response strength (Figure 

2D) and ISI histograms (see Figure 2A, bottom).  
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Figure 3 illustrates similarity in tuning for all pairs of recorded neurons in this session. 

We quantified the strength of similarity in terms of the noise-corrected correlation 

coefficient (Pospisil and Bair 2021, see Materials and Methods) between responses of 

all pairs of neurons to shapes darker (Figure 3A, left) or brighter (right) than the 

background. The strength of similarity ranges from -1 (blue: opposite preference) to 1 

(red: identical preference) with white denoting a lack of reliable responses (confidence 

limit > 0.5; see Materials and Methods). These matrices are symmetric; diagonal 

elements are at 1.0 (correlation between two identical sets of responses) except when 

signal-to-noise ratio is weak (white pixels). For this recording session, a small group of 

neurons (#1-#9) spread over a 540 μm extent of the probe in superficial cortex (see 

Figure 2A, left) exhibited high similarity in their responses to the tested shapes. This 

was the case regardless of whether the shapes were darker (Figure 3A, left) or brighter 

(right) than the background. Thus, these neurons may be considered to constitute a 

functional shape domain of similarly shape-tuned neurons. However, the majority of 

neurons in this penetration did not exhibit tuning that was similar to their neighbors.  

 

To rigorously quantify the spatial profile of clustering, i.e. how tuning similarity changes 

along the rows or columns in Figure 3A as a function of inter-neuron distance, we used 

linear regression to relate tuning similarity between a neuron and its neighbors to the 

distance between them. Figure 3C shows the regression lines for the 24 recorded 

neurons based on the responses to dark stimuli; results with bright stimuli (not shown) 

were similar. For some neurons (neurons #1-9, #14, and #17), regression lines were 

characterized by a large positive y-intercept (Isimilarity) significantly different from zero (p < 
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0.05, solid lines) and a negative slope (Ssimilarity). These were neurons that showed high 

similarity in tuning with nearby neurons (< 600 μm away) that declined with distance. 

For other neurons, mostly those deeper in cortex (cyan lines), similarity in tuning was 

weak regardless of distance between neuron pairs; in this case the regression lines 

were associated with low Isimilarity and shallow negative or positive Ssimilarity that were not 

statistically different from zero (dashed lines). In the latter group of neurons, lack of 

statistically significant Isimilarity and Ssimilarity was because nearby neurons failed to show 

similar tuning (bottom, Figure 3B) and not because we failed to sample nearby 

neighbors. For example, neurons #3 and #8, recorded on contacts 260 μm apart, share 

a great deal of similarity in tuning (rsimilarity = 0.82), but neurons #18 and #19 recorded on 

contacts 80 μm apart do not (rsimilarity = 0; Figure 3B). 

 

Previous studies have shown that V4 neurons are sensitive to luminance contrasts 

(Bushnell et al., 2011; Desimone and Schein, 1987), and so it is possible that the lack of 

tuning similarity may be due to contrast dependence of shape responses or tuning, i.e, 

some neurons may exhibit differential responses to shape only at a specific luminance 

contrast. To consider this possibility, for individual neurons we asked whether the shape 

tuning curve was similar when measured with bright vs dark shapes. We computed the 

invariance in shape tuning to bright and dark stimuli in terms of the noise-corrected 

correlation coefficient and related the contrast invariance of shape tuning (Y axis in 

Figure 3D) to Isimilarity (X axis). A high tuning invariance (close to 1 along Y axis) would 

imply that the neuron exhibits similar tuning to shape regardless of contrast polarity, i.e. 

the shape tuning is contrast-invariant.  For a majority of neurons recorded on this day 
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(19/24 neurons), contrast invariance of shape tuning was high (> 0.5) regardless of the 

value of Isimilarity. For example, neurons #18 and #19 exhibit high contrast-invariant 

shape tuning but show weak similarity in shape tuning (left, Figure 3D). Furthermore, 

these neurons showed a broad dynamic range in their responses (bottom, Figure 3B), 

implying that the lack of similarity in tuning between neurons was not due to poor 

stimulus-evoked responses nor due to lack of shape tuning. Overall, the example 

recording session illustrated here demonstrates evidence for a small cluster of neurons 

that share similar shape tuning.  
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Unlike results illustrated in Figure 2 and 3, many other penetrations showed no 

evidence of clustered tuning for shape. Figure 4 summarizes results from one such 

penetration. Here we studied the responses of 42 neurons over a 2580 μm distance 

(Figure 4A). Many of these neurons were recorded on nearby contacts, and yet, we did 

not see any evidence of clustered tuning similarity for either dark (Figure 4B, left) or 

bright (right) stimuli: while some pairs of neurons exhibit high similarity of tuning 

(orange/red pixels), they are sporadic and not localized in a cluster along the length of 

the probe. Lack of clustered tuning similarity was not due to poor stimulus-evoked 

responses: many neurons showed a broad dynamic range in their responses to shape 

stimuli (Figure 4C) and peak responses were often high (exceeding 15 spikes/sec in 

28/26 neurons for dark/bright stimuli). When we related inter-neuron distance to tuning 

similarity (Figure 4D) most neurons were associated with low y-intercepts (Isimilarity) and 

shallow slopes (Ssimilarity) implying that nearby neurons did not share similar tuning. 

Furthermore, we observed high contrast invariance in the shape tuning of individual 

neurons (Y axis, Figure 4F) as exemplified by the scatterplots of three example neurons 

in Figure 4E: response strength depended on luminance contrast, especially for 

neurons #18 and #32, but the shape tuning was highly contrast-invariant as captured by 

the strong positive correlation. We found that current-sink with short latency (~52msec) 

emerged only in relatively shallower along the penetration (570 of 2580 μm, Figure 4G) 

but no other sink in deeper cortex, suggesting that this was unlikely a penetration along 

the sulcal bank. These results imply that the lack of high similarity in tuning was likely 

caused by a diversity of preferred shape features across simultaneously studied 

neurons, rather than weak driving by our stimulus protocol and or penetration down the 
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sulcal bank. Thus, Figure 4 provides evidence for a penetration full of neurons with 

diverse shape selectivity. 
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Population results: Shape tuning 

We studied the responses of 1850 neurons across 74 recording sessions (M1: 30; M2: 

44), ranging from 6 to 76 neurons per penetration. Figure 5A summarizes how tuning 

similarity declines with distance across all recorded neurons. As with the examples in 

Figures 3 and 4, we found a minority of neurons (328/1850; M1:188; M2:140, blue in 

Figure 5A) with positive Isimilarity, significantly different from zero (p < 0.05) and a 

negative Ssimilarity, reflecting high similarity with nearby neurons that declined with 

distance. The majority (n = 1521) had Isimilarity that was not significantly greater than zero, 

reflecting the fact that nearby neurons had tuning that was quite different. Overall, 

Isimilarity and Ssimilarity were significantly negatively correlated (not shown) and we seldom 

found neurons associated with positive Ssimilarity, i.e. similarity that increased with 

distance: only one neuron (in M2) was associated with a significantly positive Isimilarity 

and Ssimilarity. We also found that tuning similarity (Isimilarity) based on responses to dark 

and bright stimuli were consistent (Figure 5B). This lack of clustered shape selectivity 

was despite the fact that contrast-invariant shape tuning was widely prevalent across 

our dataset: median correlation between responses to dark and bright stimuli in 

individual penetrations was 0.62 (not shown). Thus, more than half of the recorded 

neurons were well-driven and exhibited contrast-invariant shape tuning. Thus, lack of 

high similarity was unlikely due to weak driving across penetrations.  

 

Neurons with high similarity in tuning (Figure 5A) were widely distributed across 52 of 

the 74 penetrations in small, sparse clusters (blue). Only 26 penetrations had 5 or more 

neurons with significant Isimilarity (Figure 5A asterisks). When the number of recorded 
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neurons was > 30, the percentage of neurons with significant Isimilarity asymptoted to 

~20% (Figure 5C) suggesting that shape clusters were not “columnar” extending across 

laminae in V4, and simultaneous recordings from > 30 neurons (achieved on 20/74 

penetrations) were required to provide a fair assessment of the fraction of neurons that 

were similarly shape-tuned. Results were consistent between the two animals (not 

shown).  

 

Control experiments 

One reason for the sparsity of similarly tuned clusters may be our stimulus protocol. 

Different V4 neurons within a penetration can have overlapping but distinct RF profiles, 

and because our shape silhouettes were presented in one position (at the center of the 

aggregate RF), they may not have provided identical stimulation (in terms of RF 

overlap) for all neurons, and thus may not be well suited to assess similarity in tuning of 

simultaneously recorded neurons. To consider this possibility rigorously, we used a set 

of spatially homogeneous textures to assess tuning similarity (Figure 6). We also 

assessed how shape tuning similarity changed with position for a subset of our 

penetrations (Figure 8 and 9).  
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Population results: texture tuning  

We studied the responses of 979 neurons across 51 sessions (M1:17; M2:34) using a 

set of 40 texture stimuli and their contrast-reversed counterparts (Figure 1C). Texture 

stimuli were homogeneous in terms of their image statistics and sized to overlap the 

RFs of all manually mapped channels (see Materials and Methods). This ensured that 
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the RF of every neuron was stimulated with the same image statistics, avoiding the 

shortcoming of shape stimuli which may have overlapped a given neuron’s RF profile 

differently than another neuron’s RF. We assessed similarity in tuning across all pairs of 

neurons recorded within a penetration (ranging from 6 to 83 per penetration). As with 

shape stimuli, we found that a small subset of neurons (204/979; M1:18; M2:186) 

across 35/51 (M1:8; M2:27) penetrations showed clustered selectivity, i.e. evidence of 

declining tuning similarity with increasing inter-neuron distance. Figure 6A shows the 

Isimilarity of regression lines for texture tuning similarity (color) as a function of recorded 

depth (Y axis) across 51 penetrations (columns). Across the 51 penetrations, 15 

penetrations had 5 or more neurons that exhibited regression lines with statistically 

significant intercepts (asterisks, Figure 6A). Our results from texture (black symbols in 

Figure 7) are consistent with those from shape (gray symbols in Figure 7): the fraction 

of neurons with a significant intercept asymptote to ~20% when the number of recorded 

neurons was large. Tuning similarity based on both sets of texture data (original and 

contrast-reversed) were highly consistent (Figure 6B). These results confirm that the 

sparse occurrence of tuning similarity observed above with shape stimuli cannot be 

dismissed as resulting from differential stimulation of the RFs of neurons by our shape 

stimuli. 
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Position invariance for shape tuning similarity 

To further evaluate how differential stimulation of neuronal RFs (due to the variability of 

RF profiles across neurons, see Figures 8B and 8D) influenced our shape tuning 

similarity assessments, in 34 sessions we studied responses to a subset of 15 stimuli at 

5 positions – at the aggregate RF center and at four positions displaced ½ × RF 

diameter (north, south, east and west) relative to the center (Figure 8B). We then asked 

whether tuning similarity profiles were consistent across positions. Results from two 

representative recording sessions are shown in Figures 8A and C, and in both cases, 

tuning similarity patterns were similar across all five positions: a small cluster of similarly 

tuned neurons is evident across all positions in Figure 8A, and no such cluster emerged 

at any position in Figure 8C. Next, we evaluated whether tuning similarity across nearby 

neurons was greater when comparing responses at the optimal RF position for each 
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neuron. For each neuron, we first identified the RF location at which our shape stimuli 

evoked the most diverse responses (see RF localization in Materials and Methods) and 

then assessed tuning similarity based on responses at these optimal locations (Figure 

9). Tuning similarity patterns on the basis of the most diverse responses were similar to 

that quantified based on responses at the aggregate RF center (compare Figure 9A left 

vs 8A, and Figure 9A right vs 8C). The similarity matrices based on reduced stimulus 

sets were also similar to that from the main experiment with 120 stimuli (not shown). We 

found similar results across the 34 penetrations (n = 723) where we conducted the 

position tests. To summarize this result across penetrations, we assessed tuning 

similarity based on responses to stimuli at the aggregate RF center and at optimal RF 

position for each penetration (as in Figure 9A). We then constructed regression lines 

and quantified Isimilarity for each neuron for the RF center vs RF optimal conditions. We 

found a statistically significant positive correlation between Isimilarity in the RF aggregate 

center versus RF optimal positions (r = 0.349, p < 0.0001, Figure 9B). These results 

provide evidence against the possibility that stimulus position and RF variability 

contributed to the sparsity of clusters observed with our shape stimuli. 
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Simulation of tuning progression 

Across our data set, we often recorded neurons over a probe length > 2000 μm, 

suggesting that many of our penetrations were oblique rather than radial. If V4 did 

include columns for shape tuning, then an oblique penetration may mean gradual (or 

abrupt) changes in tuning preference along the length of the probe. We conducted 

simulations to visualize the tuning similarity matrices we might observe for different 

patterns of tuning progression across the length of the probe for oblique penetrations. 

We used the angular position × curvature model (APC model from Pasupathy and 

Connor, 2001) to simulate the responses of 30 model V4 neurons to the 120 shape 

stimuli we used, and used them to visualize similarity matrices resulting from a non-

radial trajectory of our probe through columns of neurons with similar tuning. We 

considered the possibilities that nearby neurons along the length of our probe exhibited 

a gradual change in tuning for curvature alone (Figure 10A), angular position alone 

(Figure 10B) or both (Figure 10C). The resulting similarity matrices (Figures 10A, B, and 

C, bottom panels) were quite unlike our V4 data (compare with Figures 3 and 4). 

Random choice of tuning peaks in the APC space produced similarity matrices 

reminiscent of the majority of V4 data (compare Figure 10D bottom with Figure 4). 

When we interleaved the random choice of tuning peaks with short stretches of similar 

tuning (Figure 10E), the resulting similarity matrices matched our observation of 

localized clusters (compare Figure 10E bottom with Figure 3). These results support the 

idea that V4 does not exhibit columnar tuning for shapes. Rather, the observed patterns 
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correspond best to random selectivity interspersed with small domains of similar tuning 

for shapes.  

 

Discussion 

We used high-density Neuropixels probes to investigate whether V4 neurons across 

laminae share similar tuning for stimulus features. We found that ~20% of neurons 

share shape and texture tuning with nearby neurons, but such clusters seldom 

encompass all laminae. This was the case despite the fact that neurons were driven by 

shape stimuli. Our results cannot be explained on the basis of stimulus choice, diversity 

in RF stimulation or oblique trajectories. We conclude that V4 functional organization for 

shape and texture may only be at a categorical level and the lack of columnar structure 

may reflect the variety of inputs integrated by V4 neurons to build high-dimensional 

properties (Purves et al.,1992). Finally, lack of large clusters of similarly tuned neurons 

may explain the lack of a strong effect of V4 microstimulation on perception (Dagnino et 

al., 2015). 

 

Relationship to prior studies 

Many studies have investigated functional organization in V4 with imaging methods. In a 

recent study, Srinath and colleagues demonstrated segregated modules encoding 

shape stimuli defined by 2D versus 3D cues (Srinath et al., 2021). Intrinsic signal 

imaging has also revealed functional domains specialized for processing curvature 

versus rectilinear stimulus features (Hu et al., 2020), motion direction (Li et al., 2013) 

and high versus low spatial frequencies (Lu et al., 2018). In all of these studies, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2023. ; https://doi.org/10.1101/2023.10.15.562424doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.15.562424
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

focus has been categorical organization – 2D versus 3D cues, curved versus rectilinear 

shapes, high versus low spatial frequency, etc. – rather than fine-scale organization, i.e. 

investigations into whether the profile of the tuning curve along a specific feature 

dimension is similar for nearby neurons. Furthermore, because these studies were 

based on imaging, they are biased toward characterizing the upper layers.  

 

When studies could examine tuning similarity, e.g. with multiphoton imaging of single 

neuron responses, or with electrode recording across layers, authors have found 

considerable diversity in the tuning of nearby neurons (Jiang et al., 2021; Tang et al., 

2020). For example, using electrode recordings, Li and colleagues found consistency in 

categorical organization across layers, i.e. whether neurons are direction selective or 

not, but considerable diversity in tuning preference of individual neurons within domains 

(2013). These results are largely consistent with studies investigating functional 

architecture for color in V4, where authors have investigated fine-scale similarity in 

tuning with electrode recordings spanning all layers (Schein et al., 1982; Yoshioka and 

Dow, 1996; Zeki, 1973). While results across studies are mixed, based on the region of 

focus and the definition of color, a comprehensive evaluation by Kotake et al.(2009) 

found sporadic clusters and weak evidence for columnar organization. 

 

We investigated fine-scale tuning similarity for shape and texture across laminae, 

analogous to electrode recording investigations and orthogonal to much of the prior 

imaging work. Our results are consistent with prior work discussed above, in that we 

also find considerable diversity in the fine-scale tuning of nearby neurons. We do find 
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small clusters of similarly tuned neurons–roughly 20% of neurons occupy such clusters–

but these clusters are spatially confined and do not extend across all layers. Given that 

we used simple 2D silhouettes and texture patches, one may wonder if more 

complex/naturalistic shape stimuli could reveal columnar structure. We do not think so. 

Higher-dimensional stimuli are likely to be encoded more sparsely given the high-

dimensional tuning of V4 neurons. On the other hand, low-dimensional stimuli such as 

oriented gratings reveal columns but only close to foveal representation in V4 (Ghose 

and Ts’o, 1997). 

 

Origin of columns or the lack thereof 

A lack of columns for shape and texture tuning in V4 may seem surprising given the 

observation of detailed functional columnar structure in V1 and MT, and the 

demonstration that all of cortex is organized as a set of ontogenetic columns (Rakic, 

1988) that run from white matter to the pial surface. However, across species and brain 

areas, many instances of the absence of any clustering (based on physiological 

properties) or local clustering without columnar structure have been previously 

documented (Horton and Adams, 2005). For example, mice and rats lack orientation 

columns in the primary visual cortex and the organization is “salt and pepper” (Ohki et 

al., 2005). This is also true of the squirrel, an animal with high visual acuity and many 

orientation-tuned neurons (Van Hooser et al., 2005). Another striking example is the 

organization in auditory cortex in cat and rodent, where overlapping maps of multiple 

stimulus features have been documented in thalamo-recipient layers III and IV (Linden 
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and Schreiner, 2003), yet there is also considerable heterogeneity in best frequency 

responses across layers (Tischbirek et al., 2019).  

 

Current evidence suggests that emergence of columns in primary visual cortex depends 

not on the visual acuity of the animal in question, or the size of V1, but rather on the 

retino-cortical mapping ratio (Jang et al., 2020). For example, the ferret, tree shrew, 

gray squirrel and rabbit all have a similar sized V1, but columns are evident only in the 

former two animals with a smaller retino-cortical ratio. In other words, when the cortical 

representation is associated with a large expansion, columns emerge even when wiring 

is established by statistical sampling (Ringach, 2004, 2007). Then, by analogy, one 

could speculate that the lack of columnar structure with our stimuli in V4 may relate to 

the contraction in the V1/V2 to V4 representation (due to the smaller size of V4). By this 

same analogy, we would expect larger clusters in V2 (given the larger size) and our 

preliminary results support this hypothesis (Kim et al., unpublished observations). 

Furthermore, V4 receives a great diversity of inputs encoding form, color and motion 

direction, and individual V4 neurons exhibit nonlinear tuning in a high-dimensional 

space (Pasupathy et al., 2019, 2020). Purves and colleagues have hypothesized that 

such complex integration of signals from multiple pathways dilutes the coherence in 

activity of neighboring neurons, making column formation less likely (Purves et al., 

1992). Furthermore, if different sources of input target different V4 layers, columnar 

structure would be less likely. While it seems paradoxical that columnar structure is 

evident in MT given its small size, this may be because MT receives far fewer inputs 

than V4 (Felleman and Van Essen, 1991) and these inputs are less diverse, such that 
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MT tuning remains low-dimensional. We concede that these arguments are speculative 

and further experiments are needed to investigate the raison d’etre of columnar 

structure. 

 

 

Conclusion 

Overall, based on our work we conclude that functional organization is not columnar for 

shape and texture stimuli in V4, reflecting the number and diversity of inputs integrated 

to build the different types of selectivity, e.g. for color, shape, texture. Prior studies 

suggest that there may be organization at the categorical level and if this is indeed true, 

then future V4 perturbation studies could be most impactful if they target categorical 

rather than fine scale discriminations.   
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Figure legends 

Figure 1. Recording methods and visual stimuli 

(A) A high-density Neuropixels probe (left) was used to study the responses of 

subpopulations of V4 neurons across cortical laminae. We targeted dorsal V4 on the 

prelunate gyrus (middle panel). Neurons across laminae (dots in the left panel) had 

partially overlapping RFs (circles in the right panel) identified during preliminary RF 

characterization. Visual stimuli were presented at the center of the aggregate RF. FP: 

fixation point. 

(B) Visual stimuli included 15 two-dimensional shape silhouettes, each presented at 8 

different rotations in 45° increments. Shapes were presented at two luminance contrast 

levels (bright or dark) relative to background. 

(C) Forty naturalistic textures at different orientations on each trial (see Methods) were 

presented in two versions: original or contrast-reversed (compare last two columns).  

 

Figure 2. Example recording session: neuronal metrics and CSD.  

(A) Location, waveforms and inter-spike interval (ISI) histograms of recorded neurons in 

penetration M2p6. Left. Location of neurons recorded during this session (n = 24) 

indicated by the contact closest to the center of mass waveform amplitudes across 

contacts. Neuron number (color) is rank-ordered relative most superficial neuron. 

Multiple neurons recorded on the same contact are denoted by larger dots. Right. Spike 

waveforms from two example neurons (#3: red; #4: blue) recorded on the same set of 

14 contacts (left: black squares). Bottom. ISI histograms (bottom, N: # of spikes; bin 
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size = 0.2 ms) for 4 example neurons based on spikes across the entire recording 

session. Refractory period (2 ms) is indicated by a dashed line. 

(B) Current source density profile along the probe length. Current-sink (red) and -source 

(blue) were evaluated by applying standard current source density (CSD) method to 

trial-averaged local field (LF) signal evoked by shape stimulus onset (see Materials and 

Methods). Cross marker indicates the current-sink considered to be layer 4 (depth = 

1073 μm, time to current-sink = 53 msec after stimulus onset).  

(C) Onset latency of responses to dark stimuli. Latency was quantified as the time to 

half-peak of the peri-stimulus time histogram (PSTH) constructed from responses to 

shape stimuli. For each neuron, spike rasters for all dark stimuli were accumulated, and 

then were smoothed using a Gaussian smoothing window (size of kernel = 4, sigma = 

10). Time to half-peak was assessed starting 20 ms after stimulus onset since latencies 

< 20 ms are likely noise. PSTHs were constructed relative to baseline activity, which 

was quantified as mean activity during the 30 ms time period before stimulus onset. 

(D) Frequency histogram for the average firing rate (baseline-subtracted, X axis) of 

each neuron (Y axis) across 120 dark stimuli. Grayscale shows the number of stimuli 

(log-scale) associated with each firing rate. 

 

Figure 3. Example recording session: cluster of similarly shape-tuned neurons 

(A) Tuning similarity in the responses to dark (left) or bright (right) shape stimuli across 

the set of 24 simultaneously studied neurons in penetration M2p6 (see Figure 2). 

Similarity values range from -1 (blue) to 1 (red). White pixels denote neuron pairs for 

which tuning similarity could not be quantified reliably (due to poor signal-to-noise ratio, 
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see Materials and Methods). Neuron number runs from most superficial (1: purple) to 

deepest (24: cyan) along the probe.  

(B) Scatter plots relating the responses of two pairs of neurons (top: #3 vs #8; bottom: 

#18 vs #19; see Figure 2A) for dark (left) and bright (right) shape stimuli. The top pair 

shows high tuning similarity (r = 0.82, left; r = 0.89, right) but the bottom does not (r = 

0.00, left and r = -0.12, right) even though all four neurons exhibit a broad range of 

responses that show high tuning invariance (see Figure 3D). Dotted lines indicate 

baseline FRs. 

(C) Linear regression lines characterize the trend of tuning similarity (Y axis) versus 

inter-neuron distance (X axis) for each neuron (line color) and its neighbors (see 

Materials and Methods). Attenuation of tuning similarity with increasing inter-neuron 

distance was captured by a positive intercept and a negative slope. Solid and dashed 

lines indicate regression lines with and without significant intercept.  

(D) Shape tuning invariance (Y axis) versus y-intercept of regression lines in 3C (X axis: 

Isimilarity). Filled and open circles indicate neurons with and without significant intercept, 

respectively.  

 

Figure 4. Example session without a cluster of similarly shape-tuned neurons 

(A) Location of recorded neurons (n = 42) along the probe. Larger dots denote multiple 

neurons recorded on the same contact. 

(B) Tuning similarity across all pairs of recorded neurons based on the responses to 

shape stimuli darker (left) or brighter (right) than the background. All other details as in 

Figure 3A. Evidence of clustered shape tuning is absent. 
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(C) Frequency histogram for the average firing rate (baseline-subtracted, X axis) for 

each neuron (rows) across the 120 dark shape stimuli. Grayscale shows the number of 

stimuli (log-scale) associated with each firing rate bin. 

(D) Linear regression lines characterizing the trend of tuning similarity (Y axis) versus 

inter-neuron distance (X axis). All other details as in Figure 3C. Y-intercept for the 

regression line was significantly different from zero for only one neuron (solid line).  

(E) Responses from 3 example neurons in this session (#7, #18 and #32) for dark (X 

axis) versus bright (Y axis) shapes. Baseline-subtracted average firing rates are shown. 

Solid gray lines indicate identity lines. 

(F) Y-intercept of regression lines (X axis: Isimilarity) plotted as a function of shape tuning 

invariance across contrasts (Y axis). All details as in Figure 3D. Neurons in this 

penetration did not exhibit shape tuning that was similar to their neighbors (filled) but 

most neurons did exhibit high shape tuning invariance. Only one neuron with Y axis = 0 

showed low reliability in the tuning invariance metric. 

(G) CSD profile constructed from LFP signal evoked with shape stimuli. Cross marker 

on the current-sink (red) considered to be layer 4 was at depth = 570 μm relative to 

most superficial neuron. Time to current-sink = 52 msec after stimulus onset). All other 

details as in Figure 2B. 

 

Figure 5. Population results for clustered shape tuning  

(A) Isimilarity (color) for each neuron is illustrated as a function of recorded depth (Y axis) 

across sessions (columns) sorted according to the probe length over which neurons 
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were recorded. To ensure clarity, green to blue span the 0 to 0.6 range of Isimilarity; 

values outside of this range were set to either green (for Isimilarity < 0) or blue (for Isimilarity 

> 0.6). Asterisks above the panels indicate penetrations with 5 or more neurons with 

significant Isimilarity. Penetrations depicted in Figures 2, 3, 4 and 8 are identified. 

(B) Intercept of regression lines (Isimilarity) based on tuning similarity for dark (X axis) 

versus bright shape stimuli (Y axis). Results from the two sets of stimuli are consistent.  

(C) Percentage of neurons with Isimilarity significantly different from 0 (Y axis) as a 

function of the number of simultaneously studied neurons (X axis). N denotes number of 

penetrations. 

 

Figure 6. Population results for clustered texture tuning  

(A) Isimilarity of texture tuning similarity for each neuron (color) is illustrated as a function 

of recorded depth (Y axis) across 51 penetrations (columns). Blue and green dots 

identify neurons with and without high texture tuning similarity with neighboring neurons 

respectively (see details as in Figure 5A). Asterisks above the panel indicate 

penetrations with 5 or more neurons with significant Isimilarity. 

(B) Isimilarity from regression lines for tuning similarity based on responses to original 

textures (X axis) versus contrast-reversed textures (Y axis). Results from the two sets of 

stimuli are consistent. 
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Figure 7. Effect of recording yield size on the detection of clustered tuning 

Number (A) and percentage (B) of neurons with Isimilarity significantly different from 0 (Y 

axis) as a function of the number of simultaneously studied neurons (X axis). N denotes 

number of penetrations. Black and gray circles indicate penetrations where responses 

to shape and texture responses were studied. 

 

Figure 8. Position invariance of tuning similarity 

(A) Example penetration with a small cluster of similarly tuned neurons (M2p9). 

Similarity matrices based on the responses to 15 shape stimuli presented at five 

positions relative to aggregate RF center are shown. Colored dots at right identify 

neurons that showed visually evoked responses during preliminary characterization 

(see B). 

(B) RF center position (X and Y axes) for the neurons in this recording session plotted 

as a function of the depth from superficial neuron (Z axis). RF centers were estimated 

from automated RF localization procedure (see Materials and Methods). Eight neurons 

that failed to yield an RF estimate are not depicted. Black circles: aggregate RF. The 

five stimulus positions (Center, North, East, West and South) are indicated by vertical 

gray lines. HM: Horizontal meridian. VM: Vertical meridian. Inset n indicates neuron 

numbers with quantified RF centers.  

(C) Similarity matrices from a penetration (M2p28) without a cluster of similarly tuned 

neurons. All other details as in A. 

(D) RF position (X and Y axes) and depth (Z axis) of neurons recorded for the 

penetration depicted in C. Details as in B. 
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Figure 9. Tuning similarity based on responses at best RF position 

(A) Single neuron optimized measure of tuning similarity for the two penetrations 

depicted in Figures 8AB (left) and 8CD (right). For each neuron in each penetration, we 

first identified the optimal stimulus position as the one associated with the greatest 

dispersion in responses. We then used the responses from the optimal position to 

construct a tuning similarity matrix (see Materials and Methods). 

(B) Isimilarity computed in the position test (Y axis) vs Isimilarity computed in the main shape 

test (X axis). Inset N and n indicate penetration and neuron numbers, respectively. 

 

Figure 10. Simulation: tuning progression and the resulting tuning similarity 

patterns 

(A-E) The top row shows shape tuning peaks of model V4 neurons in the angular 

position × curvature space. Responses of model units to shape stimuli were dictated by 

a 2D Gaussian function centered at the peak position shown. Curvature runs from -0.5 

(moderate concavity) to 1.0 (sharp convexity) and specifies the curvature of the 

preferred boundary feature. Angular position runs from 0° (pointing right) in a 

counterclockwise direction and specifies the position of the preferred feature relative to 

object center. Different tuning peak progressions (left to right) across 30 model neurons 

along the length of the probe (purple: superficial; cyan: deep) were considered for each 

panel. Tuning similarity matrices across model neurons are shown at the bottom. 

Tuning similarity ranges from -1 (blue: opposite preference) to 1 (red: identical 
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preference). The tuning similarity matrices were constructed by computing noise-

corrected correlation coefficient between modeled spike counts of 30 neurons to 120 

shapes used in the main experiment. For each of 120 shapes, noisy spike counts were 

modeled for 3 trials repetitions by implementing Poisson spiking (see Materials and 

Methods). 

(A) Tuning preference along the curvature dimension (Y axis) gradually shifts from a 

preference for sharp convexity (curvature = 1) to medium concavity (-0.5) from 

superficial to deep neurons, while the preferred angular position remained at 191° 

(pointing left). All other parameters of the 2D Gaussian function (SD and amplitude, 

denoted by circles) were randomly set across neurons. 

(B) Tuning preference along the curvature (Y axis) remains constant at low convexity 

with small fluctuation along the curvature, while the preferred angular position gradually 

shifts from a preference for features pointing to the right in a counterclockwise direction. 

All other details as in A. 

(C) Tuning preference of modeled neurons gradually changes along both the angular 

position and curvature dimensions. Step sizes of tuning shifts for angular position and 

curvature were the same as those in A and B. 

(D) Preferred angular position and curvature were chosen at random for individual 

model neurons. 

(E) Five neurons exhibiting systematic shift of preferred angular curvature from left 

(180°) in a counterclockwise direction were interleaved in neurons with random peaks. 
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