Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Oct 17:2023.10.17.562707. [Version 1] doi: 10.1101/2023.10.17.562707

KatG catalase deficiency confers bedaquiline hyper-susceptibility to isoniazid resistant Mycobacterium tuberculosis

N Ofori-Anyinam, M Hamblin, ML Coldren, B Li, G Mereddy, M Shaikh, A Shah, N Ranu, S Lu, PC Blainey, S Ma, JJ Collins, JH Yang
PMCID: PMC10614911  PMID: 37905073

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) is a growing source of global mortality and threatens global control of tuberculosis (TB) disease. The diarylquinoline bedaquiline (BDQ) recently emerged as a highly efficacious drug against MDR-TB, defined as resistance to the first-line drugs isoniazid (INH) and rifampin. INH resistance is primarily caused by loss-of-function mutations in the catalase KatG, but mechanisms underlying BDQ’s efficacy against MDR-TB remain unknown. Here we employ a systems biology approach to investigate BDQ hyper-susceptibility in INH-resistant Mycobacterium tuberculosis . We found hyper-susceptibility to BDQ in INH-resistant cells is due to several physiological changes induced by KatG deficiency, including increased susceptibility to reactive oxygen species and DNA damage, remodeling of transcriptional programs, and metabolic repression of folate biosynthesis. We demonstrate BDQ hyper-susceptibility is common in INH-resistant clinical isolates. Collectively, these results highlight how altered bacterial physiology can impact drug efficacy in drug-resistant bacteria.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES