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Abstract

Background—Intracranial pressure (ICP) normally ranges from 5 to 15 mmHg. Elevation in 

ICP is an important clinical indicator of neurological injury, and ICP is therefore monitored 

routinely in several neurological conditions to guide diagnosis and treatment decisions. Current 

measurement modalities for ICP monitoring are highly invasive, largely limiting the measurement 

to critically ill patients. An accurate noninvasive method to estimate ICP would dramatically 

expand the pool of patients that could benefit from this cranial vital sign.

Methods—This work presents a spectral approach to model-based ICP estimation from arterial 

blood pressure (ABP) and cerebral blood flow velocity (CBFV) measurements. The model 

captures the relationship between the ABP, CBFV and ICP waveforms and utilizes a second-order 

model of the cerebral vasculature to estimate ICP.

Results—The estimation approach was validated on two separate clinical datasets, one recorded 

from thirteen pediatric patients with a duration of around seven hours, and the other recorded from 

five adult patients, one hour and 48 minutes in duration. The algorithm was shown to have an 

accuracy (mean error) of 0.4 mmHg and −1.5 mmHg, and a precision (standard deviation of the 
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error) of 5.1 mmHg and 4.3 mmHg, in estimating mean ICP (range of 1.3 mmHg to 24.8 mmHg) 

on the pediatric and adult data, respectively. These results are comparable to previous results 

and within the clinically relevant range. Additionally, the accuracy and precision in estimating 

the pulse pressure of ICP on a beat-by-beat basis were found to be 1.3 mmHg and 2.9 mmHg 

respectively.

Conclusion—These contributions take a step towards realizing the goal of implementing a real-

time noninvasive ICP estimation modality in a clinical setting, to enable accurate clinical-decision 

making while overcoming the drawbacks of the invasive ICP modalities.

Index Terms

Intracranial pressure; arterial blood pressure; cerebral blood flow velocity; brain injury; model-
based signal processing

I. INTRODUCTION

INJURIES to and disorders of the brain – such as traumatic brain injury (TBI), hemorrhagic 

stroke, hydrocephalus, or brain tumor – are responsible for a significant fraction of the total 

hospital visits in the United States each year [1]–[6]. These conditions have in common 

that one of the intracranial compartments (brain tissue, cerebrospinal fluid (CSF), or blood) 

expands at the expense of the volumes occupied by the other two, owing to the volume 

constraint imposed by the rigid skull and relatively inelastic dura mater [7]. This restriction 

in volume implies that uncompensated shifts and expansions in compartmental volumes lead 

to an increase in the compartment pressure [8], [9]. Hence, the diagnosis, monitoring and 

treatment of patients with the aforementioned conditions often rely on the measurement and 

tracking of intracranial pressure (ICP), as elevations in ICP are correlated with poor outcome 

in brain injury patients. Such elevations need to be detected and managed expeditiously as 

they can result in poor perfusion of the brain tissue and may lead to brain herniation [10], 

[11].

Normal mean ICP values range from 5 to 15 mmHg, and in standard clinical practice, ICP 

is monitored invasively by placing a fluid filled catheter into the ventricular CSF space 

and, by convention, levelling the pressure transducer to the Foramen of Monro [12], [13]. 

Alternatively, a pressure-sensitive probe can be placed into the brain tissue to measure tissue 

pressure. Both approaches are used for decision making in current clinical practice [14].

The invasiveness of the ICP measurement and the need for neurosurgical expertise to place 

such a catheter have motivated a variety of engineering approaches to make this important 

cranial vital sign available noninvasively [15], [16]. A particular class of approaches to 

continuous ICP estimation relies on waveform measurements of cerebral blood flow velocity 

(CBFV), recorded noninvasively using transcranial Doppler (TCD) ultrasonography, and 

radial arterial blood pressure (ABP), measured invasively through indwelling catheters [17]–

[20]. While these methods use invasively measured ABP, the invasiveness of placing a 

radial artery line and the associated risk for tissue damage and infection are considerably 

lower than those associated with placing a ventricular catheter for ICP measurement. 

Hence, the usage of the term ”noninvasive” for ICP estimation based on simultaneously 
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acquired (noninvasive) CBFV measurements and (invasive) ABP measurements has become 

established in the field.

In the past, most approaches that infer ICP from CBFV and ABP waveform recordings 

have largely focused on learning-based or data-driven methods [19], [21]. More recently, 

model-based methods have been developed that leverage our mechanistic understanding 

of the underlying physiology to estimate ICP in a model-based manner [22]–[30]. These 

model-based methods analyze the ABP and CBFV waveform measurements in the context 

of mechanistic models of the relevant cerebrospinal physiology. While such noninvasive 

ICP estimation has traditionally focused on estimating the mean ICP value, it has been 

suggested that the ICP pulse pressure or waveform morphology carry important diagnostic 

and prognostic information [31]–[33], and hence ICP pulse pressure or full waveform 

estimation has recently become the focus of attention as well [27], [30].

Building on prior work [24], [26], we propose a frequency-domain approach to model-based 

ICP estimation that seeks to overcome the need for careful time alignment. Additionally, 

our approach estimates beat-by-beat ICP pulsatility, along with mean ICP. Here, we first 

describe the model of the cerebral vasculature and review past efforts at model-based 

estimation of ICP. Then, we describe the implementation of our algorithm in detail, followed 

by a description of the clinical dataset used for validating our method. Finally, we present 

our estimation results and discuss the accuracy and precision of our algorithm when 

compared to the gold-standard ICP measured invasively.

II. METHODOLOGY

A. Model of craniospinal physiology

Building on prior work by Kashif et al. [23], [24], [34], Noraky [26] proposed the second-

order circuit model depicted in Figure 1, to represent a major cerebral vascular territory, 

and its interplay with ICP. This model is based on a simplified compartmental view of 

blood flow through the brain, in which pa(t) represents the ABP waveform at the inlet of a 

major cerebral vascular territory such as the middle cerebral artery (MCA), q(t) represents 

the volumetric cerebral blood flow (CBF) into the vascular territory, and pic(t) represents 

the ICP waveform. The inductor L models the inertia of blood, and the capacitance 

C represents the lumped compliance of the arterial vessel walls and surrounding brain 

tissue. The terminal pressure in the capacitive branch of the circuit is ICP as the pressure 

external to the vessel is ICP. The resistor R models the resistance to blood flow through 

the vascular territory, between the upstream arteries and downstream veins. Since ICP is 

typically larger than the cerebral venous pressure and since veins typically cannot sustain a 

negative transmural pressure, ICP is established as the effective downstream pressure [24]. 

This phenomenon is known as flow limitation and is seen in other physiological systems 

in which the pressure outside a collapsible structure exceeds the inside pressure. It is also 

commonly referred to as the Starling resistor effect [35]. Hence the blood flow through the 

cerebrovascular system is driven by the difference of ABP and ICP, denoted as the cerebral 

perfusion pressure (CPP), which we will also denote as x(t).
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CPP ≡ ABP − ICP = pa(t) − pic(t) ≡ x(t) (1)

B. Model-based ICP estimation

Kashif et al. [24] developed a model-based approach to estimate ICP noninvasively using 

a time-domain algorithm that utilizes a peripherally measured ABP waveform, rather than 

the cerebral ABP, and a CBFV waveform, instead of the volumetric CBF waveform, as 

inputs. The primary limitation of this time-domain algorithm was the need to accurately 

estimate the inherent and unknown phase lag that exists between the cerebral ABP and 

CBFV signals, and to adjust the timing of the peripherally measured ABP waveform to 

approximate this phase lag. Kashif at al. adjusted the timing of the ABP recording post-hoc 

based on physiological considerations and the correlation between heart rates computed 

from the ABP and CBFV waveforms. The resultant ICP estimates were very sensitive to this 

this adjustment, which motivated our approach of estimating ICP in the frequency domain 

using the second-order model of the cerebral vasculature shown in Figure 1 and described by 

the second-order equation

q(t) + L
R

dq(t)
dt + LC d2q(t)

dt2 = x(t)
R + C dx(t)

dt (2)

which is obtained by applying Kirchhoff’s current law and using the constitutive 

relationships for the inductor L, capacitor C, and resistor R.

A major advantage of the model-based ICP estimation approach by Kashif is the invariance 

of the resulting ICP estimates to constant scaling (or linear transformation) of the CBF 

waveform. To the extent that the CBFV waveform is related to the volumetric blood 

flow (through scaling by the vessel’s cross-sectional area), this invariance allows for the 

substitution of CBF by CBFV as one of the input waveforms [24]. As with the Kashif 

model, Eqn. 2 is also invariant under linear transformations of q(t), as can be verified by 

replacing q(t) by q(t) = q(t)
β , for any non-zero scaling parameter β, to obtain

q(t) + L
R

dq(t)
dt + LC d2q(t)

dt2
= x(t)

R + C dx(t)
dt (3)

The linear scaling of q(t) results in the equation retaining its form with R, C and L being 

replaced by R = βR, C = C
β  and L = βL, respectively. To the extent that the model is a 

realistic – albeit highly aggregate – representation of the relevant cerebrospinal physiology, 

this scaling invariance has a major advantage as it allows for the replacement of the 

volumetric CBF, which cannot be measured continuously in real-time, with a scaled version, 

without affecting the ICP estimates. Hence, CBF can be replaced by CBFV, if the two 

are related by a scaling factor accounting for the effective cross-sectional area of the 

vessel and possibly the Doppler angle. CBFV is routinely measured in patients by TCD 

ultrasonography and hence can serve as an input to our algorithm. For notational simplicity, 
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q(t) will be used to denote CBFV, while R, C and L will denote the scaled versions of the 

original parameters. Hence, Equation 4 now represents the relationship between ABP (pa(t)), 
CBFV (q(t)) and CPP (x(t)). To address the need for careful time alignment, we transform 

Equation 2 in its frequency-domain form

|Q(jω) |2 [(1 − ω2LC)2 + (ωL
R )

2
] = |X(jω) |2 [ 1

R2 + (ωC)2] (4)

where Q(jω) and X(jω) are the Fourier transforms of q(t) and x(t), respectively, and jω is the 

complex frequency [36].

The use of power spectra in the frequency domain eliminates the need for careful estimation 

of the phase offset between the ABP and CBFV waveforms. Eqn. 4 can be solved using 

a constrained least-squares optimization at appropriately chosen frequencies ω0, ω1, …. 

ωk. However any such least-squares formulation would require the prior knowledge of the 

unknown CPP spectrum, as |X(jω)|2 depends on knowledge of the ICP waveform. Hence, 

a valid algorithmic approximation of the CPP spectrum must be made in order to solve the 

least-squares optimization and ultimately estimate mean ICP.

C. Spectral algorithm

An approximation to |X(jω)|2 can be obtained by observing the relationship between the 

measured ABP and ICP waveforms. This approximation is motivated by the recognition that 

the systolic upstroke of the ICP wavelet is driven by the ABP wavelet impinging on the 

intracranial tissue compartments [37], [38] and hence is often referred to as the ”percussion” 

wave of the ICP waveform.

The mean-subtracted ABP and ICP waveform relationship largely conforms to a 

characteristic shape over each beat, as shown in Figure 2, where the ABP-ICP dynamics 

were obtained over one 60-beat data window. The relationship exhibits two clear phases: 

one representing the systolic upstroke (from the onset of a beat to the systolic peak) and the 

other corresponding to the diastolic decay. We leverage this relationship to reconstruct the 

mean-subtracted ICP waveform from the mean-subtracted ABP waveform.

The upstroke of the reconstructed mean-subtracted ICP waveform, Pic
u (t), is modeled as a 

linear function of the mean-subtracted ABP waveform, Pa
u(t),

Pic
u (t) = Pa

u(t) ⋅ αu + βu (5)

with associated fitting parameters αu and βu. The diastolic portion of the reconstructed 

mean-subtracted ICP waveform, Pic
d (t), is modeled as a third-order polynomial according to

Pic
d (t) = Pa

d(t) 3 ⋅ α3
d + Pa

d(t) 2 ⋅ α2
d + Pa

d(t) ⋅ α1
d + βd (6)

with fitting parameters α1
d, α2

d, α3
d and βd.
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The fitting parameters of these relationships were determined in a training step, for which 

we allowed ourselves access to two patient records, which constituted less than 2% in total 

duration of our dataset. We were completely blinded to the remainder of the ICP data.

Henceforth, P(t) will denote the mean-subtracted pressure waveforms, while p(t) will 

represent the entire pressure waveform including the DC component.

The reconstructed mean-subtracted ICP wavelet, Pic
r (t), is obtained for each beat by linking 

Pic
u (t) and Pic

d (t). Thus, the reconstructed mean-subtracted CPP, Xr(t), is obtained over each 

window by subtracting the mean-subtracted ABP and reconstructed mean-subtracted ICP

Xr(t) = Pa(t) − Pic
r (t) (7)

It is important to emphasize that the relationship seen in Figure 2 and the reconstruction of 

CPP are with respect to the mean-subtracted waveforms and the ultimate aim is twofold, 

namely to estimate the mean ICP over each estimation window, and to estimate the ICP 

pulse pressure on a beat-by-beat basis.

We follow the approach by Kashif et al. and perform the estimation of mean ICP over 

estimation windows of 60 beats in duration. Within each window, the values of the circuit 

parameters (R, L and C) are assumed to be constant. Also, the ICP is assumed to be 

constant at its mean level over each estimation window, resulting in a single noninvasive 

mean ICP estimate every 60 beats. The Xr(t) and q(t) signals for each estimation window are 

further divided into two non-overlapping subwindows, each 30 beats in duration. The power 

spectral densities Xr(jω) 2
 and |Q(jω)|2 are then computed over each sub-window, using a 

Hamming-window based averaged periodogram method with 50% overlap.

We identify, in a fully automated manner, the dominant peaks ωi in the CBFV and CPP 

spectra for the fundamental (i = 1) and the first three harmonics (i = 2, 3, 4) in each 

subwindow, by estimating the heart rate from the ABP as the fundamental frequency ω0, and 

scanning around integral multiples of ω0 for spectral peaks (Figure 3). Thus, the frequency 

of each dominant peak is determined as

ωk = k ⋅ ω0 + ϵk; k = 1, 2, 3, 4 (8)

where ω0 is the fundamental frequency and ϵk is a correction over the scanning range to 

locate the spectral peak.

This process gives a total of eight spectral peaks for power spectral densities of Xr(jω) 2
 and 

|Q(jω)|2 in each window: the dominant peaks near the fundamental and three harmonics for 

each of two subwindows per signal. A constrained least-squares optimization is formulated 

using the harmonic frequencies and their corresponding peak amplitudes. Note that the DC 

component has not been used in the least squares formulation.
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min‖
Q jω0

2

⋮
Q jω7

2
−

Xr jω0
2 ω0

2 Xr jω0
2 −ω0

2 Q jω0
2 −ω0

4 Q jω0
2

⋮ ⋮ ⋮ ⋮

Xr jω7
2 ω7

2 Xr jω7
2 −ω7

2 Q jω7
2 −ω7

4 Q jω7
2

v ‖2
2

(9)

The resulting optimization problem is implemented as formulated in Equation 9 using the 

auxilliary variables v1 = 1/R2, v2 = C2, v3 = L2

R2 − 2LC, and v4 = L2C2 and subject to the 

constraints v1 > 0, v2 > 0, v1v4
v2

− 2 v4 = v3, v4 > 0.

The parameter estimates R, L and C for each window can be obtained from the solutions of 

the least-squares optimized parameters v1, v2 and v4 according to

R = 1
v1

(10)

C = v2 (11)

L = v4

v2
(12)

Finally, the noninvasive estimate of mean ICP is computed for each estimation window as

nICP = pw − Rqw (13)

where pw and qw denote the window-averaged ABP and CBFV, respectively.

The reconstructed ICP waveform can be obtained over each window by adding the estimated 

mean ICP to the previously reconstructed mean-subtracted ICP.

nICP recon(t) = nICP + Pic
r (t) (14)

In addition to the window-by-window mean ICP estimates, we also compute the pulse 

pressure of the reconstructed ICP waveform, PP ic
r [n], as the difference between the maximum 

and minimum values of Pic
r (t) over each beat. Since the peak of Pic

r (t) also corresponds to the 

point where Pic
u (t) and Pic

d (t) are concatenated, there is a potential for artifacts at this point. 

Hence, the peak and trough of Pic
r (t) are selected as the mean of three neighboring samples, 

after excluding spike-like artifacts. Thus, we obtain PP ic
r [n] for every beat, and mean ICP for 

each 60-beat estimation window.

D. Signal preprocessing

The estimation algorithm described above requires highquality ABP and CBFV waveform 

recordings to generate estimates of ICP. The radial ABP signal was comparatively free 
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of noise, but was still subject to occasional corruption due to clogging or flushing of the 

catheter, and intermittent movement artifact. The CBFV waveform was more prone to noise 

and artifacts, due to its high sensitivity to relative motion of the TCD transducer and the 

patient. The CBFV signal also consisted of stretches of unusable data during periods in 

which the ultrasonographer searched for an acoustic window to obtain a continuous, strong 

acoustic signal from the MCA. Since our algorithm relies on the spectral information of the 

waveform recordings, the ICP estimates can be severely affected by poor signal quality and 

intermittent artifact.

To guard against inclusion of stretches of data with unphysiological signatures or excessive 

noise, we have previously developed an automated signal waveform pre-processing pipeline, 

consisting of ABP and CBFV signal quality assessment, waveform synchronization, and 

beat-onset alignment [28]. Additionally, the mean ABP was adjusted to account for the 

fact that the model requires measurements at the level of the MCA but clinically, the ABP 

waveform is commonly calibrated to the level of the heart [28]. During each recording 

session, we therefore measured the vertical heights of the ABP and ICP transducers and 

calculated the hydrostatic pressure difference to be expected due to the difference in vertical 

locations of the pressure measurements. We subtracted this hydrostatic pressure from the 

ABP waveform to approximate the mean pressure at the MCA [28].

E. Error metrics

The estimation results are quantified in terms of the mean estimation error (bias or 

accuracy), the standard deviation of the error (SDE or precision), and the root mean squared 

error (RMSE) of the ICP estimates with respect to the mean of the invasively measured ICP.

bias = 1
n ∑

i = 1

n
nICP i − ICP i (15)

SDE = ∑i = 1
n nICP i − ICP i − bias 2

n − 1
(16)

RMSE = ∑i = 1
n nICP i − ICP i

2

n
(17)

where ICP i is the mean measured ICP, and nICPi is the mean ICP estimate, both for the ith 

60-beat estimation window. Additionally, we compute the accuracy and precision errors for 

the estimated beat-by-beat ICP pulse pressure.

III. CLINICAL DATASET

The algorithm was tested on two clinical datasets, one comprising data from thirteen 

(primarily) pediatric patients, and the other from five adults. The training described in 

Section II-C was performed on less than 2% of the pediatric data; no training was performed 

on the adult dataset.
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A. Pediatric population

The pediatric patient dataset has been previously reported and was collected at Boston 

Children’s Hospital [28]. Briefly, a custom data-acquisition system was deployed in the 

hospital’s Medical and Surgical Intensive Care Unit for collection of high fidelity waveform 

recordings and ancillary demographic and clinical information and meta data related to the 

data-acquisition process. Data collection was approved by the Institutional Review Boards at 

Boston Children’s Hospital and MIT, and informed consent or – when appropriate – assent 

were obtained from the patient or their legally authorized representative. Pediatric patients 

in whom invasive ICP monitoring was indicated as part of routine clinical care were eligible 

for enrollment [28].

Using the Spencer ST3 TCD ultrasound device (Spencer Technologies, Seattle, WA), CBFV 

waveforms were recorded by trained members of the study team, and whenever possible 

waveform measurements were made from both the right and left MCA. The ICP and ABP 

waveforms were recorded using the Philips MP-90 bedside monitor (Philips Healthcare, 

Andover, MA). The ICP waveform was measured invasively either by an external ventricular 

drain (EVD) or a parenchymal probe, and the ABP waveform was recorded invasively from 

a radial arterial line, placed according to local standard of care procedures. All waveforms 

were streamed digitally, nominally at 125 samples/s, to a Component Neuromonitoring 

System (Moberg Research, Ambler, PA), without interruption to the standard clinical 

protocol of monitoring or care. Ancillary data (hematocrit, heights of pressure transducers, 

demographic information) were also recorded at the bedside.

A total of 41 studies from thirteen patients (nine males, four females), recorded between 

February 2015 and June 2017, were used for validation of our noninvasive ICP estimation 

algorithm. The dataset consists of a diverse population of patients, with ages ranging from 2 

to 25 years (median of 11 years) and presenting with various conditions requiring invasive 

ICP as part of standard practice of care, including TBI, hemorrhagic strokes, hydrocephalus, 

and metabolic abnormalities. All patients were carefully monitored and managed. From the 

pediatric dataset, the preprocessing pipeline identified a total of around six hours and 40 

minutes of good quality data segments, across the thirteen patients, for validation of our 

algorithm.

B. Adult population

The adult dataset was also recorded on a custom data-acquisition system deployed in the 

neuro and trauma ICUs at Boston Medical Center (BMC) [39] to collect high fidelity 

waveforms and ancillary data from adult patients admitted with a variety of neurological 

and neurosurgical conditions. The data collection was approved by the Institutional Review 

Boards at BMC and MIT, and informed consent was obtained from the patients or their 

legally authorized representative. The CBFV waveform was recorded during dedicated 

bedside recording sessions using either the DWL Doppler BoxX (Compumedics, Singen, 

Germany) or the Philips CX-50 ultrasound system (Philips Healthcare, Andover, MA). All 

patients had a radial arterial line for invasive ABP measurement and either an external 

ventricular drain or parenchymal probe for invasive measurement of ICP as standard of 

care, all placed according to standard local care guidelines. The ABP and ICP waveforms 
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and vital signs were streamed to our system from the GE Solar 8000i patient monitors 

through a GE TramRac 4A. We additionally collected the same ancillary information 

(hematocrit, vertical heights of pressure transducers, demographic information) as in the 

pediatric population.

After passing the data through the previously described signal preprocessing pipeline [28], 

a total of one hour and 48 minutes of high quality data were selected from sixteen studies 

recorded on five patients (4 male, 1 female). These studies were recorded between February 

and September 2016. The patients ranged in age from 20 to 74 years (median of 47 

years) and were hospitalized for severe TBI (3 patients), brain tumor (1 patient), and acute 

hydrocephalus (1 patient).

IV. RESULTS

A. Mean ICP estimation

The spectral estimation algorithm described in the previous section was validated on the 

two clinical datasets detailed above. The pediatric dataset yielded 514 60-beat estimation 

windows of sufficiently high data quality from thirteen patients. Only three of these 

segments (less than 2% of the pediatric dataset) were chosen to serve as the training set 

for determining the generalized fitting parameters, αu and βu for the upstroke, and α1
d, α2

d, α3
d

and βd, for the downstroke. The validation of the algorithm was performed on the rest of 

the pediatric dataset and the entire adult dataset, and the estimation algorithm was run on 

the remaining data segments without any modifications. Overall, the mean measured ICP 

ranged from 1.3 to 24.8 mmHg, with a mean and median of 11.2 mmHg and 10.3 mmHg, 

respectively.

On the pediatric dataset, the algorithm achieved an overall estimation accuracy of 0.4 

mmHg, a SDE of 5.1 mmHg, and a RMSE of 5.1 mmHg in estimating mean ICP. The 

window-by-window estimation results are summarized in the Bland-Altman plot [40] shown 

in Figure 4a. These summary results are essentially in agreement with those obtained on the 

same datasets using the Kashif algorithm, as implemented by Fanelli, requiring careful time 

alignment between the ABP and CBFV waveform recordings [28]. In contrast, the Noraky 

algorithm [25] achieved a bias of 5.4 mmHg, an SDE of 11.2 mmHg, and a RMSE of 12.5 

mmHg on the same dataset, which are clinically unacceptable.

The adult dataset yielded one hour and 48 minutes of high fidelity data from five patients, 

resulting in 138 60-beat estimation windows. This population served as a completely 

independent validation dataset, as no previous training was performed on the adult data, 

and the equipment and study staff was completely different from those of the pediatric study. 

Our algorithm achieved an accuracy of −1.5 mmHg, a SDE of 4.3 mmHg and a RMSE of 

4.5 mmHg in estimating mean ICP on this adult dataset, as summarized in the Bland-Altman 

plot in Figure 4b. To put these validation results into context, when we separately derived the 

fitting parameters of our spectral estimation approach from all available adult data and then 

performed the nICP estimation on the adult data we obtained a bias of −0.9 mmHg, a SDE 

of 3.6 mmHg, and a RMSE of 3.7 mmHg. This approach essentially amounts to a training 

performance as we derive the fitting parameters and the estimation performance on the same 
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set of (adult) data. It is therefore an upper limit on the quality of results that can be expected. 

This exercise demonstrates that the estimation performance obtained on the adult data when 

the fitting parameters are trained on a small subset of the pediatric data is very close to and 

– for all clinical purposes – essentially the same as when the method is trained on all adult 

data.

When pooling both the pediatric and adult data and evaluating the performance of the 

spectral estimation approach on the combined dataset, we obtain an overall accuracy of 

0.1 mmHg, a SDE of 5.1 mmHg, and an RMSE of 5.1 mmHg. To further summarize the 

overall performance of mean ICP, we generated the cumulative distribution functions of the 

RMSE for the window-by-window, study-by-study, and patient-by-patient analysis across 

both datasets (Fig. 5). Around 80% of our window-by-window mean ICP estimates fall 

within a RMSE of 6 mmHg.

B. Robustness of the mean ICP estimates

The time offset between a CBFV wavelet recorded at the middle cerebral artery and the 

corresponding ABP wavelet recorded peripherally depends on physiological factors and 

internal processing delays of the recording devices [28]. Estimation algorithms that process 

these signals in the time domain therefore need to estimate a physiologically plausible time 

offset and adjust the relative timing of these waveforms for each recording [24], [26], [28]. 

To evaluate the sensitivity of the ICP estimates to temporal misalignment of the CBFV 

and ABP waveforms, we shifted these waveforms out of phase, one sampling interval at 

a time, and computed the RMSE between the nICP estimate and mean measured ICP for 

the spectral estimation approach and the time-domain estimation approach on the pediatric 

dataset.

The RMSE of the spectral approach remains entirely unaffected by the waveform 

misalignment, while the time-domain approach only produces credible estimation results 

for a narrow range of offsets of only about 8 sampling intervals, or 64 ms (Fig. 6). Applying 

the Kashif algorithm to the pediatric dataset without conducting the beat-onset adjustment 

outlined by Fanelli [28] resulted in a bias of −4.2 mmHg, a SDE or 70.2 mmHg and a RMSE 

or 70.4 mmHg, demonstrating the sensitivity of the time-domain approach to estimating a 

physiologically plausible offset between the two waveforms, while the spectral approach is 

insensitive waveform misalignment as long as the two waveforms are not shifted by more 

than an entire beat.

To evaluate the sensitivity of our nICP estimates to the identification of the peaks in the CPP 

and CBFV spectra we computed the nICP estimates on the basis of the spectral amplitudes 

associated with the frequency bins to the right or left (selected at random) of the frequencies 

corresponding to each of the spectral peaks. This analysis resulted in a bias of 1.2 mmHg 

and RMSE of 6.7 mmHg, indicating that slight errors in identifying the dominant spectral 

peaks can decrease the performance appreciably.

C. ICP pulse pressure estimation

Our spectral algorithm was also used to reconstruct the ICP waveform from the ABP 

waveform, based on the fitting parameters obtained from the training data. For every cardiac 
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cycle, a mean-subtracted ICP waveform was reconstructed. An example of the reconstructed 

ICP waveform and the corresponding reference clinical ICP is shown in Figure 7. The 

pulse pressures, PP ic
r [n] and PPic[n] of the reconstructed and measured ICP waveforms, 

respectively, were calculated for every beat and compared. This analysis was performed on a 

total of 12984 beats from eight patients from both datasets, with a range of pulse pressures 

from 3 mmHg to 18 mmHg. Some of the data windows from both datasets were rejected 

because the ICP exhibited non-physiological pulsatility, as could arise due to opening of 

the EVD to drain CSF. Our reconstructed ICP pulse pressure estimates had a bias of 1.3 

mmHg, SDE of 2.9 mmHg and a RMSE of 3.2 mmHg. Sixty six pecent of all ICP pulse 

pressure estimates fall within ±3 mmHg, and 87% of estimates fall within ±5 mmHg of the 

measured ICP pulse pressure. The full distribution of errors in estimating pulse pressure on a 

beat-by-beat basis is shown in Figure 8.

V. DISCUSSION

Noninvasive assessment of brain health remains one of the pressing open challenges 

in clinical neuroscience. To address this need, a series of model-based approaches 

to noninvasive and continuous ICP estimation have recently been proposed based on 

the analysis of time-locked measurements of CBFV and (peripheral) ABP waveform 

measurements [23]–[30]. Some of these approaches rely on reduced-order models of the 

cerebrospinal physiology [23]–[26], [28]–[30] while others represent the relevant anatomy 

and physiological relationships in more detail [27]. The majority of prior work has 

approached the estimation problem in the time domain, which requires consideration of 

how to align the waveform measurements and thereby overcome temporal offsets inherent 

in measuring physiological waveforms with different medical devices and at different 

anatomical locations. In pre-processing steps Kashif [24] and Fanelli [28] aligned the 

waveforms to approximate the phase relationship that can plausibly be expected to exist 

between CBFV and the ABP waveforms measured simultaneously at the MCA. Imaduddin 

[30] made the offset an explicit modeling parameter and later marginalized a likelihood 

function over all plausible offsets. Our work here was directly motivated by the recognition 

that solving the estimation in the frequency domain should be immune to misalignment of 

the ABP and CBFV waveform recordings. While we demonstrated that this is indeed the 

case, the approach required estimation of the CPP power spectrum and hence necessitated 

a heuristic estimation of the ICP pulsatility. We based our estimation on the fact that 

the initial upstroke of the ICP wavelet (the percussion wave) is driven primarily by the 

systolic upstroke of the ABP waveform [37], [38]. While the ICP waveform morphology 

also depends on the biophysical properties of the cerebrospinal fluid space and surrounding 

brain tissue, the assumption that the ICP pulsations are largely driven by the ABP pulsation 

allowed us to make the spectral estimation problem tractable.

The resulting estimation accuracy and precision of our spectral estimation algorithm are 

highly encouraging, as an overall accuracy of 0.1 mmHg, a SDE of 5.1 mmHg, and 

a RMSE of 5.1 mmHg in estimating the mean ICP are well within the errors reported 

when comparing the currently used invasive ICP measurement modalities [16], [41], [42]. 

Lescot et al. [42], for instance, compared the Pressio and Codman intraparenchymal 

sensors to ventricular ICP measurements in thirty patients. They reported measurement 
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accuracies of −0.6 and 0.3 mmHg between intraparenchymal and ventricular measurements 

with the Pressio and Codman devices, respectively, with 95% limits of agreement (bias 

± 1.96 SD) of (−8.1 mmHg, 6.9 mmHg), and (−6.7 mmHg, 7.1 mmHg), respectively. 

Brean et al. [43] compared simultaneous ventricular and intraparenchymal (Codman) ICP 

measurements in one patient undergoing treatment for subarachnoid hemorrhage. They 

reported a measurement bias of 0.7 mmHg with a standard deviation of 6.8 mmHg across 

218,589 comparisons. In a recent meta-analysis of invasive ICP measurement approaches, 

Zacchetti et al. [41] reported a mean error between invasive measurements of 1.5 mmHg 

with an associated 95% confidence limit of 0.7 to 2.3 mmHg. Some of these discrepancies 

between different modalities might be due to possible natural or pathologydependent 

pressure gradients within the CSF space (as demonstrated by Eide [31]), to hydrostatic 

differences between the location of the EVD and parenchymal transducers or due to sensor 

inaccuracies. These reasons for different readings notwithstanding, the parenchymal and 

EVD measurements are both standards-of-care in many neurosurgical and neurocritical 

settings [14]. Hence, it is highly encouraging that our results are comparable to the currently 

accepted invasive clinical standards of ICP monitoring.

The accuracy and precision achieved by our spectral estimation approach are also in line 

with those reported by Fanelli et al. [28] and Imaduddin et al. [30] on the same pediatric 

dataset. Hence, despite our having based our estimation of the ICP pulsatility on the ABP 

pulsatility, our algorithm performed in a manner entirely comparable to some of the previous 

estimation strategies, using similar model-based approaches.

The implementation of our approach requires one training step to obtain the fitting 

parameters in order to reconstruct the estimated ICP waveform. Here, this training was 

performed on a small fraction (less than 2%) of the pediatric dataset. The remaining 

pediatric population was diverse, representing a wide range of age, body size, and 

neurological and neurosurgical conditions. Moreover, we did not retrain the model on 

the adult data, which was collected in a different hospital, involving different bedside 

monitoring devices, and different study staff. Our algorithm still achieved very encouraging 

results on this (albeit small) hold-out validation dataset, thus suggesting that the relationship 

between mean-subtracted ICP and mean-subtracted ABP has a sufficient degree of 

robustness to be valid on the data collected to date.

Our algorithm also has the advantage over other model-based noninvasive ICP estimation 

methods [24], [26], [28], of estimating the pulse pressure by reconstructing the ICP wavelet 

from each beat of the ABP signal. While the estimate of mean ICP obtained is clinically 

acceptable and sufficient for clinical monitoring, an estimate of the ICP pulse pressure is 

thought to provide valuable additional information. The pulsatility of the ICP waveform 

could be a useful indicator of intracranial compliance [44], and variations in pulsatility have 

been linked to intracranial hypertension, or hydrocephalus [31]–[33]. Compared to other 

noninvasive ICP estimation techniques that result only in an estimate of the mean ICP, our 

frequency-domain algorithm has the added benefit of estimating the pulsatility as well.

Our estimation approach and associated validation strategy have some limitations that have 

to be further explored. First, while we were able to validate our estimation approach in 
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the clinically important ICP transition range between 15 to 25 mmHg, we were not able 

to evaluate the approach in the pathological ICP range of 25 to 40 mmHg, as patients in 

neuro-ICUs are constantly monitored and care is taken to ensure that their ICP is kept 

within acceptable limits. As a result, we were unable to validate our algorithm on ICP 

measurements above 25 mmHg or with significant trends in ICP. The data also exhibited 

low variability in the ICP pulse pressures, making it difficult to definitively evaluate the 

accuracy of our pulsatility estimation. Since the estimation of ICP pulsatility was not the 

focus of our data collection effort, we did not flush the ICP catheters to minimize damping 

of the ICP waveform morphology. Hence, some of the discrepancy seen here between the 

estimated and measured ICP pulse pressure may, in part, be due to such damping, which 

should be ruled out in future data collection efforts. On the technical side, one of the major 

practical limitations is the use of radial ABP as a surrogate for the MCA ABP. While 

we do apply a hydrostatic correction to account for differences in mean pressure, it is 

expected that the two waveforms are morphologically different. Any potential morphological 

variations would affect the spectral estimation which relies on the frequency characteristics 

of the ABP and CBFV waveform recordings.Also, we have based our nICP estimates on the 

analysis of four spectral peaks, even though some spectra show additional spectral peaks. 

Inclusion of additional spectral peaks, when they can be reliably detected, may improve the 

estimation performance. Finally, our spectral estimation approach relies on the estimation of 

the ICP pulsatility from the ABP pulsatility. A mechanistic understanding of how the ICP 

waveform relates to the ABP waveform and the biophysical properties of the intracranial 

compartments would allow us to improve upon our method, though development of such a 

detailed understanding currently remains an open challenge in clinical neuroscience.

VI. CONCLUSION

ICP is an important neurological vital sign in clinical decision-making. There is a pressing 

need to expand the pool of patients who could benefit from this vital sign by developing 

an accurate, robust noninvasive ICP measurement modality to supplement or replace the 

existing invasive modalities. Here, we attempted to tackle this crucial problem by developing 

a spectral approach to noninvasive ICP estimation. We validated our algorithm on two 

different clinical datasets comprising thirteen pediatric and five adult patients, with a variety 

of neurological disorders, and obtained an accuracy and precision of 0.4 mmHg and 5.1 

mmHg on the pediatric dataset and −1.5 mmHg, 4.3 mmHg on the adult data. These 

results take a step forward towards the implementation of a safe and robust noninvasive ICP 

estimation technique, within clinically acceptable accuracy and precision ranges.

ACKNOWLEDGMENT

The research was supported in part by Maxim Integrated Products, the National Institute of Neurological Disorders 
and Stroke grant R21 NS084264, Philips Healthcare, and a Grass Instruments Graduate Fellowship from the 
Department of Electrical Engineering and Computer Science at MIT.

REFERENCES

[1]. Gooch CL, Pracht E, and Borenstein A, “The burden of neurological disease in the United 
States: A summary report and call to action.” Annals of Neurology, vol. 81, pp. 479–484, 2017. 
[PubMed: 28198092] 

Jaishankar et al. Page 14

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[2]. Faul M, Xu L, Wald M, and Coronado V, “Traumatic brain injury in the United States: Emergency 
department visits, hospitalizations and deaths 2002–2006.” Atlanta (GA): Centers for Disease 
Control and Prevention, National Center for Injury Prevention and Control, 2010.

[3]. Taylor CA, Bell J, Breiding M, and Xu L, “Traumatic brain injury–related emergency department 
visits, hospitalizations, and deaths — United States, 2007 and 2013.” MMWR Surveillance 
Summary, vol. 66, pp. 1–16, 2017.

[4]. Benjamin EJ et al. , “Heart disease and stroke statistics - 2018 update: A report from the American 
Heart Association.” Circulation, vol. 137, pp. 67–492, 2018.

[5]. American Brain Tumor Association. [Online]. Available: http://www.abta.org/about-us/news/
brain-tumor-statistics/

[6]. Hydrocephalus Association facts. [Online]. Available: http://www.hydroassoc.org/about-us/
newsroom/facts-and-stats-2/

[7]. Moringlane RB, Keric N, Freimann F, Mielke D, Burger R, Duncker D, Rohde V, and Eckardstein 
K, “Efficacy and safety of durotomy after decompressive hemicraniectomy in traumatic brain 
injury,” Neurosurgical Review, vol. 40, pp. 655–661, 2017. [PubMed: 28185018] 

[8]. Langfitt TW, Weinstein J, and Kassell N, “Cerebral vasomotor paralysis produced by intracranial 
hypertension.” Neurology, vol. 15, pp. 622–641, 1965. [PubMed: 14306322] 

[9]. Bruce D, “Cerebrospinal fluid pressure and brain metabolism.” in Neurobiology of Cerebrospinal 
Fluid, Wood JH, Ed., 1980, vol. 1, pp. 351–357.

[10]. Carney N, Totten A, O’Reilly C, Ullman J, Hawryluk G, Bell M, Bratton S, Chesnut R, Harris O, 
Kissoon N, Rubiano A, Shutter L, Tasker RC, Vavilala M, Wilberger J, Wright DW, and Ghajar J, 
“Guidelines for the management of severe traumatic brain injury, fourth edition.” Neurosurgery, 
vol. 80, pp. 6–15, 2017. [PubMed: 27654000] 

[11]. Kochanek P, Tasker R, Carney N, Totten A, Adelson P, Selden N, Davis-O’Reilly C, Hart E, Bell 
M, Bratton S, Grant G, Kissoon N, Reuter-Rice K, Vavilala M, and Wainwright M, “Guidelines 
for the management of pediatric severe traumatic brain injury, third edition: Update of the brain 
trauma foundation guidelines,” Pediatric Critical Care Medicine, vol. 20 (3S Suppl 1), pp. S1–
S82, 2019. [PubMed: 30829890] 

[12]. Steiner LA and Andrews PJD, “Monitoring the injured brain: ICP and CBF,” British Journal of 
Anesthesia, vol. 97, pp. 26–38, 2006.

[13]. Heldt T, Zoerle T, Teichmann D, and Stocchetti N, “Intracranial pressure and intracranial 
elastance monitoring in neurocritical care.” Annual Reviews in Biomedical Engineering, vol. 
21, pp. 1–27, 2019.

[14]. Cnossen M, Huijben J, van der Jagt M, Volovici V, van Essen T, Polinder S, Nelson D, Ercole A, 
Stocchetti N, Citerio G, Peul W,Maas A, Menon D, Steyerberg E, and Lingsma H, “Variation in 
monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey 
in 66 neurotrauma centers participating in the CENTER-TBI study.” Critical Care Medicine, vol. 
21, p. 233, 2017.

[15]. Popovic D, Khoo M, and Lee S, “Noninvasive monitoring of intracranial pressure.” Recent 
Patents in Biomedical Engineering, vol. 2, pp. 165–179, 2009.

[16]. Zhang X, Medow J, Iskandar B, Wang F, Shokoueinejad M, Koueik J, and Webster J, 
“Invasive and noninvasive means of measuring intracranial pressure: a review.” Physiological 
Measurement, vol. 38, pp. 143–182, 2017.

[17]. Schmidt B, Klingelhöfer J, Schwarze J, Sander D, and Wittich I, “Noninvasive prediction 
of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure 
curves.” Stroke, vol. 28, pp. 2465–2472, 1997. [PubMed: 9412634] 

[18]. Schmidt B, Czosnyka M, Schwarze J, Sander D, Gerstner W, Lumenta C, Pickard J, and 
Klingelhöfer J, “Cerebral vasodilatation causing acute intracranial hypertension: A method for 
noninvasive assessment. ”Journal of Cerebral Blood Flow and Metabolism, vol. 19, pp. 990–996, 
1999. [PubMed: 10478650] 

[19]. Xu P, Kasprowicz M, Bergsneider M, and Hu X, “Improved noninvasive intracranial pressure 
assessment with nonlinear kernel regression.” IEEE Transactions on Information Technology in 
Biomedicine, vol. 14, pp. 971–978, 2010. [PubMed: 19643711] 

Jaishankar et al. Page 15

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.abta.org/about-us/news/brain-tumor-statistics/
http://www.abta.org/about-us/news/brain-tumor-statistics/
http://www.hydroassoc.org/about-us/newsroom/facts-and-stats-2/
http://www.hydroassoc.org/about-us/newsroom/facts-and-stats-2/


[20]. Chacon M, Pardo C, Puppo C, Curilem M, and Landerretche J, “Noninvasive intracranial 
pressure estimation using support vector machine,” in Proceedings of the IEEE Engineering 
in Medicine and Biology Society 2010, 2010, pp. 996–999.

[21]. Hu X, Nenov V, Bergsneider M, and Martin N, “A data mining framework of noninvasive 
intracranial pressure assessment.” Biomedical Signal Processing and Control, vol. 1, pp. 64–77, 
2006.

[22]. Hu X, Nenov V, Bergsneider M, Glenn T, Vespa P, and Martin N, “Estimation of hidden 
state variables of the intracranial system using constrained nonlinear kalman filters,” IEEE 
Transactions on Biomedical Engineering, vol. 54, pp. 597–610, 2007. [PubMed: 17405367] 

[23]. Kashif FM, Heldt T, and Verghese G, “Model-based estimation of intracranial pressure and 
cerebrovascular autoregulation.” Computing in Cardiology, vol. 35, pp. 369–372, 2008.

[24]. Kashif F, Verghese G, Novak V, Czosnyka M, and Heldt T, “Model-based noninvasive estimation 
of intracranial pressure from cerebral blood flow velocity and arterial pressure.” Science 
Translational Medicine, vol. 4, pp. 129–144, 2012.

[25]. Noraky J, “A spectral approach to noninvasive model-based estimation of intracranial pressure,” 
M. Eng. thesis, Massachusetts Institute of Technology, 2014.

[26]. Noraky J, Verghese G, Searls D, Lioutas V, Sonni S, Thomas A, and Heldt T, 
“Noninvasive intracranial pressure determination in patients with subarachnoid hemorrhage.” 
Acta Neurochirurgica Supplement, vol. 122, pp. 65–68, 2016. [PubMed: 27165879] 

[27]. Wang J, Hu X, and Shadden S, “Data-augmented modeling of intracranial pressure.” Annals of 
Biomedical Engineering, vol. 47, pp. 714–730, 2019. [PubMed: 30607645] 

[28]. Fanelli A, Vonberg F, LaRovere K, Walsh B, Smith E, Robinson S, Tasker R, and Heldt T, “Fully 
automated, real-time, calibration-free, noninvasive intracranial pressure estimation.” Journal of 
Neurosurgery Pediatrics, 2019, in print.

[29]. Park C, Ryu S, Jeong B, Lee S, Hong C, Kim Y, and Lee B, “Real-time noninvasive intracranial 
state estimation using unscented kalman filter,” IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, vol. 27, no. 9, pp. 1931–1938, 2019. [PubMed: 31380765] 

[30]. Imaduddin S, Fanelli A, Vonberg F, Tasker R, and Heldt T, “Pseudobayesian approach to 
model-based noninvasive intracranial pressure estimation and tracking,” IEEE Transactions on 
Biomedical Engineering, 2019, in press.

[31]. Eide PK, “Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus 
patients.” Journal of Neurosurgery, vol. 109, pp. 912–917, 2008. [PubMed: 18976084] 

[32]. Cardoso E, Rowan J, and Galbraith S, “Analysis of the cerebrospinal fluid pulse wave in 
intracranial pressure.” Journal of Neurosurgery, vol. 59, pp. 817–821, 1983. [PubMed: 6619934] 

[33]. Avezaat CJ, van Eijndhoven J, and Wyper D, “Cerebrospinal fluid pulse pressure and intracranial 
volume-pressure relationships.” Journal of Neurology, Neurosurgery and Psychiatry, vol. 42, pp. 
687–700, 1979. [PubMed: 490174] 

[34]. Kashif F, Heldt T, and Verghese G, “Systems, devices and methods for noninvasive or minimally-
invasive estimation of intracranial pressure and cerebrovascular autoregulation,” U.S. Patent 
8366627B2, February 05, 2013.

[35]. Holt JP, “The collapse factor in the measurement of venous pressure: The flow of fluid through 
collapsible tubes.” American Journal of Physiology, vol. 134, pp. 292–299, 1941.

[36]. Oppenheim A, Willsky A, and Nawab S, Signals and Systems, 2nd ed. Upper Saddle River, New 
Jersey: Prentice Hall, 1997.

[37]. Jr EB., “Choroid plexus and arterial pulsation of cerebrospinal fluid,” A.M.A Archives of 
Neurology and Psychiatry, vol. 73, pp. 165–172, 1955. [PubMed: 13227669] 

[38]. Adolph R, Fukusumi H, and Fowler N, “Origin of cerebrospinal fluid pulsations,” American 
Journal of Physiology, vol. 212, pp. 840–846, 1967. [PubMed: 6024448] 

[39]. Fanelli A, Jaishankar R, Filippidis A, Holsapple J, and Heldt T, “A waveform archiving system 
for the ge solar 8000i bedside monitor.” Acta Neurochirurgica Supplement, vol. 126, pp. 173–
177, 2018. [PubMed: 29492556] 

[40]. Bland JM and Altman DG, “Statistical methods for assessing agreement between two methods of 
clinical measurement.” Lancet, vol. 1, pp. 307–310, 1986. [PubMed: 2868172] 

Jaishankar et al. Page 16

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[41]. Zacchetti L, Magnoni S, Corte FD, Zanier E, and Stocchetti N, “Accuracy of intracranial pressure 
monitoring: systematic review and meta-analysis.” Critical Care, vol. 19, p. 420, 2015. [PubMed: 
26627204] 

[42]. Lescot T, Reina V, Manach YL, Boroli F, Chauvet D, Boch A, and Puybasset L, “In vivo 
accuracy of two intraparenchymal intracranial pressure monitors.” Intensive Care Medicine, vol. 
37, pp. 875–879, 2011. [PubMed: 21359608] 

[43]. Brean A, Eide P, and Stubhaug A, “Comparison of intracranial pressure measured simultaneously 
within the brain parenchyma and cerebral ventricles.” Journal of Clinical Monitoring and 
Computing, vol. 20, pp. 411–414, 2006. [PubMed: 17016744] 

[44]. Hawthorne C and Piper I, “Monitoring of intracranial pressure in patients with traumatic brain 
injury.” Frontiers in Neurology, vol. 5, p. 121, 2014. [PubMed: 25076934] 

Jaishankar et al. Page 17

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Schematic representation of the second-order circuit model [26].
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Fig. 2: 
Representative example of the relationship between mean-subtracted ABP and mean-

subtracted ICP over the duration of a 60-beat estimation window. There are two clear 

phases: a systolic upstroke (blue line) and a diastolic decay (black cubic polynomial). The 

error bars represent the standard deviation of error at each mean-subtracted ABP sample.
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Fig. 3: 
Example of power spectra of mean-subtracted ABP and CBFV waveforms as computed 

by the average periodogram method. The first four harmonic peaks are identified in each 

spectrum.
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Fig. 4: 
Bland-Altman plot comparing estimated and mean measured ICP on a window-by-window 

basis in the pediatric and adult datasets.
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Fig. 5: 
Cumulative distribution functions for the nICP RMSE on both datasets together. The 

analysis is carried out on a window-by-window, study-by-study, and patient-by-patient basis.
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Fig. 6: 
RMSE between nICP estimates and mean measured ICP as a function of timing offset 

between ABP and CBFV waveforms. The zero offset relates to the beat-onset alignment 

described by Fanelli and co-workers [28].
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Fig. 7: 
Comparison between the algorithmic reconstruction of the ICP waveform from ABP and the 

clinically obtained gold-standard ICP measurements.
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Fig. 8: 
Distribution of ICP pulse pressure estimation errors.
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