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Abstract

Objective: To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for 

the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history.

Materials and Methods: This study included post-radiotherapy patients undergoing 

multiparametric MRI and subsequent TRUS/MRI fusion-guided and/or systematic biopsy. 

Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of 

a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions 

in treatment naïve patients, was compared to a prospective radiologist assessment using the Wald 
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test. Subanalysis was conducted on patients stratified by the treatment modality (external beam 

radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles.

Results: Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; 

median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. 

The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the 

prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p =0.02) and 

lesion-level (AI: 71.4% vs. Rad: 87.5%, p =0.01). The mean number of false positives per patient 

was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level 

(EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] 

vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n=25), detection 

sensitivities were 100% (11/11) and 94.1% (16/17) on patient-and lesion-level, respectively.

Conclusion: The reported bpMRI-based AI model detected the majority of locally recurrent 

prostate cancer after radiotherapy. Further testing including external validation of this model is 

warranted prior to clinical implementation.
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Introduction

Prostate cancer (PCa) is among the leading causes of cancer mortality in the US 

(1). Treatment approaches such as radiation therapy and surgery are the main curative 

approaches offered to patients with localized PCa. Radiation therapy options mainly include 

external beam radiation therapy (EBRT) and brachytherapy, in which the radiation is 

delivered to the gland with either temporary (high dose rate [HDR]) or permanent (low 

dose rate [LDR]) implantation of radiation sources (2). Despite the promising success rates 

of radiation therapy, approximately 15% of intermediate and high risk patients who receive 

definitive radiotherapy may develop biochemical recurrence (BCR) within 5 years (3–5). 

Biochemical failure may result from local or metastatic recurrence either in isolation or in 

combination.

In the setting of post-radiotherapy, BCR is defined by the Phoenix criteria or an elevation 

of ≥2 ng/ml from the nadir prostate-specific antigen (PSA) level (6). Repeated rises 

in PSA after definitive radiotherapy usually prompts evaluation with advanced imaging 

techniques such as multiparametric MRI (mpMRI) (7,8) and PET/CT with novel tracers 

such as 18F-fluciclovine (Axumin®) or PSMA-targeted PET agents (9). The role of T2-

weighted imaging (T2WI) imaging is limited in PCa recurrence, as the whole gland 

appears diffusely hypointense following radiation therapy (10). On the other hand, malignant 

tissue is characterized by early contrast enhancement on dynamic contrast enhanced 

(DCE) MRI, hyperintense appearance on high b-value diffusion weighted imaging (DWI) 

and hypointense signal intensity on apparent diffusion coefficient [ADC] map) (11,12). 

However, local recurrence of PCa may remain occult due to the subtlety of these imaging 

findings.
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Although the use of machine learning and deep learning-based artificial intelligence (AI) 

models for PCa detection is well studied in treatment-naïve PCa patients (13,14), the 

automated detection of radiorecurrent PCa remains understudied. An AI-based approach 

to assist in this setting is crucial since MRI evaluations in BCR patients are more difficult 

and prone to inter-reader variability resultant from treatment-associated changes to the 

prostate and surrounding tissues (15). Automated identification of recurrent PCa foci 

without DCE MRI may not only allow early intervention (16) but also prevent potential 

problems arising from contrast, including safety risks and financial burdens. In the setting 

of post-radiotherapy imaging, the integrity and shape of the prostate gland are preserved and 

recurrent cancer imaging features on bpMRI can be quite similar to those of treatment-naïve 

localized prostate cancer. We hypothesized that a bpMRI-based AI model, which was trained 

on a large, diverse dataset to identify lesions in treatment-naïve patients, could potentially 

identify prostate cancer recurrence in patients with BCR after definitive radiotherapy (EBRT 

or brachytherapy), and assist radiologists in image interpretation.

Materials and Methods

Study Population

This is a single center, HIPAA compliant, retrospective study conducted on patients who 

were enrolled on institutional review board approved clinical protocols (NCT01834001, 

NCT03181867, NCT03354416). All patients in the study provided informed, written 

consent for research studies employing prostate MRI as part of their diagnostic or staging 

evaluation prior to biopsy. We identified patients with BCR after radiation therapy (EBRT 

or brachytherapy) who underwent MRI and subsequent MRI/US fusion-guided and/or 

systematic biopsy at our institution between January 2015 and October 2022. Exclusion 

criteria included prior accompanying prostate cancer treatment (i.e., radical prostatectomy, 

focal therapy) and AI-processing errors due to image quality. In addition to details regarding 

the initial technique of radiotherapy, demographic information such as age, race, clinical 

characteristics (PSA, prostate volume), biopsy technique, and pathological findings at 

biopsy were collected from the medical records (Table 1).

Image Acquisition and Evaluation

All patients underwent imaging with a 3T scanner (Ingenia Elition; Philips Healthcare, Best, 

the Netherlands or Achieva; Philips Healthcare, Best, the Netherlands or Verio; Siemens 

Healthcare, Erlangen, Germany). Images were acquired using a surface coil (n=62, SENSE, 

Philips Healthcare, Best, the Netherlands) in isolation or in combination with an endorectal 

coil (n=38, BPX-30, Medrad, Pittsburgh, PA). Further details regarding image acquisition 

and technical parameters are presented in the supplemental materials (Supplemental Table 

1–2).

All MRI interpretations were prospectively conducted by a genitourinary radiologist with 

more than 15 years of experience in prostate imaging (~1000 scans/year). All mpMRI 

sequences (T2WI, high b-value DWI, ADC map, and DCE) were utilized by the radiologist 

during prostate MRI reads. The same radiologist prospectively contoured both the whole 
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gland and intraprostatic lesions for MRI/US fusion-guided biopsy procedures using a 

commercial software (DynaCAD, Philips).

Prostate Biopsy Procedure

All patients underwent subsequent targeted (MRI/US fusion-guided biopsy) and/or 

systematic biopsy via a transrectal or transperineal approach. Biopsies were performed 

by either a urologist (>15 years of experience in MRI/US fusion-guided biopsy) or 

an interventional radiologist (19 years of experience in MRI/US fusion-guided biopsy) 

using a commercial biopsy system (UroNav, Philips, Gainesville, FL, USA). Biopsy cores 

underwent histopathological assessment by an expert pathologist (>15 years of experience in 

genitourinary pathology).

AI-assisted Radiologist Retrospective Readouts on bpMRI

A previously developed bpMRI-based AI model was used for PCa detection in this 

study (17). After a washout period of ≥9 months, the same genitourinary radiologist 

who prospectively performed the initial clinical readouts on mpMRI, conducted another 

interpretation session on bpMRIs with AI assistance using a first-reading paradigm 

(18). The process involved showing the radiologist AI-generated binary and probability 

prediction maps first, followed by displaying the conventional bpMRI sequences. During 

this process, the radiologist was limited to either accepting or rejecting the AI-generated 

lesion predictions. As per the first-reader paradigm (19,20), the radiologist was not allowed 

to identify any additional lesions beyond the ones predicted by the AI.

AI Evaluation and Statistical Analysis

The performance of the AI model was evaluated both on a patient and lesion level. 

Histopathological reports of MRI-guided targeted and systematic biopsies were used as 

ground truth (Supplemental Figure 1). If the SBx did not align with the TBx and detected 

cancer in an area where TBx did not, the corresponding SBx sector was considered 

a separate cancerous focus. Moreover, if multiple SBx sectors were involved without 

corresponding positivity on TBx and they were not adjacent to each other, they were 

treated as separate foci as well. In the lesion-level analysis, each prediction of the AI 

algorithm which corresponded to a cancerous focus on histopathology was considered a 

true positive (TP). The remainder of the AI-predicted lesions which do not overlap with 

cancer-positive targeted biopsy lesion contours or do not correspond to a cancer-positive 

region on systematic sextant biopsy were counted as false positives (FP). Pathologically 

confirmed cancerous foci which were not predicted by the AI model were deemed as false 

negatives (FN). As the ground truth was based on biopsy outcomes rather than surgical 

samples, the true negatives were not assessed in the lesion-level analysis. On a patient-level, 

at least one true AI prediction was considered as a true positive, whereas any AI prediction 

on a patient without cancer was considered a false positive. For the scans without any 

AI-predicted lesions, patients who had cancer on the biopsy were considered false negative, 

and patients without any evidence of cancer were considered true negative (TN).

For cancer detection sensitivity at lesion- and patient-level, 95% confidence intervals (CI) 

and standard deviations were estimated from n=2000 bootstrapped samples by random 
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sampling with replacement on the patient level using R software (version 4.1.2; R 

Foundation for Statistical Computing, Vienna, Austria). The Wald test was then used 

to compare the sensitivity and positive predictive value of the standalone AI model, 

unassisted and assisted radiologist reads for cancer detection. Descriptive statistics were 

used to summarize the performance metrics of the AI algorithm on subgroups (stratified 

by treatment technique and prostate volume). On patient-level, Wilcoxon rank-sum test was 

performed to assess the association between prostate volume and AI recurrence detection. 

Failure analysis was conducted to determine the false positive and false negative distribution. 

All p-values were two-sided and a p < 0.05 was considered statistically significant.

Results

Patient Characteristics

A total of 66 patients with a prior history of radiation treatment who received a prostate 

MRI examination and underwent biopsy at our institution between January 2015 and 

October 2022 were identified. Patients who underwent prostatectomy before (n=2) or 

received focal therapy (n=1) in addition to radiation treatment prior to imaging were 

excluded. Additionally, one patient (n=1) was excluded from the analysis due to poor 

image quality and AI processing error. The final study sample consisted of 62 patients 

who were previously treated with EBRT (n=36) or LDR brachytherapy (n=26) (Figure 1). 

The median age of the cohort was 70 years (interquartile range [IQR]: 65-75 years). More 

than half of the patients were Caucasian (n=48), which was followed by African American 

(n=11), Asian (n=2), and multiracial (n=1) patients. The median PSA level was 3.51 ng/ml 

(IQR: 1.99-5.42 ng/ml). The median number of days between the imaging and biopsy was 

38.5 days (IQR: 25-53 days). In the study population, most of the patients (n=46) had 

biopsy-proven recurrent cancer (subgroup median PSA of 3.51 ng/ml [IQR: 2.06-5.58 ng/

ml]). These baseline characteristics are summarized in Table 1.

Lesion-level Analysis

In total, 56 cancerous foci were identified at biopsy in 46 patients. The AI model detected 

40 of the biopsy-proven cancerous lesions, achieving a sensitivity of 71.4% (40/56), 

whereas the radiologist prospectively detected 49 of the biopsy-proven cancerous foci. When 

compared with the radiologist, the AI model had a lower lesion-level sensitivity (AI: 71.4% 

[95% CI:58, 83.7] vs. unassisted Rad: 87.5% [95% CI:78, 96.3], p value=0.01) (Figure 2). 

The total number false positives were similar between the radiologist (n=21) and AI (n=22), 

as well as the positive predictive value (PPV) (standalone AI: 64.5% [95% CI:53.3, 76.6] vs. 

unassisted Rad: 70% [95% CI:57.5, 82.2], p value=0.39) The mean number of false positives 

per patient was 0.35 (median= 0, range= [0,2]). On the other hand, mean number of false 

negatives per patient was 0.26 (median= 0, range= [0,2]).

Patient-level Analysis

Overall, 46 out of 62 patients were confirmed to harbor an intraprostatic recurrence of 

prostate cancer after histopathological examination (Table 2). The AI model predicted at 

least one biopsy-verified lesion in 35 patients and failed to detect cancer in the 11 remaining 

patients with histologic evidence of local recurrence. Additionally, among patients without 
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any evidence of malignancy on histopathology (n=16), the AI model incorrectly identified 

lesion(s) in 7 patients but correctly predicted the absences of recurrent cancerous foci for 9 

patients. When compared to the prospective radiology readouts, the performance of the AI 

model for recurrent PCa detection was lower (standalone AI: 76.1% [95% CI:63.8, 87.8] vs. 

unassisted Rad: 91.3% [95% CI:82.6, 98.0]) with a p value of 0.02 (Figure 2).

Impact of Radiotherapy Technique on AI Model Performance

More than half of the patients (n=36) were treated with external beam radiation therapy 

(EBRT). In the EBRT treated patients, a total of 34 cancer foci were found in 27 patients. 

An example of a post-EBRT recurrence is shown in Figure 3. The AI model was able 

to detect 27 cancer foci (lesion-level sensitivity: 79.4% [27/34]) among 22 patients (patient-

level sensitivity: 81.5% [22/27]). The mean number of FPs per patient was 0.36 (median= 

0, range= [0,2]), and the mean number of FNs per patient was 0.19 (median=0, range= 

[0,1]). In the prospective mpMRI reads, 47 lesions were identified and 32 of them were 

histopathologically verified as recurrent PCa (lesion level sensitivity: 94.1% [32/34]).

Among patients with brachytherapy history (n=26), 19 were diagnosed with recurrent PCa 

and had 22 cancer foci. The AI model was able to detect only 13 lesions in 13 patients 

achieving a lesion level sensitivity of 59.1% (13/22) and patient level sensitivity of 68.4% 

(13/19). Mean number of FPs per patient was slightly lower than EBRT patients with a value 

of 0.34 (median= 0, range= [0,2]). However, the mean number of FNs per patient was higher 

for the brachytherapy subgroup (mean=0.34, median= 0, range= [0,2]) when compared to 

the EBRT subgroup (mean=0.19, median= 0, range= [0,2]). The radiologist detected 17 of 

22 cancerous foci with 6 accompanying false predictions at mpMRI, achieving a lesion level 

sensitivity of 77.3%.

The Impact of Prostate Volume on AI Model Performance

The median prostate volume was 27.55 ml with an IQR range of 21-34 ml in our patients. 

Patients were divided into 4 subgroups: based on quartile values of the study sample: ≤ 

21ml, 21-27.55ml, 27.55-34ml, and >34ml (Figure 4). Patients whose recurrent diseases 

were correctly identified by the AI were more likely to have larger glands when compared to 

the ones which were missed by the AI (p = 0.03). For patients with prostate volumes greater 

than 34ml (n=15), the lesion-level and patient-level sensitivities were 94.1% (16/17) and 

100% (11/11), respectively. Contrastingly, for patients with gland sizes less than or equal 

to 21 ml (n=18), the lesion-level and patient-level sensitivities were only 57.1% (8/14) and 

66.7% (8/12), respectively.

Comparison of AI-assisted Readouts with Standalone AI and Prospective mpMRI Reads

In AI-assisted readouts, the reader rejected 11 predictions made by the AI and agreed 

with the other 51 predictions. Out of 51 predictions, 40 were positive for recurrent cancer. 

Both the AI-assisted readouts and standalone AI had the same lesion-level and patient-level 

sensitivity for recurrence detection, however, the PPV of the AI-assisted read was higher 

than that of standalone AI (AI-assisted Rad: 78.4% [95% CI:67.6, 88.9] vs. standalone AI: 

64.5% [95% CI:53.3, 76.6]) with a p value <0.001. Moreover, the PPV of the AI-assisted 

read was moderately improved to the unassisted, prospective read (AI-assisted Rad: 78.4% 
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[95% CI:67.6, 88.9] vs. unassisted Rad: 70% [95% CI:57.5, 82.2]), though not statistically 

significant (p value=0.14).

Standalone AI model Failure Analysis

False positive analysis: A total of 22 FP predictions were made by the standalone 

AI model (Figure 5). Among patients with FP predictions (n=19), the majority occurred 

in patients treated with EBRT (n=12), with 7 occurring in patients who had received 

brachytherapy. More than half of the FPs were found in the transition zone (54.5% [12/22]) 

(Figure 6). Regarding the craniocaudal distribution of FPs, half the FPs were observed 

within the mid-gland (50%, [11/22]). Of the other half, 8 were in apex and only 3 FPs were 

located at the base of the prostate. In terms of laterality, no predilection was noted for either 

side as 8 FPs were observed in each hemigland (both right and left 36.4% [8/22]) with the 

remainder occurring in the midline (27.2% [6/22]). Only a third of the FPs were situated 

anteriorly (36.4%, [8/22]).

False negative analysis: In total, there were 16 cancer foci found in 13 patients which 

were not detected by the standalone AI model (Figure 7). Nine FNs were observed in 

the brachytherapy subgroup (n=6 patients), whereas 7 FNs were observed in the EBRT 

subgroup (n=7 patients). Unlike FPs, most of the FNs were located in the peripheral zone 

(81.3%, [13/16]). The majority of FNs were situated in the prostate base (37.5%, [6/16]) 

and mid-gland (37.5%, [6/16])) (Figure 8). FNs were most commonly lateralized to the left 

(56.3% [9/16]). The remainder of the FNs were right sided (37.5% [6/16]) with exception 

of a single FN occurring in the midline. Moreover, all FNs except one were found in the 

posterior gland (93.8%, [15/16]).

Discussion

Prostate cancer recurrence remains as a concern despite advances in localized prostate 

cancer management. Imaging plays a key role in timely identification of local and distal 

relapse after curative treatment. In our study, we evaluated the performance of an AI 

model, which was trained on a diverse, multi-institutional dataset without DCE, to detect 

prostate cancer local recurrence in patients with an intact prostate after an initial course of 

curative radiotherapy. The majority of patients with recurrent prostate cancer were correctly 

identified with a biparametric MRI (T2WI & DWI/ADC map)-based AI model which 

demonstrated a patient-level sensitivity of 76.1% and lesion-level sensitivity of 71.4%. The 

model detection performance was best amongst patients with larger glands and those in 

the EBRT subgroup. The radiologist interaction with AI may decrease the number of false 

positive calls without compromising the model’s detection performance.

Owing to increasing availability and the wide recognition of mpMRI as a prostate imaging 

modality, patients are increasingly offered imaging at the time of initial diagnosis and 

at recurrence. Concerns regarding contrast utilization exist due to safety issues, higher 

economic burden, and longer image acquisition times (21). Except for some studies with 

small sample sizes suggesting otherwise (22–24), DCE has a crucial role in imaging of 

recurrent prostate cancer. In a recently proposed guideline, PI-RR, the utilization of DCE 

is recommended in the evaluation of local recurrence among patients with biochemical 
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recurrence who have received radiation therapy (25). Although our findings are preliminary, 

they suggest that an end-to-end, bpMRI-based AI may detect and localize most of the local 

recurrences following an initial course of radiotherapy without requiring one of the essential 

components of mpMRI, DCE. Such an AI-based approach can also aid in addressing 

aforementioned concerns associated with contrast injection. Moreover, avoiding contrast 

injection with the application of this bpMRI-based AI-detection algorithm could render 

more frequent, routine imaging a viable strategy in the post-radiotherapy surveillance. This 

may serve as a companion to PSA monitoring to possibly allow for early detection and 

intervention for the subgroup of patients with locally recurrent prostate cancer.

Prostate MRI interpretation in primary cancer detection has a steep-learning curve (26), and 

the assessment of localized cancer recurrence is even more challenging on a posttreatment 

mpMRI, due to treatment-related global signal changes in the gland. Examples of this 

include the diffuse hypointense appearance of the prostate on T2WI and lower ADC values 

of the benign tissue compared to pretreatment state attributed to the decreased cellularity and 

vascularity in response to radiotherapy (7,27). The AI model detected 35 out of 46 patients 

with biopsy proven local recurrence without utilizing DCE. Although the lesion detection 

sensitivity was not as high as an expert radiologist using DCE, the algorithm detected 71.4% 

of cancerous foci with a relatively small number of false positives (mean number of FPs 

per patient=0.35). Employment of such an AI model in clinical practice may be particularly 

useful for novice readers who may not be familiar with prostate cancer recurrence imaging 

to improve their diagnostic accuracy.

Although the FP rate in brachytherapy patients was slightly lower than that of EBRT 

patients, the higher FN rate in brachytherapy patients suggests that the AI model was 

less likely to call out lesions in this subgroup. This lower local recurrence detection 

performance of AI in brachytherapy patients could be attributed to the distortions on 

the mpMRI (particularly high b-value DWI) arising from the permanent brachytherapy 

seeds. In a standard radiology read, DCE is often the only sequence which may identify 

a local recurrence in LDR brachytherapy patients as T2WI and high b-value DWI are 

either nondiagnostic or unremarkable. Bearing in mind that the AI model did not utilize 

DCE, a patient-level sensitivity of 68.4% is still promising. However, additional algorithmic 

improvements in performance are necessary to improve performance to clinically acceptable 

levels.

It should be kept in mind that both treatment techniques mentioned in our study cause 

substantial reduction in gland volume (28). The median prostate volume of our study sample 

(27.55 ml) was relatively lower than that of the dataset used to train the AI model, which 

was 60 ml (17). Underrepresentation of smaller glands in the training dataset might explain 

the relative low performance of AI in prostates with lower volumes. There is also the 

possibility that a patient with a more preserved gland volume may have a more apparent 

lesion with a larger tumor-to-gland ratio on MRI. It is worth noting that we have observed 

better detection performance of AI in EBRT patients, and their median gland volume (30.35 

ml) was higher than patients who received brachytherapy (25.5 ml). Thus, rather than a 

direct association between the prostate size and AI detection rate, the technique of treatment 

could be the primary factor impacting both the AI model performance and the gland size.
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Our failure analysis revealed that FP occurrences were mostly dispersed within the prostate, 

and they were more commonly observed in the mid-gland and transition zone. Overall, 

one in every 3 patients had a false positive prediction, which is relatively lower than the 

reported rates of the other prostate cancer detection algorithms in the literature (29,30). 

Apart from the impact of the integrated BPH-reduction step in AI model’s framework 

(17), the diffuse hypointense appearance of treated prostate glands may have resulted in a 

relatively low rate of FPs with an acceptable sensitivity level. In a prior study, the same AI 

model had a mean sensitivity of 96.1% on patient-level with a mean of 0.44 FPs per patient 

on a treatment-naïve study sample (17). As the AI model used in our study was originally 

intended to detect prostate cancer foci in treatment-naïve patients, a different probability 

threshold may have served to optimize the sensitivity of algorithmic detection in this clinical 

setting, which in turn may have also led to a higher FP rate. Alternatively, human interaction 

with AI may also decrease the FP rate as demonstrated in our study.

It is also worth noting that the AI model used in the study is completely blinded to 

past medical prostate cancer history including baseline PCa location at previous MRI, 

histopathology, serum PSA. This is in contrast with a prospective mpMRI read, where the 

radiologist often has access to such information through prior imaging records or clinical 

reports. It has been shown that local prostate recurrence mostly originates from the site 

of primary cancer (31), which likely impacts the assessment of the radiologist. As certain 

clinical parameters such as PSA (32), radiation dose (33,34), androgen deprivation therapy 

exposure (35) , or MRI features are predictive of disease recurrence following treatment 

(36,37), one of the next steps towards improving the AI model’s prediction could be the 

utilization of prior imaging (i.e., MRI or PET/CT), details of prior therapy (i.e., radiation 

dose, technique, or androgen deprivation therapy), or other clinical parameters (i.e., serial 

PSA measurements or latency of relapse).

Our study had several limitations. First, the study sample size was relatively small. As we 

aimed to correlate the AI predictions with histopathology, our study sample was restricted to 

patients who underwent mpMRI and subsequent biopsy at our institution. Our findings need 

to be validated on a larger sample, which may be possible with multi-institutional efforts. 

Second, the AI model used in our study automatically filters out predictions outside the 

prostate segmentation. Therefore, tumors located in the seminal vesicles cannot be detected 

with this AI model. Third, not all patients underwent combined targeted and systematic 

biopsy as some patients had no radiographically detected focus of recurrent tumor noted 

by the interpreting human radiologist at time of pre-biopsy diagnostic workup. In patients 

who did not undergo systematic biopsy, we considered AI predictions outside the targeted 

biopsy region as false positives, which might have inflated the false positive rates by the AI 

model. Fourth, as the pathological confirmation in our study relied on TBx and SBx, the 

total disease burden may not have been truly assessed as it would have been in whole-mount 

specimens, resulting in high sensitivity rates by both the AI and radiologist. Fifth, we 

were unable to gauge the effect of AI on the time taken for image interpretation, as the 

prospective evaluations were conducted in a clinical setting without tracking the reporting 

duration. Sixth, the same genitourinary radiologist conducted the AI-assisted readouts; 

ideally, having multiple readers would better demonstrate the impact of AI-assistance in 

recurrence detection. Additionally, our study did not include PI-RR evaluations since the 
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PI-RR system had not been published when the prospective readouts of this study population 

were conducted. Finally, prospective reads were performed by an expert genitourinary 

radiologist, which may have resulted in an artificially large performance difference between 

the AI model and the clinical mpMRI evaluations. Considering this, the AI model may 

currently have an optimal use case in assisting non-expert radiologists who are challenged 

to interpret prostate MRIs of patients with biochemically recurrent prostate cancer under 

investigation for local recurrence.

In conclusion, a deep learning-based AI algorithm was able to identify a considerable 

proportion of local recurrences on biparametric MRI in prostate cancer patients who 

had biochemical recurrence after radiation therapy. However, our findings are preliminary 

and further evaluation in a large, prospective dataset, preferably acquired from multiple 

institutions, is required to validate our results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. Detection of local recurrence in patients with prior radiotherapy is 

challenging.

2. A bpMRI-based AI model detected most locally radiorecurrent cancers.

3. The AI model performance was comparably better in patients with larger 

glands.

4. The AI detection rates were higher in external beam radiation therapy group.
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Figure 1. 
Study flowchart

EBRT: External beam radiation therapy
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Figure 2. 
Standalone AI and unassisted radiologist readout detection sensitivities on patient-level (A) 

and lesion-level (B) for both treatment groups combined.

* represents p value of <0.05 for both comparisons.

EBRT: External beam radiation therapy
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Figure 3. 
82-year-old male with a history of external beam radiation therapy for prostate cancer and 

serum PSA level of 9.33 ng/ml. The patient had lesions in right mid-base anterior transition 

zone (arrows) and right mid periurethral transition zone (arrowhead) which were visible on 

T2-weighted imaging (A), ADC map (B), high b-value diffusion weighted imaging (DWI) 

(C), and dynamic contrast enhancement (DCE) (D). Targeted biopsies obtained from these 

sites were positive for recurrent cancer, and both were detected by the AI model as displayed 

in a binary AI prediction map (E) and a probability map (F).
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Figure 4. 
Violin plots of prostate volumes in the two treatment modalities (external beam radiation 

therapy [EBRT] and brachytherapy [Brachy]) (A). Patient- and lesion-level detection 

sensitivities of standalone AI stratified by prostate volume quartiles (B).
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Figure 5. 
False-positive distribution of the standalone AI model (red “X” refers to false positively 

detected lesions by the AI model and their corresponding locations in the prostate sector 

map)
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Figure 6. 
A 72-year-old male with a history of external beam radiation therapy for prostate cancer 

and serum PSA level of <0.01 ng/ml. Patient had a lesion in right mid peripheral zone 

which appears slightly hypointense on T2-weighted imaging (A) (arrow), negative on ADC 

map (B) and high b-value diffusion weighted imaging (DWI) (C) with a mild focal contrast 

uptake on dynamic contrast enhancement (DCE) (D) (arrow). Targeted biopsy revealed 

residual cancer, however, AI model did not detect this lesion. In left mid transition zone, 

the AI model had a false positive prediction, visible on binary AI prediction map (E) and 

probability map (F) (arrowhead) which may be attributed to the signal abnormalities caused 

by an adjacent fiducial marker.
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Figure 7. 
False-negative distribution of the standalone AI model (purple triangles refer to prostate 

cancer lesions missed by the AI model and their corresponding locations in the prostate 

sector map)
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Figure 8. 
A 70-year-old male who received brachytherapy for prostate cancer treatment with a serum 

PSA level of 1.5 ng/ml. Patient has a lesion in left apical-mid peripheral zone which is 

not visible on T2-weighted imaging (A) but appears hypointense on ADC map (B) and 

hyperintense on high b-value diffusion weighted imaging (DWI) (C) (arrows). The lesion 

also demonstrates early enhancement on dynamic contrast enhancement (DCE) (D) (arrow). 

Recurrent prostate adenocarcinoma was confirmed on targeted biopsy. Biparametric MRI-

based AI did not have any prediction on the binary AI prediction map (E) and therefore, this 

was considered a false negative, however, the probability map (F) localized the cancerous 

focus (arrowhead).

Yilmaz et al. Page 22

Eur J Radiol. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yilmaz et al. Page 23

Table 1 –

Patient Demographics

VARIABLE DESCRIPTION/UNIT ALL PATIENTS (N=62)

Number of patients (%) Median Interquartil e Range (IQR)

AGE Years 70 65-75

RACE African American 11 (18) . .

Asian 2 (3) . .

Caucasian 48 (77) . .

Multiracial 1 (2) . .

MR-BX INTERVAL Days . 38.5 25-53

PSA ng/ml . 3.51 1.99-5.42

PROSTATE VOLUME ml . 27.55 21-34

BIOPSY SCHEME Tbx only 10 (16) . .

*Tbx + TR-Sbx 41 (66) . .

Tbx + TP-Sbx 10 (16) . .

TP-Sbx only 1 (2) . .

NO. OF CANCEROUS FOCI PER PT.

0 16 (26) . .

1 37 (60) . .

2 8 (13) . .

3 1 (2) . .

*
4 patients had targeted biopsy only for seminal vesicle lesion

Numbers in parentheses represent percentages

Bx: Biopsy, PSA: Prostate-specific antigen, Tbx: Targeted biopsy, TR-Sbx: Transrectal systematic biopsy, TP-Sbx: Transperineal systematic biopsy
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Table 2 –

Overall distribution of recurrent prostate cancer and standalone AI detection sensitivity

Treatment 
Technique

No. of 
Pts.

PCa 
Foci

AI: Lesion-level 
Sensitivity PC a 

Pts.

AI: Patient-level 
Sensitivity FPs per patient FNs per patient

Ratio % Ratio % Mean Median 
[range] Mean Median 

[range]

EBRT 36 34 27/34 79.4 27 22/27 81.5 0.36 0 [0, 2] 0.19 0 [0, 1]

BT 26 22 13/22 59.1 19 13/19 68.4 0.34 0 [0, 2] 0.34 0 [0, 2]

Overall 62 56 40/56 71.4 46 35/46 76.1 0.35 0 [0, 2] 0.25 0 [0, 2]

AI: Artificial Intelligence model, BT: Brachytherapy, EBRT: External beam radiation therapy, PCa: Prostate cancer, FP: False positive, FN: False 
negative.
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