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PURPOSE. To evaluate the immune regulatory effect of human cord blood myeloid-derived
suppressor cells (MDSCs) in experimental autoimmune uveitis (EAU) models.

METHODS. MDSCs (1 × 106) or PBS were injected into established C57BL/6 EAU mice
via the subconjunctival route on days 0 and 7. The severity of intraocular inflammation
was evaluated for up to 3 weeks. Tissue injury and inflammation were analyzed using
immunolabelled staining, real-time PCR, and ELISA. In addition, immune cells in draining
lymph nodes (LNs) were quantified using flow cytometry.

RESULTS. After 21 days, the clinical scores and histopathological grades of EAU were
lower in the MDSCs group compared with the PBS group. Local administration of MDSCs
suppressed the oxidative stress and the expression of TNF-α and IL-1β in the retinal
tissues. In addition, it inhibited the activation of pathogenic T helper 1 (Th1) and Th17
cells in draining LNs. MDSCs increased the frequency of CD25+ Foxp3+ regulatory T cells
and the mRNA expression of IL-10, as an immune modulator.

CONCLUSIONS.MDSCs suppressed inflammation and oxidative stress in the retina and inhib-
ited pathogenic T cells in the LNs in EAU. Therefore, ocular administration of MDSCs has
therapeutic potential for uveitis.

Keywords: antioxidative stress, experimental autoimmune uveitis (EAU), myeloid-derived
suppressor cells (MDSCs), regulatory T cells (Treg)

Uveitis is an inflammatory disease of the uvea and
surrounding tissues; it is one of the major causes of

blindness.1,2 Noninfectious uveitis represents the majority of
uveitis associated with autoimmune diseases, such as juve-
nile idiopathic arthritis, inflammatory bowel disease, Vogt–
Koyanagi–Harada, and Behcet’s disease.3,4 The mechanisms
underlying ocular inflammation in uveitis remain unclear;
therefore, cases of uveitis are treated with nonspecific
and sometimes systemic therapeutics, such as steroids and
immunosuppressants, including cyclosporine, tacrolimus,
and methotrexate.5–7 However, long-term use of these
drugs often has adverse systemic or ocular complications,
including hyperglycemia, hypertension, kidney failure, glau-
coma, secondary bacterial infections, and cataracts. There-
fore, more specific and less adverse therapeutics based on
immunological mechanisms are necessary for overcoming
drug-related complications.8

The pathological lesions of clinical uveitis are reflected
in experimental autoimmune uveitis (EAU) animal models
through immunization with retinal proteins, such as inter-
photoreceptor retinoid-binding protein (IRBP).9,10 Under-

standing the immunopathological mechanisms in EAU
models will help to develop therapeutic targets for uveitis.11

EAU is characterized by severe inflammation of the retina
and uvea; it could be divided into early and amplified
phases.12 CD4+ T-cell–mediated adaptive immune responses
are associated with the amplified phase of EAU; in addi-
tion, innate immune responses mediated by macrophages,
dendritic cells, and retinal microglia are important for early
phase of uveitis.13,14 In the early phase, pathogenic perox-
ynitrite of the photoreceptor induces retinal mitochon-
drial oxidative stress; in addition, it is a trigger for innate
immunity-mediated inflammation.15,16 At 5 days after immu-
nization of EAU, significant upregulation of inflammatory
cytokines, such as TNF-α, inducible nitric oxide synthase
(iNOS), IFN-γ , and IL-1, is associated with the induction of
oxidative stress in the retina.17 M1 classical macrophages,
which can be activated by IFN-γ secreted from infiltrated T
cells, produce TNF-α and IL-6. This process leads to lipid
peroxidation and surrounding tissue injury, and contributes
to the pathological initiation of EAU.18,19 The dominant
adaptive immune responses, including pathogenic T helper
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1 (Th1) and Th17 cells, play a critical role in the progression
of ocular inflammation in the amplified phase of the EAU
model.20,21

Myeloid-derived suppressor cells (MDSCs) exhibit an
immune suppressive function in tumor environments and
in immune-related inflammation.22 MDSCs suppress CD8+ T
cells in tumors, through iNOS and arginase enzymes.23,24 The
immunosuppressive function of MDSCs in various inflam-
matory diseases has gathered wide attention.23–25 The ther-
apeutic administration of MDSCs alleviates TNF-α–mediated
inflammation and inhibits activation of pathogenic Th1 and
Th17 cells, through the induction of regulatory T (Treg) cells
and the upregulation of immune regulatory mediators, such
as IL-10 and TGF-β.26–28

We investigated the suppressive functions of MDSCs
in intraocular inflammation in an IRBP-mediated EAU
C57BL/6 mice, which naturally exhibit Th1 and Th17
responses.29 Local administration of MDSCs significantly
alleviated intraocular inflammation and the clinical severity
of EAU by inhibiting oxidative stress and inflammatory tissue
injury, possibly mediated by the induction of Treg cells and
IL-10.

METHODS

Culture of MDSCs

Our experimental procedures using human cord blood
derivatives, including MDSCs, were performed under guide-
lines endorsed by Korea National Institute for bioethics
policy (IRB no. P01-202010-31-008). MDSCs were prepared
according to a previously described our method (see Supple-
mentary Methods).30

Flow Cytometric Analysis of MDSCs

Isolated MDSCs were stained with anti-CD16/CD32 (Cat#
564219, BD Biosciences, San Jose, CA, USA) for Fc recep-
tor blocking on ice and then incubated with the anti-human
antibodies. The expression of MDSCs was evaluated by
monoclonal antibodies specific to markers, including CD33
FITC (Cat# 11-0339-042, Invitrogen, Waltham, MA, USA),
CD11b PE (Cat# 12-0118-42, Invitrogen), and CD14 PE-Cy7
(Cat# 25-0149-42, Invitrogen). For intracellular staining of
iNOS FITC (Cat# SC-7271, FITC, Santa Cruz Biotechnology,
Dallas, TX, USA), IDO PE (Cat# IC6030P, R&D Systems,
Bio-Techne, Minneapolis, MN, USA), and ARG1 PerCP (Cat#
IC8026C, R&D Systems). MDSCs were incubated for fixed
and permeabilized using BD Cytofix buffer and BD Cytop-
erm buffer (Cat# 554714, BD Biosciences). All samples were
acquired with BD Lyric (BD Biosciences) and then analyzed
with FlowJo software (v10.8.1, FlowJo LLC, Ashland, OR,
USA).

Animals

Six- to 8-week-old female C57BL/6 mice from Orient Bio
Inc (Seongnam, Kyonggi-do, Korea) were housed under
specific pathogen-free condition. In this study, animal exper-
iments were conducted according to the guidelines in
the Catholic Institutional Animals in Ophthalmic and the
ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research (IACUC Approval no. EPS-MH-2020-1701-
FA). Anesthesia was induced by intraperitoneal injection of
ketamine (120 mg/kg) and xylazine (20 mg/kg).

Induction of EAU in Mice

EAU induction in mice by injection of IRBP was performed
based on the previously described methods.9 Briefly, the
mice were immunized with 200 μg of emulsion containing
100 mg/70 mL of Mycobacterium tuberculosis Des H37Ra
(BD, Dickinson and Company, Franklin Lakes, NJ, USA) and
IRBP peptide (300 μg; residues, 21-13301, 1-20 GPTHLFQP-
SLVLDMAKVLLD; PEPTRON, Daejeon, Korea) in Freund’s
Adjuvant (Cat# F5881, Sigma-Aldrich, St. Louis, MO, USA),
administrated in each foot pad with the intraperitoneal injec-
tion of pertussis toxin (0.7 μg) as an adjuvant. Clinical EAU
scores were observed with microscopic examination at 1, 2,
and 3 weeks after MDSCs or vehicle (PBS) treatment on a
scale of 0 (no disease) to 4 (severe disease) in a blinded
manner, using the criteria based on description of Bansal
et al.31,32

Injection With Cord Blood MDSCs

Human cord blood MDSCs (ViGenCell Institute and the
Catholic Hematopoietic Stem Cell Bank, an affiliation of the
College of Medicine, The Catholic University of Korea) was
obtained to investigate the therapeutic effect in EAU. The
administration of MDSCs was injected via subconjunctival
injection on the first day and day 7 in the IRPB-immunized
mice, which was suspended in PBS at 1 × 106/10 μL
volume. The vehicle (PBS) group mice were subconjuncti-
val injected with the same volume of PBS as the MDSCs
group. Conjunctival injections can occasionally lead to local
irritation, hemorrhages, necrosis, and granuloma at the injec-
tion site.33,34 In our experiment, the only adverse reaction
observed at MDSCs administration was conjunctival bleed-
ing on one eye, which resolved within 1 week.

Histological Hematoxylin and Eosin Staining

The slides of cryosectioned eyeballs were stained by hema-
toxylin and eosin. Photographs were obtained with DMI
5000B microscope (Leica, Wetzlar, Germany) in a blinded
fashion at 200× magnification. To assess the pathologi-
cal score of the retina was evaluated (scale of 0–4 scores)
using a blinded manner based on the previously proposed
criteria.35,36

Immunolabelled Tissue Staining

Tissue-Tek O.C.T compound (Cat# 4583, Sakura Finetek,
Torrance, CA, USA) embedded mouse eyes were sectioned
and permeabilized (0.1% Triton X100 in PBS) and blocked
by BSA buffer (5% BSA, Sigma-Aldrich) before incubation
with primary antibody (diluted 1:200, 8OhdG antibody,
Cat# ab48508, Abcam, Cambridge, MA, USA) for oxidative
stress assay. Then incubation at 37°C with Alexa Fluor
594 Goat anti-mouse secondary antibody (diluted 1:400,
Cat# ab150116, Abcam). Retinal apoptosis was measured
using the instructions of the manufacturer’s In Situ Cell
Death Detection Kit (Roche Diagnostics, Indianapolis, IN,
USA), as previously described.37 All immunolabeled slide
tissue was mounted using DAPI mounting medium (Vector
Laboratories, Burlingame, CA, USA), then were examined
using Axiovert 200 fluorescence microscope (Carl Zeiss,
Overkochen, Germany). A immunohistochemistry kit (Cat#
64264, Abcam) was applied to stain the samples for
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cytokine expression. Primary antibodies were stained with
anti-mouse TNF-α antibody (1:200, Cat# sc-52746, Santa
Cruz Biotechnology) and anti-mouse IL-1β antibody (1:200,
Cat# sc-52012, Santa Cruz Biotechnology). The counter-
staining was with hematoxylin and then the tissue slides
were mounted with a VectaMount Permanent Mounting
Medium (Vector Laboratories). Images were obtained by
DMI 5000B light microscope (Leica). The quantification of
field image was performed by calculating the percentage
of cytokine area or the number of positive cell counts
using the software Image J, as previously described.38 Each
group consisted of three or four animals, and all quantifica-
tion of retinal images was evaluated in a blinded manner
as the mean of three or four selected images for each
group.

ELISA for Cytokine Expression

After euthanasia using a CO2 chamber at 3 weeks after
immunization, the serum in whole blood by cardiac punc-
ture was collected for mouse IFN-γ (Cat# 430807, BioLe-
gend, San Diego, CA, USA), IL-17 (Cat# 432507, BioLegend),
TNF-α (Cat# 430907, BioLegend), and IL-1β (Cat# BMS6002,
Invitrogen) analyses. ELISA kits were analyzed from accor-
dance with the directions provided by the manufacturer. The
samples were then analyzed with an ELISA microtiter plate
auto reader at 450 nm (Molecular Devices, San Jose, CA,
USA).

Real-Time PCR

Total RNA of the retina and choroid were isolated using
Trizol (Invitrogen) and RNeasy Mini (Cat# 74106, Qiagen,
Germantown, MD, USA) and three or four samples were
pooled randomly within their respective groups. First-strand
cDNA was synthesized with PCR Amplified cDNA (Cat#
12574026, Invitrogen), and a quantitative real-time PCR
was detected that FAM dye-labeled predesigned primers
(IFN-γ : Mm01168134_m1, IL-17: Mm00439618_m1, IL-10:
Hs00961622_m1, glyceraldehyde 3-phosphate dehydroge-
nase: Mm99999915_g1, ThermoFisher, Rockford, IL, USA).
For each reaction, the housekeeping gene was used as an
internal control. All sample data were measured by the
comparative threshold cycle method using the Quantity One
1-D analysis software (Bio-Rad, Hercules, CA, USA), and the
relative expression was expressed as fold changes compared
with a gene between positive samples and internal naive
samples.

Flow Cytometry Analysis

Draining lymph nodes (LNs) were separated into single
cells on postimmunization day 21 through a 70 μm cell
strainer, and 5 × 105 single cells, pretreated with stimu-
lation Cocktail (plus protein transport inhibitors, Cat# 00-
4975-93, eBioscience) for 6 hours, were dispensed into each
tube along with intracellular/intranuclear staining fixation
solution in 0.5% BSA. The antibodies staining was incubated

FIGURE 1. Phenotypic and functional characteristics of human umbilical cord blood-derived MDSCs. (A) Flow cytometry was used to analyze
MDSCs stained with individual MDSC surface marker antibodies. (B) The expression of immune suppressive molecules in MDSCs, as indicated
by staining with FITC anti-iNOS2 antibody, PE anti-IDO antibody, and PerCP-Cy5.5 anti-ARG1 antibody.
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with anti–IFN-gamma PE (Cat# 505807, BioLegend), anti–IL-
17 Alexa647 (Cat# 506912, BioLegend), anti-CD4 Alexa488
(Cat# 100529, BioLegend), anti-CD25 PE (Cat# 12-0251-82,
ThermoFisher), and anti-Foxp3 PE-Cy7 (Cat# 25-5773-80,
eBioscience, San Diego, CA, USA). The stained cells were
acquired on BD FACSMelody (BD Biosciences) and analyzed
with FlowJo Software 10.5.3 (FlowJo LLC).

Statistical Analysis

Data were demonstrated statistical significance by Prism
version 5 (GraphPad Software, La Jolla, CA, USA) and were
expressed as mean ± SD. Differences between groups were
classified by the Student t-test or one-way ANOVA post hoc
Tukey’s test. Kaplan Meier curves were analyzed by log-rank
test. A P value of less than 0.05 was considered statistically
significant.

RESULTS

Characterization of CB-MDSCs

CB-MDSCs were cultured as described previously.27 Flow
cytometry analysis confirmed the presence of the MDSCs
surface markers, including CD33, CD11b, and CD14 in
the CB-MDSC population (Fig. 1A). Intracellular stain-
ing confirmed the expression of well-characterized MDSC
immunosuppressive molecules, such as iNOS, IDO, and
ARG1 (Fig. 1B).

Amelioration of the Clinical Score and
Histological Grade of EAU After MDSC
Administration

Using the EAU model, we confirmed the therapeutic effects
of MDSC administration during the early stages of uveitis.

FIGURE 2. Clinical scoring and histopathological grading of the retina following the administration of MDSCs in EAU. (A) Fundus images of
mice showing representative photos in each group. (B) Histologic representative images indicating retinal tissues stained with hematoxylin
and eosin in each group. Scale bars, 50 μm. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform
layer; ONL, outer nuclear layer; PRL, photoreceptor layer. (C) Locally injected MDSC group (n = 8) displayed significantly less intraocular
inflammatory scores than the PBS group (n = 7) for 21 days (**P = 0.0027). (D) The histopathological grading of EAU showed a significant
decrease in the MDSC group (n = 7) compared with that in the PBS group (n = 8) (*P = 0.0253). Data are represented as mean ± SD of
three independent experiments.
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FIGURE 3. Frequencies of pathogenic effector Th1 and Th17 cells and Treg cells in draining LNs in EAU. (A) Representative flow cytometry
plots showing populations expressing IFN-γ or IL-17 cells after CD4+ gating. (B) Quantitative analysis of IL-17+ CD4+ cell populations
(n = 3). (C) Quantitative analysis of IFN-γ CD4+ cell populations (n = 3). Comparison between MDSCs and PBS groups showed that both
Th1 and Th17 cells presented decreased frequencies in MDSCs group. (D) Representative flow cytometry plots showing the population of
CD25+ Foxp3+ cells after CD4+ gating. (E) Quantitative analysis graph of CD4+ CD25+ Foxp3+ cells (Treg) (n = 3). MDSC group had an
increased ratio of Treg cells when compared with that in the PBS group. Representative flow cytometric data from three independent trials
with pooled cells from more than three mice per group. *P < 0.05; **P < 0.01.

MDSCs (1 × 106/10 μL) or PBS as a vehicle control (10 μL)
were administered via subconjunctival injection on days 0
and 7 after immunization in each group. Intraocular inflam-
mation was evaluated for up to 3 weeks after IRBP immu-
nization (Fig. 2A). The clinical EAU scores were signifi-
cantly different between the MDSC- and PBS-administered
groups at 3 weeks (Fig. 2C) (P < 0.01). The PBS group
exhibited apparent pathological changes consistent with
uveitis, such as diffuse retinal detachment, subretinal bleed-
ing, and retinal folding at 3 weeks, compared with the
MDSCs group (Figs. 2A, 2B). The histological disease grades
in the MDSCs group were significantly lower than those

in the PBS group (Fig. 2D) (P < 0.05). Subconjunctival
injection of MDSCs significantly alleviated the severity of
uveitis with decreased clinical scores and histological grades
of EAU.

Decreased Activation of Pathogenic Th Cells With
MDSCs in Uveitis

To determine whether the administration of MDSCs could
be involved in T-cell activation in EAU, the population of
CD4+ T cells expressing IL-17 or IFN-γ in draining LNs at 3
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FIGURE 4. Immunohistochemical staining and TUNEL assay of retinal cross-section for evaluating cytokine expression and cellular apoptosis
in EAU. (A) Cross-sectional images of the mouse retinas showing immunohistochemical staining using IL-β and TNF-α, and the staining of
TUNEL (white arrow; green staining) assay. Scale bar, 50 μm. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer;
OPL, outer plexiform layer; ONL, outer nuclear layer; PRL, photoreceptor layer. (B–D) Quantification graphs for each cytokine expression
and TUNEL-positive apoptotic cells. In the MDSCs group, the expression of the cytokines, IL-1β and TNF-α were significantly decreased
in the retina, compared with that in the PBS group. In addition, MDSC group showed decreased cellular apoptosis (green) in the reti-
nal cross-section, compared with that in the PBS group. Different sections from four or more independent mice were randomly selected
for analyzing blinded samples, and the data were represented as mean ± SD of three independent experiments. *P < 0.05; **P < 0.01;
***P < 0.001.

weeks was measured using flow cytometric analysis. MDSC
treatment decreased the frequencies of IL-17+ CD4+ T cells
and IFN-γ + CD4+ T cells compared with that in the PBS
group (Figs. 3A–3C) (*P < 0.05 and **P < 0.01, respec-
tively). MDSCs administration reduced the differentiation
and proliferation of Th17 and Th1 cells, the main pathogenic
immune responses in uveitis. In addition, the frequency of
CD4+ CD25+ Foxp3+ Tregs was significantly increased in
the MDSCs group compared with that in the control group
(Figs. 3D, 3E) (*P < 0.05). Moreover, the population of CD3+

CD127+ Tregs in draining LN tissues were also significantly
higher in the MDSCs group, compared with the PBS group
(Supplementary Fig. S1) (***P < 0.01).

Prevention of Inflammatory Tissue Injury by
MDSC Administration in Uveitis

The levels of IL-1β and TNF-α expression in retinal tissues
were significantly lower in the MDSCs group compared
with that in the PBS group (Figs. 4A–4C) (P < 0.05 and
P < 0.001, respectively). Extracellular adenosine secreted
from MDSCs inhibits the production of TNF-α by activating
A2a/A2b receptors in inflammatory cells. Similarly, the levels
of TNF-α expression in draining LNs were significantly lower
in the MDSCs group compared with the PBS group (Supple-
mentary Fig. S2A) (**P < 0.01). In addition, MDSCs release
IL-1 receptor antagonist (IL-1RA) and arginase, which could
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FIGURE 5. Assessment of oxidative stress in the retina at 3 weeks after IRBP immunization. (A) Representative 8-hydroxy-2-deoxyguanosine
labeling assay images of the retinal histologic section in each group (white arrow, 8-OHdG [red]; counterstained with DAPI [blue]). Scale
bar, 50 μm. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear
layer; PRL, photoreceptor layer. (B) Quantitative analysis of 8-OHdG positive cells. MDSC group showed suppressed oxidative stress on the
retina compared with that in the PBS group. Different sections from four or more independent mice were randomly selected for analyzing
blinded samples, and data were represented as mean ± SD of three independent experiments. **P < 0.01; ***P < 0.001.

suppress T-cell activity through competitive inhibition of the
inflammatory IL-1 receptor and inhibition of T-cell prolif-
eration by L-arginine depletion, respectively.39–41 The PBS
group showed a significant increase in apoptotic cells at the
damaged tissue areas; here, the inflammatory cytokines were
upregulated compared with the MDSCs group (Fig. 4D) (P
< 0.05). Moreover, MDSCs group showed increased levels
of IL-10 expression compared with the PBS group in drain-
ing LN (Supplementary Fig. S2B) (**P < 0.01). Therefore,
local MDSCs administration can prevent tissue damage by
suppressing inflammatory cytokine production and cellular
apoptosis in patients with EAU.

Decreased Oxidative Stress With MDSC
Administration in Uveitis

Oxidative stress is increased in autoimmune diseases, such
as uveitis and rheumatoid diseases; this factor contributes
to inflammatory immune responses.21,42 Oxidative stress a
key pathogenic mechanism underlying innate immunity-
mediated inflammation in retinal pigment epithelial cells
in EAU.12,21 Immunohistochemical staining for the 8OHdG

marker in retinal tissues was performed to confirm oxidative
stress at 3 weeks (Fig. 5A). The MDSCs group showed signif-
icantly suppressed oxidative stress, compared with the PBS
group (Fig. 5B) (P < 0.01). Therefore, local administration
of MDSCs can suppress both inflammatory responses and
oxidative stress in the tissues of EAU mice.

MDSCs-Mediated Suppression of Local and
Systemic Expression of Inflammatory Cytokines
in Uveitis

The mRNA expression levels of inflammation-related genes
were evaluated in the retina and choroid at 3 weeks; expres-
sion of the inflammatory mediators, IFN-γ and IL-17, was
significantly increased in the PBS group compared with
that in the MDSCs group (Figs. 6A, 6B) (P < 0.01 and
P < 0.05, respectively). The mRNA expression of IL-10,
an immune modulator, was significantly increased (Fig. 6C)
(P < 0.05), whereas the serum levels of both IFN-γ and IL-
17 were significantly decreased at 3 weeks in the MDSCs
group compared with the PBS group (Figs. 7A, 7B) (P <

0.001 and P< 0.01, respectively). In addition, serum levels of
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FIGURE 6. Real-time PCR analysis of the mRNA expression levels of proinflammatory and immunoregulatory genes in the retina and choroid.
mRNA levels of proinflammatory (A, IFN-γ ; B, IL-17) and immunoregulatory (C, IL-10) genes in the retina and choroid at 3 weeks after
immunization. Local administration of MDSCs decreased mRNA expression of IFN-γ (A) and IL-17 (B) compared with that in the PBS
group; however, the MDSCs group showed increased expression of IL-10 (C). Data were normalized using glyceraldehyde 3-phosphate
dehydrogenase as the internal control, and relative values were expressed as the fold change of the expression in the naïve retina. Data
were presented as mean ± SD of three experiments (n = 3; *P < 0.05; **P < 0.01).

proinflammatory cytokines, such as IL-1β and TNF-α, were
also significantly decreased in the MDSC group compared
with the PBS group (Figs. 7C and 7D) (P < 0.001 and
P < 0.05, respectively). Therefore, locally injected MDSCs
can decrease local and systemic inflammatory responses in
EAU, possibly mediated by increased IL-10 expression in
ocular tissues.

DISCUSSION

Intraocular inflammation in uveitis affects the eyes; in addi-
tion, it could be caused by other systemic diseases, such
as infections or autoimmune diseases. However, the patho-
genesis of the various types of uveitis remains unclear. The
major phenotypes of uveitis share similar immunopathogen-
esis, characterized by the activation of Th1 and Th17 cells
and the progression of retinal pigment epithelial damages
through mitochondrial oxidative stress.12,43 Oxidative stress
is initiated in the mitochondria of photoreceptors, medi-
ated by the upregulation of iNOS on day 5 after immu-
nization in EAU.17,44 During oxidative stress and inflamma-
tory responses, macrophages release metabolic products,
such as antimicrobial peptides, reactive nitrogen species
(NO), and reactive oxygen species, representative of the
innate immune mechanism.17,45 The migration of activated

microglia and macrophages into the outer retinal layer leads
to the secretion of pathogenic factors, such as peroxynitrite
and TNF-α.16,46 During early phase innate immune reactions,
the release of proinflammatory mediators, including nitro-
gen oxides, IL-1β, IL-6, TNF-α, and reactive oxygen species,
mediate tissue injuries18,47 and play a crucial role as an effec-
tor of innate immunity and an amplifier of acquired immu-
nity.48 Subconjunctival-injected MDSCs alleviated the clinical
severity and pathogenic T-cell responses in an EAU model
through the inhibition of inflammatory response and oxida-
tive stress in retinal tissues.

MDSCs are immunosuppressive immature myeloid cells
that regulate pathogenic inflammatory immune responses
and oxidative stress.49 MDSCs can migrate into exces-
sive inflammatory conditions, including many tumors and
autoimmune diseases.50,51 Previous studies reported that
MDSCs, as observed in animal models of autoimmune
diseases, not only contribute to disease progression, but can
also mitigate inflammation in autoimmune encephalomyeli-
tis by MDSCs administration.52–56 To the best of our knowl-
edge, this study is the first to evaluate the therapeutic effi-
cacy of locally injected exogenous MDSCs,which could mini-
mize potential side effects of systemic administration of
MDSCs, by suppressing oxidative stress and inflammation
in preclinical uveitis models. The findings showed that local
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FIGURE 7. ELISA of inflammatory cytokines profile in the serum. The local administration of CB-MDSC significantly decreased production
of IFN-γ (A), IL-17 (B), IL-1β (C), and TNF-α (D) in the serum, compared with those of the PBS-treated groups. The serum was quantified
by ELISA on day 21, and naive groups have obviously low expression comparison with PBS-treated groups. Data are presented as mean
± SD. Comparison between the three groups was expressed using one-way ANOVA with post hoc paired Tukey’s test (n = 5; *P < 0.05;
**P < 0.01; and ***P < 0.001).

administration of MDSCs could suppress oxidative stress and
inflammatory progression in EAU, which could contribute
to the prevention of tissue injuries through the potential
immune regulatory function. Previously, we showed that
subconjunctival injection of MDSCs suppressed allograft
rejection in corneal transplantation, even at lower doses of
MDSCs, compared with that used for systemic intravenous
administration.37 Therefore, we chose local (subconjuncti-
val) injection for MDSCs administration in EAU.

Ocular administration of MDSCs on days 0 and 7 signif-
icantly decreased clinical scores and retinal histopatholog-
ical lesions of EAU at week 3 after immunization. Adop-
tive transfer of MDSCs in the IRBP-induced uveitis model
downregulated the TLR4-mediated innate immune response
and decreased pathogenic T-cell activation.57 During the
progression of uveitis, the blood–retinal barrier is disrupted,
and immune cells infiltrate into the retina and choroid; this
process is observed clinically as retinitis and choroiditis. The
IFN-γ –producing Th1 and IL-17–producing Th17 cells play
an important role in the progression of EAU with retinal and
uveal tissue destruction.14,58–61 IFN-γ + CD4+ cells and IL-17+

CD4+ cells in the draining LNs and the serum IL-17 and IFN-
γ levels were lower after MDSCs administration. The serum
levels of IFN-γ and IL-17 reduced with the cytokine profiles
in human62 and rodent63 uveitis with various immunosup-

pressive treatments. MDSCs regulate alloreactive CD4+ T
cells by impairing dendritic cell maturation during murine
corneal transplantation.37 Depletion of Foxp3+ Tregs in
uveitis leads to more severe uveitis during EAU.64,65 Foxp3+

Tregs are an important factor in resolving and maintain-
ing EAU.64,65 MDSCs induce IL-10 secretion, leading to the
expansion of Treg cells.66,67 MDSC-derived IL-10 has been
reported to play a role in the induction of Treg cells and
the inhibition of dendritic cells to suppress pathologic T-cell
responses.68,69 MDSCs-derived other soluble factors, such
as TGF-β and exosomes, also could induce suppressive
capacity within the inflammatory environment.70,71 Locally
injected MDSCs could suppress the progression of EAUs; this
is mediated by an increased population of Foxp3+ Treg cells
in draining LNs and increased IL-10 expression.

The TLR4-mediated nuclear factor-κB pathways is one of
major immune-mediated inflammatory responses in uveitis;
this pathway induces oxidative stress and proinflammatory
cytokines, especially IL-1β and TNF-α.12,13,72 MDSCs regu-
late inflammatory responses, mediated by immune modu-
lators such as IL-10 and TGF-β.26,73,74 Increased expres-
sion of IL-1β under inflammatory environments induces
the attraction of MDSCs and increases the levels of IL-10
and Arg-1 in MDSCs.56,75–78 The levels of the inflamma-
tory cytokines, TNF-α and IL-1β, are increased in the reti-
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nal and choroidal tissues in EAU. Previous studies have
reported that the majority of infiltrated cells within the retina
after uveitis inflammation were F4/80+ macrophages, which
could produce proinflammatory cytokines, such as IL-1β
and TNF-α, and contribute to uveitis-associated inflamma-
tion.79,80 MDSCs administration suppressed the expression
of inflammatory cytokines, possibly mediated by increased
IL-10 levels in EAU.

MDSCs administration suppressed oxidative stress and
cellular apoptosis in EAU cells. Interestingly, the oxida-
tive stress marker, 8OHdG, was most expressed in the
ganglion cell layer, inner nuclear layer, and outer nuclear
layer, which increased the number of apoptotic cells in
the TUNEL assay. Therefore, oxidative stress is associated
with increased apoptotic cell death in EAU, in correspon-
dence with earlier reports.13,81 TNF-α production during the
early phase of uveitis is associated with the mitochondrial
oxidative stress of retinal cells.12,16 Anti–TNF-α agents for
uveitis, such as infliximab and adalimumab, are increas-
ingly analyzed in clinical studies.12,13 Therefore, MDSCs
could control the progression and severity of uveitis through
modulating innate and acquired immune responses in EAU.

In clinical applications, cellular therapies offer bene-
fits while also inducing side effects depending on the
route of administration. Local delivery could be more effi-
cient, avoiding comprehensive side effects, compared with
systemic delivery.82,83 Subconjunctival delivery of MDSCs
is a stable and efficient administration route to overcome
the problems associated with systemic injection, even at
a dose lower than that used for MDSCs systemic adminis-
tration.37 Therefore, the results support evaluating optimal
MDSC application in future clinical trials. Systematically eval-
uating different dosages, cellular distributions, and other
immunomodulatory activities of MDSCs in future experi-
ments is important. Our study, based on previous estab-
lished uveitis researches,84–86 involved the sacrifice day set
at 21 days, when we observed significant differences in
clinical scores and histopathological scores between PBS
control and MDSCs groups to evaluate the immune regu-
lation of exogenous MDSCs treatment. Furthermore, we will
further explore the long-term and therapeutic efficacy of
MDSCs after uveitis establishment in future. MDSCs present
low HLA expression, which lead to successful immunosup-
pressive effects by avoiding HLA mismatch–related rejection
after MDSCs transplantation.29,87,88 However, it should be
considered that HLA mismatches in clinical settings might
present unpredictable adverse effects; thus, we need to eval-
uate HLA mismatch–related rejection response in the long
term.

In conclusion, local administration of MDSCs can allevi-
ate the pathological development and progression of EAU
by inhibiting oxidative stress and inflammation in innate
immunity and suppressing Th1 and Th17 cells activation;
this is possibly mediated by Treg cell induction in acquired
immune pathways. To the best of our knowledge, this study
is the first to evaluate the suppression of oxidative stress
and inflammatory progression through the local delivery of
MDSCs in EAU. This study provides supportive data for clin-
ical trials using MDSCs as the new therapeutic agent and
delivery system for various autoimmune ocular diseases.
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