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In contrast to CD4� T cells, human immunodeficiency virus type 1 (HIV-1)-infected macrophages typically
resist cell death, support viral replication, and consequently, may facilitate HIV-1 transmission. To elucidate
how the virus commandeers the macrophage’s intracellular machinery for its benefit, we analyzed HIV-1-in-
fected human macrophages for virus-induced gene transcription by using multiple parameters, including
cDNA expression arrays. HIV-1 infection induced the transcriptional regulation of genes associated with host
defense, signal transduction, apoptosis, and the cell cycle, among which the cyclin-dependent kinase inhibitor
1A (CDKN1A/p21) gene was the most prominent. p21 mRNA and protein expression followed a bimodal pat-
tern which was initially evident during the early stages of infection, and maximum levels occurred concomitant
with active HIV-1 replication. Mechanistically, viral protein R (Vpr) independently regulates p21 expression,
consistent with the reduced viral replication and lack of p21 upregulation by a Vpr-negative virus. Moreover,
the treatment of macrophages with p21 antisense oligonucleotides or small interfering RNAs reduced HIV-1
infection. In addition, the synthetic triterpenoid and peroxisome proliferator-activated receptor � ligand, 2-
cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), which is known to influence p21 expression, suppressed
viral replication. These data implicate p21 as a pivotal macrophage facilitator of the viral life cycle. Moreover,
regulators of p21, such as CDDO, may provide an interventional approach to modulate HIV-1 replication.

T lymphocytes and macrophages expressing CD4 and the
seven-transmembrane-domain chemokine coreceptors
CXCR4 and CCR5 are susceptible to human immunodefi-
ciency virus type 1 (HIV-1) infection (7). Infection in macro-
phages is also facilitated by the phospholipid binding protein
annexin II (36). In contrast to CD4� lymphocytes, HIV-1-
infected macrophages typically resist cell death, in spite of the
hostile environment generated by the virus (52, 64). Viruses
budding from macrophage intracellular membranes may es-
cape immune surveillance, allowing the macrophage to serve
as a reservoir and a source of virus for infections of additional
cells (30, 52, 64). The persistence of HIV-1 during highly active
antiviral therapy and the poor susceptibility of macrophages to
antiviral therapy (19, 30) have intensified interest in character-
izing the mechanisms underlying infection and replication in
this cell population. In addition to being viral hosts, macro-
phages also contribute to HIV-1 pathogenesis as incubators for
multiple opportunistic infections (41). Moreover, increased
HIV-1 replication occurs in macrophages which are coinfected
with Mycobacterium avium, exacerbating both bacterial and
viral infections and underscoring the importance of this pop-
ulation as a therapeutic target (41, 62).

Although macrophages express the requisite CD4 and che-
mokine coreceptors, which make them susceptible targets, and
although R5 viral variants are preferentially transmitted, it
remains a challenge to identify HIV-1-positive macrophages
early after viral exposure in mucosal tissues (49) or in the
absence of copathogens (41, 63). When exposed to HIV-1,
monocyte-derived macrophages bind and internalize the virus,
but the consequences of that interaction are ill defined. Since
macrophages are triggered by this encounter to modify their
phenotypic and functional repertoire, it is important to define
the early stages when HIV-1 is gaining a foothold on the
immune system and to identify key signals which not only
promote permissiveness for infection but also enhance viral
replication. To characterize the temporal events associated
with the initial virus-macrophage encounter leading to viral
replication, we monitored virus production by using multiple
parameters, including RNA, the p24 antigen (Ag), and the
ultrastructural detection of viral particles. In parallel, macro-
phage changes in gene expression subsequent to virus-receptor
interactions were compared to gene expression in uninfected
cells by use of cDNA expression arrays. An analysis of �1,200
genes at multiple intervals, from initial HIV-1 binding through
levels of massive replication (10 to 14 days), revealed a profile
of gene modulation which favored the virus life cycle and could
potentially influence the recruitment and infection of addi-
tional HIV-1 host cells. One gene that was differentially ex-
pressed following virus binding and again at the peak of HIV-1
replication was the p21 gene, also known as the Cip1 (Cdk
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interacting protein) or Waf1 (wild-type p53-activated frag-
ment) gene, which is associated with cell cycle regulation, anti-
apoptotic responses, and differentiation (16). The particular
gene expression pattern for p21 led us to examine whether
modulation of this transcript affects the HIV-1 viral life cycle.
Our data demonstrate that the modulation of p21 in vitro
results in a reduction in viral replication, implicating this cel-
lular protein as an interventional target.

MATERIALS AND METHODS

HIV-1 infection and treatment of monocytes. Human peripheral blood mono-
nuclear cells obtained by leukapheresis from healthy volunteers were enriched
for monocytes by elutriation (62), plated in T-75 flasks at 7.5 � 106 cells/ml, in
six-well plates (Corning Costar Corporation) at 6 � 106 cells/well, or in glass
chamber slides (Lab-Tek) at 1.5 � 106 cells/chamber in Dulbecco’s modified
Eagle’s medium with 2 mM L-glutamine and 10 �g of gentamicin (BioWhit-
taker)/ml, allowed to adhere (4 to 6 h at 37°C and 5% CO2), supplemented with
10% fetal bovine serum (Invitrogen), and then differentiated into macrophages
for 7 days. The macrophages were infected with pelleted R5 HIV-1BaL purified
virions (50% tissue culture infective dose � 500 to 5,000) (Advanced BioTech-
nologies Inc.), the laboratory-adapted isolate ADA, or the primary viral isolate
clade B 92US727 (NIH AIDS Research and Reference Reagent Program) as
previously described (36, 62). For experiments with HIV Vpr mutants, pNLAD8
(NL4-3 with the CXCR4-tropic Env protein replaced with AD8.1 CCR5-tropic
Env) and pNLAD8 delta-R (EcoRI fill-in plasmid that expresses the first 37
amino acids of Vpr) were obtained from Eric Freed (National Cancer Institute-
Frederick, Frederick, Md.) (18). pNLAD8 Vpr� was constructed by introducing
an A-to-T mutation at nucleotide 5559 (1), changing the methionine codon to a
leucine, and mutating nucleotide 5557 from A to T to maintain an arginine codon
in the Vif reading frame. Viral supernatants were produced by transfection of
293T human embryonic kidney cells by use of the Transit 293 transfection
reagent (Mirus, Madison, Wis.). Viruses were titrated in a single-round lacZ Tat
complementation assay using JC53BL cells (68). Briefly, a six-well tissue culture
cluster was seeded with 5 � 105 JC53BL cells the day before infection. The cells
were infected with virus dilutions, and the assay was developed for �-galactosi-
dase activity with a 5-bromo-4-chloro-3-indolyl-�-galactosidase stain at 48 h
postinfection. Positive, blue-staining cells were counted to score the number of
infection events. Virions were isolated by centrifugation through a 20% sucrose
pad in an SW41.1Ti rotor at 37,000 rpm at 4°C for 1 h. Immunoblotting for p24
was performed by use of a Bio-Rad Immuno-Star HRP substrate kit (Hercules,
Calif.). Blots were developed by exposure to Lumifilm (Roche Applied Science,
Indianapolis, Ind.). An antiserum against p24 was produced by the AIDS Vac-
cine Program, NCI-Frederick. In order to overcome the inherent block of viral
infection by Vpr-negative virus in nondividing cells, we infected macrophages
with the mutant virus at multiplicities of infection (MOIs) of �6 blue CFU per
cell, while the wild-type NLAD8 virus was used at an MOI of 3.

Every 3 to 4 days, half of the culture medium was removed, analyzed for viral
replication by a p24-specific enzyme-linked immunosorbent assay (ELISA; Per-
kin-Elmer Life Sciences), and replaced with fresh medium for up to 2 weeks.
Control macrophages from each donor were mock infected, cultured, and refed
in parallel. Infections were monitored by p24 ELISA, RNA (62), nested PCR,
and transmission electron microscopy (TEM) (21). Adherent macrophages were
also incubated with full-length synthetic viral protein R (Vpr) (26) at the indi-
cated concentrations for 3 h, the total mRNA was isolated by use of an RNeasy
mini kit (QIAGEN), and cell protein lysates were generated by use of a lysis
buffer containing 20 mM Tris-HCl (pH 7.5), 1% Nonidet P-40, 150 mM NaCl,
10 mM NaF, 10 mM NaPPi, 2.5 mM EDTA, 1 mM Na3VO4, 1 mM phenyl-
methylsulfonyl fluoride, 1� complete protease inhibitor cocktail (Boehringer
Mannheim), 0.2 mM 3,4-dichloroisocoumarin, and 100 �g of chymostatin/ml.
Elutriated T lymphocytes were blasted with phytohemagglutinin (10 �g/ml)
(Sigma), infected with HIV-1 IIIB (50% tissue culture infective dose � 104)
(Advanced Biotechnologies Inc.) for 6 h, washed, and cultured for 7 days, with
supernatants being collected every 2 to 3 days for p24 ELISA.

Molecular analysis of p21 transcription. The total cellular RNA was extracted
at intervals from adherent control or infected macrophages from 6 h to 14 days
by use of an RNeasy mini kit (QIAGEN) and then analyzed by Northern blotting
(62) with a full-length HIV-1 probe (NIH AIDS Research and Reference Re-
agent Program) and with glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(GIBCO BRL) to monitor RNA loading. For RNase protection assays (RPAs),
3 �g of RNA was evaluated by use of the hStress template Riboquant Multi-

Probe RPA system (BD Pharmingen) (21). The gels were exposed to phosphor
screens and analyzed with a phosphorimager. Band densities were normalized to
that of the GAPDH gene by the use of ImageQuant (Molecular Dynamics) (21).
For reverse transcription-PCR (RT-PCR), 1 �g of total RNA was reverse tran-
scribed by use of an oligodeoxythymidylic acid primer (Invitrogen), and the
resulting cDNA (0.5 to 1 �l) was amplified by PCR. The primer set for p21 was
5	-GACAGCAGAGGAAGACCAT-3	 (forward) and 5	-TGGAGTGGTAGAA
ATCTGTCAT-3	 (reverse). For GAPDH, the primer set was 5	-GAAGGTGA
AGGTCGGAGTC-3	 and 5	-GAAGATGGTGATGGGATTTC-3	. PCRs were
performed with 1.5 mM MgCl2, 200 �M deoxynucleoside triphosphates, a 0.6
�M concentration of each primer, and 1 U of Taq polymerase (Sigma). cDNAs
were amplified for 25 cycles with the following settings: 94°C for 30 s, 55°C for
30 s, and 72°C for 30 s.

Nested PCR with viral DNA. For analyses of newly synthesized viral DNAs
(37), DNase-treated HIV-1BaL (200 �l; 104/ml) was added for 2 h to macro-
phages (6 � 106 cells/well) that had been pretreated with a p21 small interfering
RNA (siRNA) or a control siRNA. The cultures were washed three times with
phosphate-buffered saline (PBS), treated with trypsin-EDTA (0.05% trypsin,
0.53 mmol of EDTA/liter) for 5 min to remove noninternalized virus particles,
washed, and incubated for 18 to 48 h. DNAs were extracted for nested PCR as
described previously (37). PCR products from the second amplification were
visualized by ethidium bromide staining after agarose gel electrophoresis.

cDNA expression array. The total cellular RNAs were extracted from unin-
fected control and virus-infected macrophages by use of an RNeasy mini kit
(QIAGEN). Hybridization to an Atlas human cDNA expression array (1.2 I;
Clontech) was performed with 5 �g of DNase-digested total RNA as previously
described (21). After normalization to housekeeping genes by the use of At-
lasImage 1.01a (Clontech), gene expression in infected cells was compared with
that in uninfected cells from the same donor at the same time interval and
expressed as a ratio (fold change). Genes that were differentially up-regulated in
four, five, or six of six donors at 6 h (day 0.25) with an average �2-fold increase
above parallel uninfected control donors are reported here. For 14-day kinetic
studies, RNAs were obtained from three donors and assessed for gene transcrip-
tion. For some donors, variability in gene transcription was noted, based in part
on background levels of activation, gene expression, and/or response to the virus.
Nonetheless, the interarray variability was assessed by hybridizing the same
sample to two different array membranes, which yielded a correlation coefficient
(R2) of 0.95 (21). As indicated, the expression of selected genes was confirmed by
multiple parameters, including RPA, PCR, immunofluorescence, and/or protein
analysis (21). For the day 0 cDNA array (6 h), statistical significance between
uninfected and infected cells was calculated by the nonparametric Wilcoxon
signed rank procedure. The paired t test was rejected due to the small sample size
and likely nonnormal distribution of responses. Genes with P values of �0.05
were considered significant. Additional statistical analyses of kinetic array data
were performed by analysis of variance with repeated measures by the use of
Partek Pro software, with P values of �0.05 considered significant.

Immunofluorescence microscopy. Infected and control macrophages were cul-
tured for 10 to 12 days, washed with PBS, fixed with 2% paraformaldehyde,
washed, and incubated with 100 mM glycine for 20 min followed by 0.5% Triton
X-100 for 10 min. The cells were incubated with 5% blocking serum for 30 min
before the addition of a rabbit anti-p21 antibody (Santa Cruz) for 1 h, washed,
and incubated with an Alexa fluor 594-conjugated secondary antibody (Molec-
ular Probes) at 25°C. The nonspecific background was determined by use of an
isotype control antibody and the secondary antibody alone. Images were cap-
tured with a Leica TCS-4D confocal microscope system with a Kr-Ar laser and
a 40�, 1.0-numerical-aperture objective. Fluorescence was quantified with Meta-
morph analysis software (Universal Imaging).

Flow cytometry. Adherent macrophages were detached by the use of cell
dissociation buffer (Invitrogen), washed, and resuspended in PBS containing 2%
fetal bovine serum and 0.01% sodium azide. The cells were stained with mouse
anti-human phycoerythrin-CD4 and CCR5-fluorescein isothiocyanate (CCR5-
FITC) or corresponding isotype controls (BD Pharmingen) for flow cytometry
analysis.

Immunoprecipitation and Western blotting. Cell lysates were generated, and
p21 was immunoprecipitated from equal amounts of protein lysates with an
anti-p21 conjugated agarose antibody (Santa Cruz) and incubated with constant
rotation at 4°C for 2 h. Immunoprecipitates were washed, resuspended in sodium
dodecyl sulfate sample buffer (New England Biolabs), electrophoresed in Tricine
gels (Invitrogen), transferred to nitrocellulose membranes, and immunoblotted
with anti-p21 (BD Pharmingen). Immunoblots were developed by enhanced
chemiluminescence with the Super-Signal substrate (Pierce).

Suppression of p21 expression. Cells were treated with p21 antisense phos-
phorothioate oligonucleotides conjugated to FITC and Penetratin (Q-Biogene).
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The sequences for the two p21 oligonucleotides and a negative control oligonu-
cleotide were 5	-TGTCAGGCTGGTCTGCCTCC-3	 (oligo 1), 5	-ACATCACC
AGGATTGGACAT-3	 (oligo 2), and 5	-TGGATCCGACATGTCAGA-3	
(oligo 3) (33). Oligonucleotides were added at 50 nM 60 min prior to HIV-1
infection and replenished at the time of medium replacement. Gene silencing
was performed with SMARTpool siRNA duplexes (Dharmacon) specific for p21
(1 to 10 nM). A nonspecific siRNA control (Dharmacon) was utilized in parallel,
and transfection was accomplished by the use of Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions. In some experiments, cells were pre-
treated with 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) or a CDDO
analog (di-CDDO) (55) at 0.01 to 1.0 �M for 45 min prior to or concomitant with
exposure to HIV-1. Cell viability was examined by use of a fluorescein-FragEL
DNA fragmentation detection kit (Oncogene Research Products).

RESULTS

Kinetics of HIV-1 replication. Elutriated monocytes were
adhered for 7 days, exposed to R5 HIV-1BaL for 2 h, and
washed, and the kinetics of cellular and viral changes were
monitored. By Northern analysis, HIV-1 RNA was detected
within 5 to 7 days after infection and reached a maximal level
by 10 to 16 days (Fig. 1A). In parallel, the p24 Ag appeared
within 5 days, then increased dramatically, and finally pla-
teaued after 10 days (Fig. 1B). Consistent with the presence of
viral RNA and p24, virus was detected by TEM around day 7,
with �70% of the cells typically harboring large numbers of
virions by day 10 (Fig. 1C and D). Virions were particularly
evident within intracellular vacuoles as well as along convo-
luted macrophage membranes (Fig. 1C). Nonetheless, once
the majority of cells were infected with large numbers of viri-
ons within and on the cell surface, p24 levels plateaued, inde-
pendent of the concentration of the viral inoculum (not shown)
and likely influenced by host factors.

Initial gene expression in infected macrophages. To exam-
ine potential host factors underlying viral propagation, we ex-
amined transcriptional pathways activated downstream of
CD4–HIV-1 coreceptor binding and signaling. Compared with
the case in uninfected macrophages, an early and transient
gene expression profile occurred, followed by a period of rel-
atively quiescent gene expression and a subsequent delayed
pattern that emerged in association with viral replication. Al-
though substantial heterogeneity in the macrophage response
to HIV-1 was observed (data not shown), which may reflect
different levels of constitutive activation and differentiation of
the uninfected macrophages and/or susceptibility to viral in-
fection for each individual donor, the data shown represent
genes that were differentially upregulated �2 fold in the ma-
jority of donors. Within 6 h, many upregulated genes (nearly
130 of �1,200 genes analyzed) were associated with signal
transduction (24%) and transcription (26%) (Table 1). Com-
ponents of the G protein receptor pathway which participate in
signaling, such as GNAS, GNB1, GRB2, Rac1, and RhoA,
were augmented subsequent to the interaction of HIV-1 with
CD4 and the G-protein-coupled receptor CCR5. Genes cor-
responding to the mitogen-activated protein kinase (MAPK)
family were also increased, including p38 MAPK, MAPKAP-
K1, and MAPKAP-K2. Another signal transduction gene that
was significantly upregulated was the gene for LIMK-1, a
serine/threonine kinase that has been shown to participate in
the regulation of actin cytoskeletal reorganization downstream
of Rho family GTPases (4, 56, 71). Among the transcription
factors influenced by the virus-macrophage encounter was the
host Tat binding protein (TBP-1), known to interact with viral

FIG. 1. Kinetics of HIV-1 infection in monocyte-derived adherent macrophages. (A) Cells were exposed to HIV-1 for the indicated intervals,
and mRNAs were extracted and examined by Northern blotting. Bands of 9.1 and 4.3 kb correspond to viral gag/pol and env mRNAs, respectively.
(B) Supernatants were collected from infected cultures (days 1 to 15) for p24 ELISA. (C) Cells were incubated for 3 to 10 days after infection and
processed for TEM. Original magnification, �10,000. Ultrastructure analysis revealed detectable virions (C and D) in macrophages by 5 to 7 days
postinfection, with increasing virus numbers per cell (C) and numbers of infected macrophages (D) being most evident at or after day 10, as
quantified by counting �200 cells/time point. The data shown correspond to a representative experiment (n � 4).
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TABLE 1. Early HIV-1-induced gene expression in macrophagesa

GenBank accession no.
and functional group Gene product Average fold

increase

Signal transduction
M36430 GNB1 5.0
X15014 RalA 3.3
D26309 LIMK-1 3.1*
M14631 GNAS 3.0
L35253 MAP kinase p38 3.0
L29511 GRB2 2.7
AF068920 SHOC 2 2.5
L25080 Ras homolog A (RhoA) 2.5
AF055581 LNK adaptor 2.4
X17576 NCK melanoma cytoplasmic Src homolog 2.3
M98343 Cortactin (ems-1) 2.3
M65066 PRKAR1B 2.3
U10550 Gem (Ras family) 2.2
U78576 PI4P5 kinase alpha 2.2
U12779 MAPKAP kinase 2 2.2*
M19922 INT2 2.1
X15219 SnoN 2.1
M29870 Rac1 2.1
M28213 Rab2 2.1
U24166 EB1 2.1
L20321 Serine/threonine kinase NRK2 2.1
M34181 PKC beta 2.1
X60957 Tyrosine kinase receptor Tie-1 2.0
L05624 MAPKK1 2.0
X03484 Raf1 protooncogene 2.0
L22075 G13 2.0
X94991 Zyxin 2 2.0
M63960 PPIalpha 2.0
X06318 PKC beta 1 2.0
M77234 Fte-1 2.0
X08004 Rap1b 2.0

Transcription
U10323 NF45 3.6
L19871 Activating factor 3 (ATF3) 3.1
U12979 Activated RNA polymerase II transcriptional coactivator p15 (PC4) 2.9*
M81601 Transcription elongation factor SII 2.8
M29038 Stem cell protein 2.8
D90209 Activating factor 4 (ATF4) 2.8
M34079 TAT binding protein (TBP-1) 2.7
L34587 RNA polymerase II elongation factor SIII p15 subunit 2.6
L04282 CACCC-box DNA binding protein 2.6
U22431 Hypoxia-inducible factor 1 alpha 2.5*
L23959 E2F dimerization partner 1 (DP1) 2.5
M83234 NSEP 2.5
S40706 GADD153 2.4
M96824 Nucleobindin precursor (NUC) 2.4
M36717 Ribonuclease/angiogenin inhibitor (RAI) 2.4
D26156 SW1/SNF-related actin-dependent regulator of chromatin 2.3
X69391 60S ribosomal protein (RPL6) 2.3*
X59738 Zinc finger X-chromosomal protein 2.3
M59079 CBF-B 2.2
M96944 PAX5 2.2
AF084199 PRD1-BF1 (transcription repressor protein) 2.2
M97796 Inhibitor of DNA binding 2 (ID2) 2.2
U07418 MutL protein homolog 1 (MLH1) 2.2
AF060222 DNase II 2.2
U58198 Interleukin enhancer binding factor (ILF) 2.1
Z36715 Elk-3 2.1
AF032119 CASK 2.1
M97935 STAT1 alpha/beta 2.1
Z30094 Basic transcription factor 2 (BTF2p44) 2.1
J04111 Jun protooncogene, AP-1 2.1
D26155 Transcriptional activator (hsnF2a) 2.0
M80397 DNA polymerase delta catalytic subunit 2.0
AF076974 Transformation/transcription domain-associated protein 2.0

Cell cycle and apoptosis
U13737 Caspase 3 2.2
L29222 CDC-like kinase (CLK1) 2.1
AF071596 IEX-1L anti-death protein 2.1
M15796 Proliferating cyclic nuclear antigen (PCNA) 2.1

Continued on facing page
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Tat (40); the cellular coactivator PC4, which has been identi-
fied as an HIV Tat-interacting protein (27); and RPL6, which
binds the Tax-responsive element of human T-cell leukemia
virus type 1 (39). In addition to signal transduction molecules,

genes associated with the cell cycle, such as the cyclin-depen-
dent kinase inhibitor 1A (CDKN1A/p21) gene, were signifi-
cantly enhanced within hours, in parallel with the proliferating
cell nuclear antigen (PCNA) (Table 1), which interacts with

TABLE 1—Continued

GenBank accession no.
and functional group Gene product Average fold

increase

X96586 FAN protein 2.1
U28014 Caspase-4 2.1*
Z23115 Bcl-x 2.0
U09579 Cyclin-dependent kinase inhibitor 1A (CDKN1A) 2.0*

Adhesion molecules and receptors
M14648 Vitronectin receptor alpha (VNRA) 3.3
J03132 Intercellular adhesion molecule 1 (ICAM1) 3.1
M81695 CD11c antigen 2.5
X06256 Fibronectin receptor alpha (FNRA) 2.5
D84657 Photolyase/blue-light receptor homolog 2.4
X07979 Fibronectin receptor beta (FNRB) 2.7
D13866 Alpha 1 catenin 2.4
X72304 Corticotropin releasing factor receptor 1 2.4
M59911 Integrin alpha 3 (ITGA3) 2.3
M37722 Fibroblast growth factor receptor 1 2.2
L25851 Integrin alpha E (ITGAE) 2.1
M27492 IL-1 receptor type I 2.0
J04536 Leukosialin 2.0
X01057 IL-2R alpha 2.0
M59040 CD44 antigen 2.0

Chemokines and cytokines
Y00787 IL-8 9.7
M65291 IL-12 alpha 5.0
M24545 Monocyte chemotactic protein 1 (MCP-1) 4.5
X06233 Migration inhibitory factor-related protein 14 (MRP14) 3.8
M92381 Thymosin beta 10 3.7
M17733 Thymosin beta 4 3.6
X01394 Tumor necrosis factor alpha 3.4
X53655 Neurotrophin-3 precursor 2.6
M21121 Small inducible protein A5 (SCYA5) 2.5
M86492 Glia maturation factor beta 2.2
M31145 Insulin-like growth factor binding protein 1 2.2
M27288 Oncostatin M (OSM) 2.1
U13699 IL-1 beta converting enzyme (ICE) 2.1
U16296 T-lymphoma invasion and metastasis inducing (TIAM1) 2.0
M25667 Neuromodulin 2.0
X02530 Interferon gamma-induced protein (IP-10) 2.0

Proteases and protease inhibitors
M11233 Cathepsin D 3.2
J05070 Matrix metalloproteinase 9 (MMP9) 3.1
X56692 C-reactive protein 2.9
AF059244 Cystatin-related protein 2.8
X05562 Procollagen alpha 2 2.5
L23808 Matrix metalloproteinase 12 2.2
D00762 Proteasome C8 2.1
Z81326 Protease inhibitor 12 2.0
L40377 Cytoplasmic antiprotease 2 (CAP2) 2.0
M23254 Calpain 2 2.0
X04106 Calpain 2.0
Metabolism
U03688 Dioxin-inducible cytochrome P450 (CYP1A1) 4.5
X06985 Heme oxygenase 1 (HO-1) 4.2
U34683 Glutathione synthetase 3.0
X07270 90-kDa heat shock protein A 2.7*
U29091 Selenium binding protein 2.7
L14595 Neural amino acid transporter A (SATT) 2.6
D00099 Na�/K�-transporting ATPase alpha 1 2.4
M74524 Ubiquitin-conjugating enzyme (UBE2A) 2.3
X91247 Thioredoxin reductase 2.3
X54079 27-kDa heat shock protein 2.2*
M11717 70-kDa heat shock protein 1 2.1
L20046 Xeroderma pigmentosum group G complementing protein 2.0
Y00264 Alzheimer’s disease amyloid A4 protein 2.0*

a Total mRNA was extracted from uninfected and HIV-1-infected macrophages and analyzed by cDNA expression array. Values were normalized to those for
housekeeping genes, and the data are presented as n-fold increases (�2-fold) of infected cells compared to those in mock-infected control cultures. *, P � 0.05.
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p21 (16). Although gene expression for caspases 3 and 4 was
increased, genes encoding factors that contribute to cellular
resistance to apoptosis, including IEX-1L and bcl-x (2, 70),
were also elevated. The enhanced transcription of genes in-
volved in cellular recruitment, including genes for chemokines
(interleukin-8 and MCP-1) and MRP14 as well as surface ad-
hesion molecules, may favor host cell accumulation and syn-
cytium formation (23, 59). The metabolic pathway genes for
dioxin-inducible cytochrome P450 (Table 1), which is associ-
ated with enhanced HIV-1 gene expression and the progres-
sion of AIDS (72), and heme oxygenase-1 (HO-1) (Table 1), a
protein which is increased in the peripheral blood mononu-
clear cells of AIDS patients (34), were typically upregulated. In
addition to HSP90 and HSP27, host molecules that have been
implicated in the HIV-1 viral cycle (60, 65), HIF-1
, a tran-

scription factor that participates in the regulation of genes in-
volved in angiogenesis, glucose metabolism, cell survival, and
cancer (44), was also upregulated. During this immediate early
response, HIV-1 enhanced more genes than it suppressed in
the subset of genes examined. Only tripeptidyl peptidase I, a
lysosomal serine protease responsible for cleaving tripeptides
from the N termini of oligopeptides (58), was reproducibly sup-
pressed (data not shown) and may influence protein turnover.

Kinetics of HIV-1-induced gene expression. The initial pat-
tern of gene expression following binding of HIV-1 was not sus-
tained, and interestingly, there was a reduced transcriptional re-
sponse evident 3 to 5 days after infection, preceding the evidence
of viral replication (Fig. 2). However, concomitant with evidence
of the HIV-1 replicative cycle at 5 to 7 days postinfection (Fig. 1),
a resurgence of gene expression began to manifest (Fig. 2). In

FIG. 2. HIV-1-induced alterations in macrophage transcriptome. The figure shows changes in gene expression in HIV-1-treated macrophages
compared to the gene expression levels in mock-infected macrophages from the same donor at intervals, from 0.25 to 14 days (mean values; n �
3 to 6). Increased or decreased gene transcription is represented in red and green, respectively. Genes shown in black indicate no change
in transcriptional activity. �, P � 0.05.
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addition to the reexpression of genes that were turned on by the
initial HIV-macrophage interaction (i.e., MAPK, adhesion mol-
ecules, and p21), additional genes which were not differentially
expressed during initial viral binding were upregulated at the peak
of viral replication, emerging as potential regulatory host cell
molecules for the viral life cycle. For example, increased tran-
scription for the high-mobility-group protein I (HMG-I), one of a
class of nonhistone DNA-binding proteins that modulate chro-
matin structure (8), and MutL protein homolog 1 (MLH1), a
component of the DNA mismatch repair pathway (38), were
evident during the progression of infection (Fig. 2). Furthermore,
altered transcriptional profiles of apoptosis inhibitors and cell
cycle regulators in infected cells implicated their involvement in
viral permissiveness.

Increased p21 expression in infected macrophages. One of
the intriguing genes that was significantly upregulated as an
immediate early gene and then reexpressed at maximum levels
during HIV-1 replication was the gene for p21, a cell cycle
regulator (Table 1; Fig. 2 and 3A). Of the 1,200 genes studied,
p21 was also the most upregulated transcript (up to eightfold)
at the peak of viral replication. To further confirm the expres-
sion of this gene as a potential host cell regulator of viral
production, we performed RPAs and confirmed the rapid early
induction of p21 (Fig. 3B and C), which was followed by strik-
ing expression concomitant with viral replication, but without
corresponding changes in another cell cycle-related gene, p53.
To determine whether other HIV-1 viral isolates modulate
p21, we infected cells with two additional isolates and found
that p21 gene induction was not only evident after infection
with another laboratory-adapted viral isolate, ADA, but im-
portantly, was evident after infection with the primary clinical
isolate 727 (Fig. 3D). Furthermore, enhanced p21 transcrip-
tion correlated with increased protein levels in infected mac-
rophages. Immunofluorescence assessment of the p21 protein
revealed increased nuclear and cytoplasmic p21 staining in
infected macrophages compared with that in mock-infected
cells (Fig. 4A and B), consistent with enhanced protein expres-
sion detected in cell lysates by Western blotting (Fig. 4C). In
contrast, infection of T lymphocytes with HIV-1 resulted in a
modest increase in p21 transcription (Fig. 3E), despite ele-
vated levels of p24 Ag (Fig. 3F).

Since Vpr facilitates viral replication in nondividing cells
(26, 54) and is required for efficient HIV-1 production during
the late stages of replication in tissue macrophages (46), we
assessed the potential contribution of Vpr to the mediation of
p21 expression. Macrophages treated with Vpr for 3 h, but not
with HIV-1 gp120, not only exhibited enhanced p21 transcrip-
tion (Fig. 5A) but also had a corresponding increase in p21
protein (Fig. 5B). To further link Vpr to the modulation of p21
expression, we infected macrophages with Vpr mutant viruses
at a high MOI (�6). Our studies with two different Vpr-
negative viruses showed reduced viral replication (Fig. 5C),
with little or no enhancement of p21 transcription (Fig. 5D),
compared to the wild-type Vpr� virus. Collectively, these stud-
ies implicate Vpr as one potential mechanism utilized by
HIV-1 to drive p21 transcription.

Effect of p21 inhibitors on HIV-1 replication. To determine
whether increased p21 contributed to driving the viral life
cycle, we treated macrophages with two separate p21 antisense
oligonucleotides to suppress p21 expression in cells exposed to

FIG. 3. Increased p21 gene expression in infected macrophages.
(A) Kinetic profile of p21 expression from days 0.25 to 14 after infec-
tion (n � 3). (B) RPA analysis of uninfected (�) and HIV-1 infected
(�) macrophages confirmed the enhanced gene expression for p21,
with a minimal effect on p53 (data shown are for a representative
donor; n � 2). (C) Densitometric analysis of RPA results for the p21
and p53 genes (shown in panel B), normalized to GAPDH. (D) Mac-
rophages were infected with HIV-1BAL, the laboratory viral isolate
ADA, or the primary isolate 727 and then washed, and the total RNA
was collected after 12 days for analysis of p21 transcription by PCR. (E
and F) Phytohemagglutinin-blasted T lymphocytes were infected with
HIV-1 (IIIB), and day 6 supernatants were examined for p24 Ag. Total
mRNA (6 h) was analyzed for p21 transcription by PCR.
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HIV-1. Both p21-specific oligonucleotides reduced viral repli-
cation, as assessed by p24 levels, whereas negative control
oligonucleotides had no effect on p24 (Fig. 6A). In additional
experiments, the suppression of p21 by a p21-specific siRNA,
but not a control nonspecific siRNA, also inhibited HIV-1
replication (Fig. 6B), confirming the essential role of HIV-
induced p21 expression in the viral life cycle. We have estab-
lished that the effect of siRNA treatment resulting in a block-
ade of p21 and consequent reduced viral replication did not
affect cell viability or CCR5 or CD4 cell surface expression
(Fig. 6C). Consistent with the absence of alterations in cell
surface recognition and binding receptors on the macrophages,
we determined that the inhibition of p21 did not influence
HIV-1 internalization or early RT (Fig. 6D), but rather acted
at a later stage in the viral life cycle.

The ability of p21 antisense oligonucleotides and siRNA to
block HIV-1 replication prompted an exploration of potential
therapeutically relevant mechanisms of modulating this host
cell target to inhibit HIV-1. It has been reported that PPAR�
ligands, one of which includes the synthetic triterpenoid,

CDDO, can modulate p21 activity (66, 67). The treatment of
macrophages with CDDO, which had been added 45 min be-
fore (Fig. 7A to C), concomitant with infection, or at the onset
of detectable viral replication (data not shown), reduced the
levels of detectable virus when compared to untreated or
dimethyl sulfoxide-treated control cultures. Similar results
were observed when cells were treated with the CDDO analog
di-CDDO (Fig. 7C). Supernatant p24 levels were inhibited
�80%, and viral particles were rarely seen ultrastructurally in
CDDO-treated macrophages (Fig. 7B and C). Demonstrating
a further correlation between p21 and HIV, the CDDO-
treated macrophages which exhibited a reduction in HIV-1
also showed reduced mRNA levels for p21 (Fig. 7D). No
negative effects on cell viability were evident, as determined
by terminal deoxynucleotidyl transferase and DAPI (4	,6	-
diamidino-2-phenylindole) staining (Fig. 7E). In addition to
HIV-1BaL, CDDO suppressed p21 expression and replication
of both the laboratory-adapted viral isolate ADA and the clin-
ical isolate 727 (Fig. 7F and G), confirming the participation of
this pathway in macrophage HIV replication.

FIG. 4. Infected macrophages express more p21 protein. (A) Overlay confocal images from differential interference contrast (1 and 4) and
immunofluorescence labeling for p21 in uninfected (1, 2, and 3) and virus-infected (4, 5, and 6) cells (original magnification, �400). (B) Fluo-
rescence intensity (FI) analysis (Metamorph) confirmed the enhanced nuclear and cytoplasmic p21 protein, as represented by the signal across
equal line segments of nuclear or cytoplasmic areas (data shown are from a representative experiment; n � 3). (C) Increased p21 protein in infected
macrophages (12 days) by immunoprecipitation, as quantified by densitometric analysis, relative to that in uninfected cells (n � 3).
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DISCUSSION

Retroviruses rely on host cell molecules for replication and
survival. We provide evidence of a novel role of the cyclin-depen-
dent kinase inhibitor 1A (p21) in successful HIV-1 replication in
macrophage hosts. Intact, infectious R5 HIV-1 induces re-
producible alterations in immediate early gene transcription
in primary macrophages. Consistent with viral binding to the
CD4 and CCR5 seven-transmembrane-domain G-protein-cou-
pled receptors, virus-initiated signal transduction induced tran-
scriptional changes similar to and distinct from those observed
in previous studies with the viral envelope gp120 (10, 42).
While what functional significance can be assigned to each of
the �100 genes that are upregulated after viral binding has yet
to be established, our data support an initial burst of transcrip-
tional activity followed by a quiescent phase and then a resur-
gence of new genes which is temporally associated with maxi-
mal viral replication. HIV-1-enhanced gene expression and/or
phosphorylation of p38 MAPK and MAPKAP-K1 and -K2,
which are important in the early postentry and late stages of
HIV-1 infection (14, 45), may contribute to altered host cell
receptiveness, as well as chemokine expression and the recruit-
ment of new viral hosts (31). Furthermore, the induction of
LIMK-1 and members of the Ras and Rho GTPase family,
which are involved in the regulation of actin rearrangement,
may be involved in transducing signals to the cellular cytoskel-
etal networks. In our analysis of the early transcriptional pro-
gram, there was clear evidence that HIV-1 enhanced more
genes than it suppressed. However, until we can document
functional consequences of gene repression, it remains unclear
if this confers a survival advantage on the virus.

In contrast to T cells, macrophages can coexist in vivo as well as

in vitro with the virus for a prolonged time, during which they
contribute to the pathogenesis of AIDS, acting as viral reservoirs
and/or transmitting HIV-1 to neighboring cells. Although proapo-
ptotic genes were upregulated in macrophages within hours after
infection, the antiapoptotic genes encoding bcl-x, DAD1, and
IEX-1L (2, 28, 70) were also increased. However, in T cells,
an increased expression of proapoptotic transcripts and an
inhibition of mitochondrial and DNA repair genes are ob-
served (13). The differential gene expression and cell-specific
modulation of host protein functions as a result of HIV-1
infection in these cell populations may underlie HIV-1-in-
duced apoptosis in T cells (11, 13), while allowing macrophages
to sustain a prolonged viral burden. A comparison of genes
that are upregulated by HIV-1 in T lymphocytes (13, 20) with
those we identified in macrophage hosts also revealed an early
increase in cellular defense, transcription, and signaling genes
in both populations.

After the initial HIV-1-induced burst of gene expression (6
to 24 h), an additional increase in transcriptional activity oc-
curred concomitant with the onset of detectable viral replica-
tion (days 7 to 14). The lack of induction of new host molecules
during the interim period may allow the infected cells to escape
immune surveillance while the virus surreptitiously initiates its
life cycle. Once replication commences, new transcription may
be essential to facilitate the replicative process. One of the
immediate early genes that was reexpressed within days after
infection is MMP9, which facilitates the migration of HIV-1-
infected monocytes across the vascular endothelium (15) and
has been detected in HIV-1-infected patients (50). Enhanced
transcription of other inflammatory mediators associated with
increased viral replication and the pathophysiology of HIV-1

FIG. 5. Induction of p21 gene and protein expression by Vpr. Cells treated with Vpr (6 �g/ml) for 3 h showed increased gene transcription (A)
and protein expression (B) for p21. (C) Macrophages were treated with control supernatants from uninfected or mock-transfected cells or from
293T cells infected with the wild-type virus clone pNLAD8 or the pNLAD8 Vpr-negative (#1) or pNLAD8-delta R (#2) R5 macrophage-tropic
virus, and 12-day supernatants were analyzed by p24 ELISA. (D) The total RNA was analyzed for p21 and GAPDH by PCR. The data shown are
from a representative experiment (n � 2).
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(31) was also represented in the transcriptional profile postin-
fection. Cell homeostasis and genomic stability influenced by
HO-1, PCNA, HMG-I, and MLH1 may provide a receptive
intracellular environment. The ability of PCNA to interact with
MLH1 (22) suggests a link between mismatch repair and viral
growth. The expression of PCNA independent of cell prolifer-
ation has been found in macrophage populations and identi-
fied as a potential factor contributing to susceptibility to simian
immunodeficiency virus (SIV) infection (69). HMG-I, which
participates in the integration of viral cDNA (17), may play a
role in viral expression by modulating the interaction of tran-
scription factors (25).

Among the genes expressed in a biphasic fashion is p21,
which is increased after the initial HIV-1 interaction with mac-
rophage receptors, followed by a striking increase in associa-
tion with viral growth within intracellular compartments of
the macrophage. Because of its unique profile of expression in
infected cells, we focused on dissecting its potential contribu-
tion to macrophage vulnerability to infection. p21 is a CDK
inhibitor induced by a p53-dependent pathway following DNA
damage as well as by p53-independent pathways (16). A pro-
gressive upregulation of p21 mRNA and protein has been
associated with the maturation of myeloid progenitor cells

(51), but its connection with HIV-1 replication in macrophages
has not been previously reported. Increased p21 in skin lesions
of human papillomavirus was found to be further enhanced by
HIV-1 coinfection (3), and the upregulation of p21 in macro-
phages infected with M. avium (21) may also be linked to their
increased susceptibility to HIV replication (62).

While the initial increase in p21 gene expression likely rep-
resents a downstream consequence of CCR5/G protein signal-
ing, the subsequent rise in gene transcription may be due to
either intracellular or extracellular viral signals. Increased p21
protein in both the nuclear and cytoplasmic compartments of
HIV-1-infected macrophages may generate a permissive envi-
ronment and prevent the death of the host cells. The presence
of p21 in the nucleus has been related to its cell cycle functions
(16), whereas the cytoplasmic localization of this protein has
been implicated in controlling the apoptosis of alveolar mac-
rophages and during monocytic differentiation (5, 57). Origi-
nally described as a cell cycle inhibitor, p21 has also been
associated with the modulation of apoptosis, the cytoplasmic
regulation of nuclear import, and transcriptional regulation by
acting as a transcriptional adaptor molecule (12). The tran-
scriptional coactivator p300, which is essential for efficient viral
replication through its interaction with the cyclic AMP re-

FIG. 6. Inhibition of p21 reduces HIV-1 replication. (A) p21-specific oligonucleotides (1 and 2, 50 nM), but not a control oligonucleotide (3),
inhibit HIV-1 growth in replicate cultures, as determined by p24 levels (data for day 12 are shown and are percentages of the positive HIV control
with no oligonucleotide). (B) Macrophages treated with p21 siRNA duplexes (5 nM) 5 days prior to HIV infection (% of positive HIV control with
no siRNA treatment) (data shown are from a representative experiment; n � 3). Percentages of HIV-1 infection were determined by comparing
the p24 levels in untreated versus oligonucleotide- or siRNA-treated macrophages. The inset is a Western blot for p21 from day 14. (C) Cells
treated with p21 and negative control siRNAs (5 days) were analyzed by flow cytometry for CD4 and CCR5 cell surface expression. (D) Nested
PCR to detect proviral DNA on days 1 and 2 after HIV-1BaL infection of macrophages treated with p21 siRNA or negative control siRNA. The
control represents uninfected cells.
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sponse element binding protein (CREB) and HIV-1 Tat (29),
can be stimulated by the coexpression of p21 through a novel
transcriptional repression domain on p300 (48). An increase in
TBP-1 may represent a viral strategy to ensure efficient regu-
lation of transcription and reproduction. The induction of the
transcription factors PC4 and RPL6 by the virus represents a
potential pathway to maximize virus survival, while the tran-
scription factor HIF-1, known to target p21 (44), may ensure
the presence of this CDK during infection. Our studies support
a causal relationship between HIV-1 and induced p21 expres-
sion, which in turn drives the viral life cycle in macrophages.
Our data also demonstrate that Vpr independently enhances

p21 transcription, similar to that reported in a replicating T-
cell line (9), connecting this accessory protein with the p21-
dependent infectious process (26, 46).

Targeting p21 with antisense oligonucleotides or a siRNA
demonstrates the important role of this host molecule as a
requisite regulator of subsequent viral replication in infected
macrophages. The precise mechanism by which p21 contrib-
utes to HIV-1 replication requires further investigation, but
the participation of p21 may be pivotal for the regulation of
other host molecules that are required for successful viral
replication, and their activities may be diminished by the block-
ade of p21. CDDO, a potent differentiating, antiproliferative,

FIG. 7. Inhibition of HIV-1 replication by CDDO. (A) CDDO-treated cells (as described in Materials and Methods) showed reduced viral
replication, as quantitated by p24 levels, compared with dimethyl sulfoxide-treated control cells and untreated cells (day 10) (n � 3; �, P � 0.01
by one-tail paired t test). (B and C) By TEM, reduced numbers of infected cells were observed after CDDO or di-CDDO treatment. Analyses of �200
cells/treatment condition revealed the absence or near absence of detectable virions. (D) CDDO-treated cells infected with HIV-1 demonstrated
reduced p21 transcription, as determined by RPA (data from day 12 postinfection are shown and are mean values from a representative
experiment; n � 2). (E) Terminal deoxynucleotidyl transferase-FITC (apoptotic) and DAPI (nuclear) staining of cultures that were infected with
HIV-1 and/or treated with CDDO. (F) Macrophages were infected with HIV-1BaL or ADA, treated with CDDO (0.1 �M) or left untreated, and
analyzed by PCR for p21 and GAPDH. (G) Supernatants (12 days) collected from HIV-1BaL-, ADA-, or 727-infected cells that were treated with
CDDO or left untreated were analyzed for viral replication by p24 ELISA.
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and anti-inflammatory compound (55) and a potential chemo-
therapeutic agent for cancer, was recently identified as a mem-
ber of a new class of nuclear PPAR� ligands (66, 67). PPAR�
is a nuclear hormone receptor involved in the gene regulation
of lipid and glucose metabolism, cellular differentiation, and
the control of macrophage inflammatory molecules (6). Ago-
nists of PPAR� have recently been shown to influence retro-
viral replication (24, 47), and we now provide insight into a
molecular target, since the PPAR� ligand CDDO, which in-
hibits p21, also inhibits HIV in parallel. Whether the antiviral
effect of CDDO is totally mediated through this receptor by its
effect on p21 (43) or also involves the inhibition of NF-�B (53),
modulation of p38 MAPK (32), and/or production of cytokines
that regulate cellular and viral components, such as transform-
ing growth factor beta (35, 61), is still unresolved and is cur-
rently under intense investigation.

By using multiple parameters, we have documented that p21
contributes to the HIV-1 infection process in macrophage
hosts. The increased expression accompanying infection, but
most importantly, the ability to inhibit p21 by antisense oligo-
nucleotides, siRNA, and CDDO and the suppression of HIV
replication all point to the causal link between p21 and HIV.
Since the macrophage represents a key target for HIV-1 infec-
tion and one of the major obstacles to eradicating the virus,
even during highly active antiretroviral therapy (19, 30, 63),
our study of the effect of HIV-1 on the macrophage transcrip-
tome reveals important insights into the pattern of host gene
expression underlying viral success in this population. Contin-
ued exploration of p21 and other virus-regulated macrophage
genes that are critical for HIV-1 may disclose mechanisms by
which this reservoir can be targeted and/or may serve as prog-
nostic markers of disease progression. Finally, since anti-
HIV-1 therapy is limited by the side effects that have accom-
panied conventional antiretroviral drugs and the constant
emergence of drug-resistant virus, CDDO may be considered a
candidate drug to target HIV-1 through a host cell factor, in
conjunction with current antiviral therapy, to suppress replica-
tion sequelae in infected hosts.
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4490 VÁZQUEZ ET AL. J. VIROL.



ciency virus type 1 Tat with the transcriptional coactivators p300 and CREB
binding protein. J. Virol. 72:8252–8256.

30. Igarashi, T., C. R. Brown, Y. Endo, A. Buckler-White, R. Plishka, N. Bischof-
berger, V. Hirsch, and M. A. Martin. 2001. Macrophage are the principal
reservoir and sustain high virus loads in rhesus macaques after the depletion
of CD4� T cells by a highly pathogenic simian immunodeficiency virus/HIV
type 1 chimera (SHIV): implications for HIV-1 infections of humans. Proc.
Natl. Acad. Sci. USA 98:658–663.

31. Kedzierska, K., and S. M. Crowe. 2001. Cytokines and HIV-1: interactions
and clinical implications. Antivir. Chem. Chemother. 12:133–150.

32. Kim, J. Y., J. A. Choi, T. H. Kim, Y. D. Yoo, J. I. Kim, Y. J. Lee, S. Y. Yoo,
C. K. Cho, Y. S. Lee, and S. J. Lee. 2002. Involvement of p38 mitogen-
activated protein kinase in the cell growth inhibition by sodium arsenite.
J. Cell Physiol. 190:29–37.

33. Lawson, B. R., R. Baccala, J. Song, M. Croft, D. H. Kono, and A. N.
Theofilopoulos. 2004. Deficiency of the cyclin kinase inhibitor p21(WAF-1/
CIP-1) promotes apoptosis of activated/memory T cells and inhibits sponta-
neous systemic autoimmunity. J. Exp. Med. 199:547–557.

34. Levere, R. D., R. Staudinger, G. Loewy, A. Kappas, S. Shibahara, and N. G.
Abraham. 1993. Elevated levels of heme oxygenase-1 activity and mRNA in
peripheral blood adherent cells of acquired immunodeficiency syndrome
patients. Am. J. Hematol. 43:19–23.

35. Li, C. Y., L. Suardet, and J. B. Little. 1995. Potential role of WAF1/Cip1/p21 as
a mediator of TGF-beta cytoinhibitory effect. J. Biol. Chem. 270:4971–4974.

36. Ma, G., T. Greenwell-Wild, K. Lei, W. Jin, J. Swisher, N. Hardegen, C. T.
Wild, and S. M. Wahl. 2004. Secretory leukocyte protease inhibitor (SLPI)
binds to annexin II, a cofactor for macrophage HIV-1 infection. J. Exp. Med.
200:1337–1346.

37. McNeely, T. B., D. C. Shugars, M. Rosendahl, C. Tucker, S. P. Eisenberg,
and S. M. Wahl. 1997. Inhibition of human immunodeficiency virus type 1
infectivity by secretory leukocyte protease inhibitor occurs prior to viral
reverse transcription. Blood 90:1141–1149.

38. Modrich, P. 1997. Strand-specific mismatch repair in mammalian cells.
J. Biol. Chem. 272:24727–24730.

39. Morita, T., T. Sato, H. Nyunoya, A. Tsujimoto, J. Takahara, S. Irino, and K.
Shimotohno. 1993. Isolation of a cDNA clone encoding DNA-binding pro-
tein (TAXREB107) that binds specifically to domain C of the tax-responsive
enhancer element in the long terminal repeat of human T-cell leukemia virus
type I. AIDS Res. Hum. Retrovir. 9:115–121.

40. Nelbock, P., P. J. Dillon, A. Perkins, and C. A. Rosen. 1990. A cDNA for a
protein that interacts with the human immunodeficiency virus Tat transac-
tivator. Science 248:1650–1653.

41. Orenstein, J. M., C. Fox, and S. M. Wahl. 1997. Macrophages as a source of
HIV during opportunistic infections. Science 276:1857–1861.

42. Popik, W., and P. M. Pitha. 2000. Exploitation of cellular signaling by HIV-1:
unwelcome guests with master keys that signal their entry. Virology 276:1–6.

43. Scott, M. T., N. Morrice, and K. L. Ball. 2000. Reversible phosphorylation at
the C-terminal regulatory domain of p21(Waf1/Cip1) modulates proliferat-
ing cell nuclear antigen binding. J. Biol. Chem. 275:11529–11537.

44. Semenza, G. L. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer
3:721–732.

45. Shapiro, L., K. A. Heidenreich, M. K. Meintzer, and C. A. Dinarello. 1998.
Role of p38 mitogen-activated protein kinase in HIV type 1 production in
vitro. Proc. Natl. Acad. Sci. USA 95:7422–7426.

46. Sherman, M. P., C. M. de Noronha, L. A. Eckstein, J. Hataye, P. Mundt,
S. A. Williams, J. A. Neidleman, M. A. Goldsmith, and W. C. Greene. 2003.
Nuclear export of Vpr is required for efficient replication of human immu-
nodeficiency virus type 1 in tissue macrophages. J. Virol. 77:7582–7589.

47. Skolnik, P. R., M. F. Rabbi, J. M. Mathys, and A. S. Greenberg. 2002.
Stimulation of peroxisome proliferator-activated receptors alpha and gamma
blocks HIV-1 replication and TNFalpha production in acutely infected pri-
mary blood cells, chronically infected U1 cells, and alveolar macrophages
from HIV-infected subjects. J. Acquir. Immune Defic. Syndr. 31:1–10.

48. Snowden, A. W., L. A. Anderson, G. A. Webster, and N. D. Perkins. 2000. A
novel transcriptional repression domain mediates p21(WAF1/CIP1) induc-
tion of p300 transactivation. Mol. Cell. Biol. 20:2676–2686.

49. Spira, A. I., P. A. Marx, B. K. Patterson, J. Mahoney, R. A. Koup, S. M.
Wolinsky, and D. D. Ho. 1996. Cellular targets of infection and route of viral
dissemination after an intravaginal inoculation of simian immunodeficiency
virus into rhesus macaques. J. Exp. Med. 183:215–225.

50. Sporer, B., R. Paul, U. Koedel, R. Grimm, M. Wick, F. D. Goebel, and H. W.
Pfister. 1998. Presence of matrix metalloproteinase-9 activity in the cerebro-
spinal fluid of human immunodeficiency virus-infected patients. J. Infect.
Dis. 178:854–857.

51. Steinman, R. A., J. Huang, B. Yaroslavskiy, J. P. Goff, E. D. Ball, and A.
Nguyen. 1998. Regulation of p21(WAF1) expression during normal myeloid
differentiation. Blood 91:4531–4542.

52. Stevenson, M. 2003. HIV-1 pathogenesis. Nat. Med. 9:853–860.

53. Straus, D. S., G. Pascual, M. Li, J. S. Welch, M. Ricote, C. H. Hsiang, L. L.
Sengchanthalangsy, G. Ghosh, and C. K. Glass. 2000. 15-Deoxy-delta 12,14-
prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling path-
way. Proc. Natl. Acad. Sci. USA 97:4844–4849.

54. Subbramanian, R. A., A. Kessous-Elbaz, R. Lodge, J. Forget, X. J. Yao, D.
Bergeron, and E. A. Cohen. 1998. Human immunodeficiency virus type 1 Vpr
is a positive regulator of viral transcription and infectivity in primary human
macrophages. J. Exp. Med. 187:1103–1111.

55. Suh, N., Y. Wang, T. Honda, G. W. Gribble, E. Dmitrovsky, W. F. Hickey,
R. A. Maue, A. E. Place, D. M. Porter, M. J. Spinella, C. R. Williams, G. Wu,
A. J. Dannenberg, K. C. Flanders, J. J. Letterio, D. J. Mangelsdorf, C. F.
Nathan, L. Nguyen, W. W. Porter, R. F. Ren, A. B. Roberts, N. S. Roche, K.
Subbramanian, and M. B. Sporn. 1999. A novel synthetic oleanane triter-
penoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differen-
tiating, antiproliferative, and anti-inflammatory activity. Cancer Res. 59:
336–341.

56. Sumi, T., K. Matsumoto, Y. Takai, and T. Nakamura. 1999. Cofilin phos-
phorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-
activated LIM-kinase 2. J. Cell Biol. 147:1519–1532.

57. Tomita, K., G. Caramori, S. Lim, K. Ito, T. Hanazawa, T. Oates, I. Chiselita,
E. Jazrawi, K. F. Chung, P. J. Barnes, and I. M. Adcock. 2002. Increased
p21(CIP1/WAF1) and B cell lymphoma leukemia-x(L) expression and re-
duced apoptosis in alveolar macrophages from smokers. Am. J. Respir. Crit.
Care Med. 166:724–731.

58. Tomkinson, B. 1999. Tripeptidyl peptidases: enzymes that count. Trends
Biochem. Sci. 24:355–359.

59. Tremblay, M. J., J. F. Fortin, and R. Cantin. 1998. The acquisition of
host-encoded proteins by nascent HIV-1. Immunol. Today 19:346–351.

60. Vendeville, A., F. Rayne, A. Bonhoure, N. Bettache, P. Montcourrier, and B.
Beaumelle. 2004. HIV-1 Tat enters T cells using coated pits before translo-
cating from acidified endosomes and eliciting biological responses. Mol.
Biol. Cell 15:2347–2360.

61. Wahl, S. M., J. B. Allen, N. McCartney-Francis, M. C. Morganti-Kossmann,
T. Kossmann, L. Ellingsworth, U. E. Mai, S. E. Mergenhagen, and J. M.
Orenstein. 1991. Macrophage- and astrocyte-derived transforming growth
factor beta as a mediator of central nervous system dysfunction in acquired
immune deficiency syndrome. J. Exp. Med. 173:981–991.

62. Wahl, S. M., T. Greenwell-Wild, G. Peng, H. Hale-Donze, T. M. Doherty, D.
Mizel, and J. M. Orenstein. 1998. Mycobacterium avium complex augments
macrophage HIV-1 production and increases CCR5 expression. Proc. Natl.
Acad. Sci. USA 95:12574–12579.

63. Wahl, S. M., T. Greenwell-Wild, G. Peng, G. Ma, J. M. Orenstein, and N.
Vazquez. 2003. Viral and host cofactors facilitate HIV-1 replication in mac-
rophages. J. Leukoc. Biol. 74:726–735.

64. Wahl, S. M., J. M. Orenstein, and P. D. Smith. 1996. Macrophage function
in HIV infection, p. 303–336. In S. Gupta (ed.), Immunology of HIV infec-
tion. Plenum Medical Book Co., New York, N.Y.

65. Wainberg, Z., M. Oliveira, S. Lerner, Y. Tao, and B. G. Brenner. 1997.
Modulation of stress protein (hsp27 and hsp70) expression in CD4� lym-
phocytic cells following acute infection with human immunodeficiency virus
type-1. Virology 233:364–373.

66. Wakino, S., U. Kintscher, Z. Liu, S. Kim, F. Yin, M. Ohba, T. Kuroki, A. H.
Schonthal, W. A. Hsueh, and R. E. Law. 2001. Peroxisome proliferator-
activated receptor gamma ligands inhibit mitogenic induction of p21(Cip1)
by modulating the protein kinase Cdelta pathway in vascular smooth muscle
cells. J. Biol. Chem. 276:47650–47657.

67. Wang, Y., W. W. Porter, N. Suh, T. Honda, G. W. Gribble, L. M. Leesnitzer,
K. D. Plunket, D. J. Mangelsdorf, S. G. Blanchard, T. M. Willson, and M. B.
Sporn. 2000. A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-
oic acid (CDDO), is a ligand for the peroxisome proliferator-activated re-
ceptor gamma. Mol. Endocrinol. 14:1550–1556.

68. Wei, X., J. M. Decker, H. Liu, Z. Zhang, R. B. Arani, J. M. Kilby, M. S. Saag,
X. Wu, G. M. Shaw, and J. C. Kappes. 2002. Emergence of resistant human
immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20)
monotherapy. Antimicrob. Agents Chemother. 46:1896–1905.

69. Williams, K., A. Schwartz, S. Corey, M. Orandle, W. Kennedy, B. Thompson,
X. Alvarez, C. Brown, S. Gartner, and A. Lackner. 2002. Proliferating cel-
lular nuclear antigen expression as a marker of perivascular macrophages in
simian immunodeficiency virus encephalitis. Am. J. Pathol. 161:575–585.

70. Wu, M. X., Z. Ao, K. V. Prasad, R. Wu, and S. F. Schlossman. 1998. IEX-1L,
an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science
281:998–1001.

71. Yang, N., O. Higuchi, K. Ohashi, K. Nagata, A. Wada, K. Kangawa, E.
Nishida, and K. Mizuno. 1998. Cofilin phosphorylation by LIM-kinase 1 and
its role in Rac-mediated actin reorganization. Nature 393:809–812.

72. Yao, Y., A. Hoffer, C. Y. Chang, and A. Puga. 1995. Dioxin activates HIV-1
gene expression by an oxidative stress pathway requiring a functional cyto-
chrome P450 CYP1A1 enzyme. Environ. Health Perspect. 103:366–371.

VOL. 79, 2005 HIV INDUCES MACROPHAGE p21 GENE EXPRESSION 4491


