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Impairment of insulin action and metabolic dysregulation have traditionally been associated with schizophrenia, although the
molecular basis of such association remains still elusive. The present meta-analysis aims to assess the impact of insulin action
manipulations (i.e., hyperinsulinemia, hypoinsulinemia, systemic or brain insulin resistance) on glutamatergic, dopaminergic, γ-
aminobutyric acid (GABA)ergic, and serotonergic pathways in the central nervous system. More than one hundred outcomes,
including transcript or protein levels, kinetic parameters, and other components of the neurotransmitter pathways, were collected
from cultured cells, animals, or humans, and meta-analyzed by applying a random-effects model and adopting Hedges’g to
compare means. Two hundred fifteen studies met the inclusion criteria, of which 180 entered the quantitative synthesis. Significant
impairments in key regulators of synaptic plasticity processes were detected as the result of insulin handlings. Specifically, protein
levels of N-methyl-D-aspartate receptor (NMDAR) subunits including type 2A (NR2A) (Hedges’ g=−0.95, 95%C.I.=−1.50, −0.39;
p= 0.001; I2= 47.46%) and 2B (NR2B) (Hedges’g=−0.69, 95%C.I.=−1.35, −0.02; p= 0.043; I2= 62.09%), and Postsynaptic density
protein 95 (PSD-95) (Hedges’g=−0.91, 95%C.I.=−1.51, −0.32; p= 0.003; I2= 77.81%) were found reduced in insulin-resistant
animal models. Moreover, insulin-resistant animals showed significantly impaired dopamine transporter activity, whereas the
dopamine D2 receptor mRNA expression (Hedges’g= 3.259; 95%C.I.= 0.497, 6.020; p= 0.021; I2= 90.61%) increased under insulin
deficiency conditions. Insulin action modulated glutamate and GABA release, as well as several enzymes involved in GABA and
serotonin synthesis. These results suggest that brain neurotransmitter systems are susceptible to insulin signaling abnormalities,
resembling the discrete psychotic disorders’ neurobiology and possibly contributing to the development of neurobiological
hallmarks of treatment-resistant schizophrenia.
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INTRODUCTION
Dysregulation of insulin action has been linked to schizophrenia
pathophysiology above and beyond the side effects of pharma-
cological treatments [1], as shown by the high prevalence of
diabetes even before the introduction of antipsychotics in clinical
practice [2] and in drug-naïve patients at first-episode psychosis
[3]. Although divergent evidence has been reported in the
literature [4–7], a recent meta-analysis showed a significant
increase in fasting plasma glucose levels, plasma glucose levels
2 h after an oral glucose load, or insulin resistance in first-episode
psychotic patients compared to controls, with heterogeneity
across studies likely due to different lifestyles such as diet and
smoking, population-specific polymorphisms, and differences in
the definition of antipsychotic naïve [3]. Even if short-term
antipsychotic therapy may represent a cofounding bias in the
framework of insulin action dysregulation as a primitive feature of

schizophrenia, the correlation of insulin resistance with polygenic
risk score and treatment outcome in drug-naïve first-episode
patients strongly supports the idea of a direct link between
psychotic manifestations and metabolic disturbances [8]. Further,
although some authors argued that atypical antipsychotics impact
glucose sensitivity and induce insulin resistance even after a single
dose [9], a major part of the studies point to a dose- and time-
dependent effect of antipsychotics on glucose metabolism, with
the greatest effect noted with 2nd generation antipsychotics such
as clozapine and olanzapine [10–13]. The evidence of a common
basis, including genetic variants and perinatal stressors, for
schizophrenia and type 2 diabetes (T2D), has strengthened the
hypothesis of a strong interaction between these two worldwide
diffused disorders [14–16].
Specifically, the brain insulin pathway may exert a critical

function in promoting central glucose uptake and regulating
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astrocytic glucose availability and morphology, synaptic plasticity,
circuit connectivity, and neurotransmitter trafficking via the PI3K/
Akt/mTOR pathway [17, 18]. Moreover, insulin signaling has been
found crucial both in clozapine-induced Akt pathway activation
[19] and raclopride-mediated D2 receptor blockade [20–22],
considered relevant for the antipsychotic therapeutic mechanism.
Although the exact mechanism by which insulin might affect brain
function needs to be better elucidated, it has been shown that
most of the insulin in the brain derives from circulating pancreatic
insulin through a saturable transport across the blood–brain
barrier (BBB) [23]. Several factors are involved in the regulation of
insulin transport via the BBB as well as insulin signaling in the
brain, including obesity, inflammation, glycemia, insulin resistance,
levels of circulating triglycerides, and age [23, 24]. In this
framework, brain insulin resistance may arise from low levels of
insulin in the central nervous system or resistance at the receptor
level [23, 25]. Of interest, brain insulin resistance may precede the
onset of a full-blown diabetic state or represent an independent
manifestation, as proved by the observation of a reduced
response to ex vivo insulin stimulation in the hippocampal
formation and the cerebellar cortex of patients affected by
Alzheimer’s Disease without diabetes [26]. Thus, even though
influenced by systemic metabolic disturbances, insulin dysfunc-
tion in the brain may be present also in the absence of peripheral
diabetic or prediabetic states.
Nonetheless, a systematic analysis investigating the insulin

regulation of neurotransmission processes with special regard to
the putative impact on schizophrenia neurobiology has never been
performed, leaving a gap in the current knowledge of the
molecular mechanisms implicated. Hence, fundamental questions
remain unanswered: i) What is the overall effect of insulin action
perturbations on the main neurotransmitters and related molecular
components involved in schizophrenia? ii) Where do these effects
mainly take place? iii) How do the changes in insulin function
impact synaptic structures and proteins involved in schizophrenia
neurobiology? With these questions in mind, we have launched a
meta-analysis, focusing on multiple patterns of insulin manipula-
tions and their effect on dopaminergic, glutamatergic, serotoner-
gic, and γ-aminobutyric acid (GABA)ergic pathways, in the attempt
to possibly shed light on the molecular bases of schizophrenia and
metabolic disturbances under a translational perspective.

METHODS
The present systematic review and meta-analysis followed
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (please, see Supplementary Informa-
tion for PRISMA checklist) [27]. The screening, data extraction, and
methodological quality appraisal of eligible studies were indepen-
dently performed by three investigators (MB, MDP, GDS). Any
disagreements were solved by consensus. Two senior investigators
decided when an agreement could not be reached (AdB, MF). An a
priori written study protocol is available upon request.

Search strategy
The PubMed/MEDLINE, Embase, and Scopus databases were
systematically searched for references indexed from inception
until July 1st, 2021. An additional search was launched on the
PubMed/MEDLINE database for the identification of further
studies published from July 1st, 2021 until June 30th, 2022.
Search strings for the databases are available in Supplementary
information. In addition, relevant cross-references, textbooks,
and other materials were hand-searched to identify potential
additional references not captured in the original searches.

Eligibility criteria and study outcomes
To highlight changes in neurotransmitter pathways resulting from
manipulations of the insulin action, peer-reviewed studies,

published in any language, that provided quantitative data were
deemed for inclusion. Eligible studies included cultured cells,
animals, or humans with documented alterations in the insulin
pathway. Controls shared the same characteristics of the cases but
without the insulin action alteration. Any outcome related to
dopaminergic, glutamatergic, serotonergic, and GABAergic path-
ways measured in the brain was considered for inclusion. Studies
conducted in vivo, in vitro, and ex vivo were evaluated for
inclusion. Studies i) that did not provide a control group nor
quantitative data; ii) measuring neurotransmitter outcomes in
tissues different from the brain; iii) combining multiple insulin
alterations in the same subjects were excluded. Studies using
paired samples (i.e., the same group pre- and post-treatment) as
control groups were excluded, along with reviews, case reports,
letters to editors, and commentaries.

Data extraction
The following variables were extracted (when feasible): first
author, year of publication, geographical region, country, study
design, study type (in vivo, in vitro, ex vivo), species considered
(i.e., human, animal), animal type, animal weight, insulin action
alteration type (hyperinsulinemia, hypoinsulinemia, peripheral or
brain insulin resistance), experimental paradigm details for cases
and controls (i.e., type of intervention, agent doses), neurotrans-
mitter outcome type and its unit of measure, brain area
considered, mean time from insulin alteration to neurotransmitter
measure, blood glucose and insulin plasma levels for cases and
controls, mean age, % of female, sample size, outcome mean and
standard deviation (SD) for both cases and controls. If the study
met our a priori-defined inclusion criteria, but raw data were not
fully available, the computed effect size was used; if no effect size
was available, the authors were contacted twice to ask for data.
For studies reporting data in figures only, WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/) was used to extract data
from figures manually.

Methodological quality appraisal
The methodological quality of included studies was assessed by
using the Systematic Review Centre for Laboratory Animal
Experimentation (SYRCLE) Tool for animal studies and the National
Institutes of Health (NIH) Study Quality Assessment Tools for
human studies (Supplementary Tables 1 and 2).

Statistical analysis
Individual study data were pooled using the DerSimonian-Laird
proportion method [28] with Comprehensive Meta-Analysis®
software (version 2) [29]; random-effects modeling was applied
for meta-analytic estimates. Heterogeneity was assessed by using
I2 and Tau2. When the number of comparisons (k) equaled three or
more and high heterogeneity was detected (I2 ≥ 75%) [30], the
following a priori planned subgroup analyses were conducted:
study type, animal type, insulin alteration model, and brain area.
Hedges’g was adopted for comparison between means. Publica-
tion bias was evaluated by looking at the funnel plot and using
the trim and fill method; Egger’s test was adopted to assess the
eventual publication bias. Different animal species were analyzed
together and subgroup analysis according to the animal type was
always accomplished. However, we decided not to analyze
together data coming from human and animal studies due to
the expected variability in study methodology and organism
biology. Meta-regression analyses were performed for the
following variables: time from insulin alteration to neurotransmit-
ter measure, blood glucose and insulin plasma concentration, and
homeostatic model assessment (HOMA) index, expressed as the
ratio between the levels in cases and controls. Meta-regression
analyses were performed exclusively in the same animal species
whenever at least ten primary comparisons were available.
Sensitivity analyses were carried out excluding one study at a
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time to identify possible outliers, which could be biasing the
pooled effect size estimate. RStudio R version 4.1.2 [31] was
adopted to render high-resolution plots.

RESULTS
Five thousand nine hundred thirty-five records were identified
across different sources, yielding 3681 unique references (i.e., after
excluding duplicated references) for further screening. Of the
latter, 3073 studies were excluded at the title/abstract level, and
other 393 records were excluded after full-text review.
Two hundred fifteen studies were deemed eligible for inclusion

in the systematic review. One hundred eighty studies could be
meta-analyzed. Almost all of the included studies (208) were
conducted on animals or cultured cells, while only seven reports

were performed on humans. The details of the selection process are
displayed in Fig. 1. Due to the extensive data extracted, a detailed
analysis of all the significant outcomes has been reported in the
supplementary materials. The synthesis of overall the computed
effect sizes appears in the heatmap in Fig. 2. Please, see the
Supplementary Information section for a full consultation of forest
plots, publication bias, meta-regressions, and subgroup analyses.
The data were systematized according to the different types of

alteration induced or observed in the insulin action and thus were
organized into four distinct groups: hyperinsulinemia, hypoinsuli-
nemia, insulin resistance, and brain insulin resistance. The specific
characteristics of each model are discussed in the Supplementary
Information. It should be noted that spontaneous hyperinsuline-
mia, being a compensatory mechanism preventing the develop-
ment of hyperglycemia in insulin-resistant individuals, can be

Records identified from:
PubMed (n=2242)
Embase (n=1511)
Scopus (n=2182)

Records removed before 
screening:
Duplicate records removed 
(n=2254)

Records screened (ti & ab)
(n=3681)

Records excluded (n=2804)
Duplicate (n=186)

Reports sought for retrieval
(n=691)

Reports not retrieved
(n=83)

Reports assessed for eligibility
(n=608)

Reports excluded (n=393):
Not adequate model (n=105)
Unrelated to our research topic (n=211)
Duplicate (n=23)
Insufficient data (n=35)
Not original article (n=8)
Unretrieved (n=3)
Case-report study (n=1)
Overlapping data to another article (n=1)
Paired samples (n=6)

Studies included (n=215)

Identification of studies via databases and registers

noitacifitnedI
dedu lcnI

Studies included in the quantitative 
synthesis (n=180)

gnin eerc S

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an 
updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

Fig. 1 PRISMA flow diagram. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) study selection flow diagram.
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Fig. 2 Effect sizes (Hedges’g) heatmap. Heatmap illustrating effect sizes (Hedges’g) of each outcome in different models (hyperinsulinemia,
hypoinsulinemia, insulin resistance, and brain-limited insulin resistance) grouped into neurotransmitter pathways. The heatmap scale of colors
codes the overall effect size (Hedges’g) value (ranging from blue to red as shown in the legend) obtained from each meta-analysis. Red colors
implicate higher levels of the outcome in cases whereas blue colors implicate higher levels of outcome in controls. * is used to express a
significant result (p<0.05). [3H]-asp binding [3H]-d-aspartate binding, [3H]DA uptake [3H]dopamine uptake, [3-MT] 3-methoxytyramine
concentration, [5-HIAA] 5-hydroxyindoleacetic acid concentration, [5-HT] serotonin concentration, [5-HTP] 5-hydroxytryptophan concentra-
tion, [DA extracellular] extracellular dopamine concentration, [DA] dopamine concentration, [DOPA] dihydroxyphenylalanine concentration,
[DOPAC] 3,4- dihydroxyphenylacetic acid concentration, [D-ser] D-serine concentration, [GABA] gamma-aminobutyric acid concentration, [Glu]
glutamate concentration, [Glutamine] glutamine concentration, [Gly] glycine concentration, [HVA] homovanillic acid concentration, [L-ser]
L-serine concentration, [Ser] serine concentration, [Trp] tryptophan concentration, [Tyr] tyrosine concentration, 3[H]-AMPAR binding 3[H]-
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65/67 kDa form protein levels, GAD67 prot glutamic acid decarboxylase 67 kDa form protein levels, GDH activity glutamate dehydrogenase
activity, GDH Km glutamate dehydrogenase Michaelis constant, GDH Vmax glutamate dehydrogenase maximal velocity, Glu clearance
glutamate clearance, Glu uptake glutamate uptake, GluR1 prot glutamate ionotropic receptor AMPA type subunit 1, GluR1 Ser831 ph
glutamate ionotropic receptor AMPA type subunit 1 phosphorylation at Ser831, GluR1 Ser845 ph glutamate ionotropic receptor AMPA type
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receptor NMDA type subunit 1 protein levels, NR2A prot glutamate ionotropic receptor NMDA type subunit 2A protein levels, NR2B glutamate
ionotropic receptor NMDA type subunit 2B protein levels, PSD-95 prot postsynaptic density protein 95 protein levels, SAP-102 prot synapse
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considered a marker of insulin resistance in human clinical studies.
However, this assumption cannot be extended to preclinical
animal models explored in the present meta-analysis, since in all
the included studies, hyperinsulinemia was induced acutely, often
by insulin or tolbutamide administration, and was employed to
reproduce hypoglycaemic conditions. Moreover, we differentiated
insulin deficiency conditions caused, among others, by streptozo-
tocin or alloxan treatment and comprised in the hypoinsulinemic
model from peripheral and brain insulin resistance. Overall,
hyperinsulinemic models were adopted to identify conditions
characterized by increased insulin signaling, generally attributable
to an elevation of peripheral and brain insulin levels. Otherwise,
hypoinsulinemia was used to define conditions of reduced insulin
signaling due to low insulin levels, in contrast to insulin-resistant
models in which, normal levels of insulin were coupled with
impaired transductive mechanisms. In addition, when reported,
the comparison of insulin and glucose levels between cases and
controls was used to ensure more correct assignment to individual
models. The preclinical studies included in the present meta-
analysis did not involve concurrent administration of antipsychotic
therapy. Therefore, alterations in neurotransmitter pathways are
related to insulin manipulation and not to other confounding
variables. All the studies conducted in humans provided evidence
by neuroimaging techniques.

Glutamatergic outcomes
As reported in Fig. 3, hyperinsulinemic animals exhibited reduced
brain glutamate (Hedges’g=−0.49; 95%C.I.=−0.83, −0.16;
p= 0.004; I2= 82.29%; based on 71 comparisons from 17 animal

interventional studies [32–48]) and glutamine concentrations
(Hedges’g=−1.17; 95%C.I.=−1.64, −0.70; p < 0.001; I2= 84.27%;
based on eight studies [34, 37–39, 45–48] fetching 41 compar-
isons). Subgroup analysis among studies exploring glutamate
concentration showed a significant reduction in ex vivo studies
and a significant increase in studies conducted in vitro and in vivo;
the study type did not affect glutamine concentration. Animals in
the hypoinsulinemic group showed a significant increase in both
3[H]- α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
receptor (AMPAR) binding (Hedges’g= 0.89; 95%C.I.= 0.13, 1.65;
p= 0.022; I2= 73.11%; based on one study [49] providing nine
comparisons) and N-methyl-D-aspartate receptor (NMDAR) Bmax

(Hedges’g= 4.99; 95%C.I.= 2.24, 7.74; p < 0.001; I2= 79%; based
on three studies [43, 49, 50] fetching three comparisons), and a
significant reduction in the hippocampal protein levels of NMDAR
type subunit 2B (NR2B) (Hedges’g=−2.03, 95%C.I.=−3.67, −0.39;
p= 0.015; I2= 79.79%; based on two studies [51, 52] fetching four
comparisons). The insulin-resistant group displayed a significant
drop in the hippocampal levels of several proteins involved in
NMDAR function, including NMDAR type subunit 2A (NR2A)
(Hedges’g=−0.95, 95%C.I.=−1.50, −0.39; p= 0.001;
I2= 47.46%; based on three studies [53–55] providing eight
comparisons), NR2B (Hedges’g=−0.69, 95%C.I.=−1.35, −0.02;
p= 0.043; I2= 62.09%; based on three studies [53–55] fetching
eight comparisons), and postsynaptic density protein 95 (PSD-95)
(Hedges’g=−0.91, 95%C.I.=−1.51, −0.32; p= 0.003; I2= 77.81%;
based on 14 comparisons from four studies [55–57]). Even though
data were insufficient to provide a meta-analysis, NMDAR type
subunit 1 (NR1) [54] levels also decreased under insulin-resistant
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Fig. 3 Glutamatergic outcomes effect sizes (Hedges’g) and 95% confidence intervals. Effect size and 95% confidence intervals are provided
for each outcome included in the glutamatergic pathway and grouped into hyperinsulinemic, hypoinsulinemic, insulin-resistant, and brain insulin-
resistant models respectively. [3H]-asp b [3H]-d-aspartate binding, [3H]-NMDA-R b [3H]-NMDA receptor binding, [3H]-AMPA-R b [3H]-AMPA
receptor binding, [Glu] glutamate concentration, [Gluta] glutamine concentration, [Gly] glycine concentration, [D-ser] D-serine concentration, [L-
ser] L-serine concentration, [Ser] serine concentration, act pot n° activity potential number, EAAT1 mRNA excitatory amino acid transporter type 1
mRNA, EAAT1 prot excitatory amino acid transporter type 1 protein levels, EPSCs excitatory postsynaptic currents, GDH act glutamate
dehydrogenase activity, GDH Km glutamate dehydrogenase Michaelis constant, GDH Vmax glutamate dehydrogenase maximal velocity, Glu cl
glutamate clearance, Glu upt glutamate uptake, GluR1 prot glutamate ionotropic receptor AMPA type subunit 1 protein levels, GluR1 Ser831 ph
glutamate ionotropic receptor AMPA type subunit 1 phosphorylation at Ser831, GluR1 Ser845 ph glutamate ionotropic receptor AMPA type
subunit 1 phosphorylation at Ser845, GluR2 prot glutamate ionotropic receptor AMPA type subunit 2 protein levels, GluR5 (GRIK1) glutamate
ionotropic receptor kainate type 1 subunit, GluR6 (GRIK2) mRNA glutamate ionotropic receptor kainate type 2 subunit mRNA, GS act glutamine
synthase activity, h[Glu] human glutamate concentration, h[Gluta] human glutamine concentration, KA2 (GRIK5) mRNA glutamate ionotropic
receptor kainate type 5 subunit mRNA, mGluR-5 mRNA metabotropic glutamate receptor type 5 subunit mRNA, NMDA-R Bmax NMDA receptor
maximal binding capacity, NMDA-R Kd NMDA receptor dissociation constant, NR1 prot glutamate ionotropic receptor NMDA type subunit 1
protein levels, NR2A prot glutamate ionotropic receptor NMDA type subunit 2A protein levels, NR2B prot glutamate ionotropic receptor NMDA
type subunit 2B protein level, PSD-95 prot postsynaptic density protein 95 protein levels, SAP-102 prot synapse associated protein 102 protein
levels, vGlut1 prot vesicular glutamate transporter 1 protein levels, vGlut2 prot vesicular glutamate transporter 2 protein levels.

A. de Bartolomeis et al.

2815

Molecular Psychiatry (2023) 28:2811 – 2825



conditions. Animals in the brain insulin-resistant group presented a
significant decline in the hippocampal protein levels of NR2A
(Hedges’g=−2.11; 95%C.I.=−4.14, −0.09; p= 0.041; I2= 88.00%;
based on three studies [58–60] providing three comparisons).
Although not significant, hippocampal protein levels of NR2B
(Hedges’g=−0.69; 95%C.I.=−1.98, 0.60; p= 0.293; I2= 78.02%;
based on three studies [58, 60, 61] providing three comparisons)
appeared to be reduced too. Even though data were not sufficient
to provide a quantitative analysis, brain insulin-resistant animals
showed a decrease in the hippocampal levels of NR1 [59, 60].
Animal type, study type, and brain area were effective in reducing
heterogeneity for almost all the significant outcomes. Please, see
Fig. 3 for a full acknowledgment of effect sizes and 95% confidence
intervals related to glutamatergic pathway outcomes.

Dopaminergic outcomes
Regarding dopaminergic pathway changes, shown in Fig. 4, we
observed a significant decrease of dopamine concentrations in
hyperinsulinemic animals (Hedges’g=−0.39; 95% C.I.=−0.77,
−0.01; p= 0.043; I2= 82.47%; based on 68 comparisons from
15 studies [62–76]) that was mirrored by an increase (Hedges’g=
0.87, 95% C.I.= 0.05, 1.69; p= 0.037; I2= 44.29%; based on two
studies [77, 78] fetching three comparisons) in brain insulin-
resistant animals. In insulin-resistant animals, we found a
significant impairment in functional parameters of the dopamine
transporter (DAT), including DAT Bmax (Hedges’g=−1.13, 95%
C.I.=−1.90, −0.36; p= 0.004; I2= 0%; based on one ex vivo study
[79] fetching three comparisons), Vmax (Hedges’g=−1.48, 95%
C.I.=−2.18, −0.78; p < 0.001; I2= 11.47%; based on one ex vivo
study [79] fetching three comparisons), Km (Hedges’g=−1.07,
95% C.I.=−1.85, −0.30; p= 0.007; I2= 19.27%; based on one

ex vivo study [79] fetching three comparisons), and DAT cell
surface expression (Hedges’g=−1.14, 95% C.I.=−1.91, −0.37;
p= 0.004; I2= 24.76%; based on two ex vivo studies [79, 80]
providing three comparisons), while a significant increase in DAT
Vmax (Hedges’g= 0.33; 95% C.I.= 0.12, 0.54; p= 0.002;
I2= 28.02%; based on one in vitro study [81] providing six
comparisons) was observed in hyperinsulinemic animals. Dopa-
mine clearance (Hedges’g=−1.48, 95% C.I.=−2.18, −0.78;
p < 0.001; I2= 11.47%; based on one in vivo study [80] fetching
five comparisons) and [3H] dopamine uptake (Hedges’g=−1.371;
95% C.I.=−1.710, −1.032; p < 0.001; I2= 0%; based on one study
[82] providing four comparisons) displayed a significant reduction
in insulin-resistant and hypoinsulinemic animals respectively.
Monoamine oxidase (MAO) activity was significantly reduced
(Hedges’g=−0.86; 95% C.I.=−1.28, −0.44; p < 0.001;
I2= 36.32%; based on one ex vivo study [66] fetching nine
comparisons) and increased (Hedges’g= 0.545; 95% C.I.= 0.158,
0.904; p= 0.003; I2= 0%; based on one study [66] providing eight
comparisons) in hyper- and hypoinsulinemic conditions, respec-
tively. Dopamine D2 receptor (D2R) D2R mRNA expression was
increased both in hyper- (Hedges’g= 1.79; 95%C.I.= 0.37, 3.20;
p= 0.013; I2= 87.26%; based on seven comparisons from three
studies [70, 74, 83]) and hypoinsulinemic (Hedges’g= 3.259; 95%
C.I.= 0.497, 6.020; p= 0.021; I2= 90.61%; based on three studies
[70, 84, 85] providing three comparisons) animals. Please, see
Fig. 4 for a full acknowledgment of effect sizes and 95%
confidence intervals related to dopaminergic pathway outcomes.

GABAergic outcomes
As shown in Fig. 5, hyperinsulinemic animals showed lower
glutamic acid decarboxylase (GAD) mRNA (Hedges’g=−6.35; 95%
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Fig. 4 Dopaminergic outcomes effect sizes (Hedges’g) and 95% confidence intervals. Effect size and 95% confidence intervals are provided
for each outcome included in the dopaminergic pathway and grouped into hyperinsulinemic, hypoinsulinemic, insulin-resistant, and brain
insulin-resistant models respectively. [3-MT] 3-methoxytyramine concentration, [3H]DA upt [3H]dopamine uptake, [DA] dopamine
concentration, [DA extracell] extracellular dopamine concentration, [DOPA] dihydroxyphenylalanine concentration, [DOPAC] 3,4-dihydrox-
yphenylacetic acid concentration, [HVA] homovanillic acid concentration, [Tyr] tyrosine concentration, D1R mRNA dopamine D1 receptor
mRNA, D2R Bmax dopamine D2 receptor maximal binding capacity, D2R Kd dopamine D2 receptor dissociation constant, D2R mRNA
dopamine D2 receptor mRNA, D2R prot dopamine D2 receptor protein levels, D3R mRNA dopamine D3 receptor mRNA, D5R mRNA dopamine
D5 receptor mRNA, DA cl dopamine clearance, DA t.o. dopamine turnover, DAT Bmax dopamine transporter maximal binding capacity, DAT
cell surf dopamine transporter cell surface expression, DAT ex fract dopamine transporter extraction fraction, DAT Km dopamine transporter
Michaelis constant, DAT mRNA dopamine transporter mRNA, DAT prot dopamine transporter maximal protein levels, DAT Vmax dopamine
transporter maximal velocity, DβH prot dopamine-β-hydroxylase protein levels, DOPA acc dihydroxyphenylalanine accumulation, DR Bmax
dopamine receptor maximal binding capacity, DR Kd dopamine receptor dissociation constant, DR sens dopamine receptor sensitivity, MAO
act monoamine oxidases activity, MAO-B mRNA monoamine oxidase B mRNA, TH act tyrosine hydroxylase activity, TH mRNA tyrosine
hydroxylase mRNA, TH prot tyrosine hydroxylase protein levels, TH+ cell n° number of cells tyrosine hydroxylase+, Tyr acc tyrosine
accumulation, vMAT1 mRNA vesicular monoamine transporter 1 mRNA, vMAT2 mRNA vesicular monoamine transporter 2 mRNA.
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C.I.=−10.05, −2.64; p= 0.001; I2= 83.59%; based on three
comparisons from three ex vivo studies [85–87]) and higher
GABA-A receptor β2/β3 subunits (Hedges’g= 0.48; 95% C.I.= 0.27,
0.70; p < 0.001; I2= 17.51%; based on one in vitro study [88]
providing five comparisons). GABA concentration displayed a
significant reduction in hyperinsulinemia (Hedges’g=−0.58; 95%
C.I.=−0.85, −0.32; p < 0.001; I2= 75.09%; based on 70 compar-
isons from 14 studies [32, 37, 38, 41, 42, 44–47, 89–93]) and an
increase in hypoinsulinemic (Hedges’ g= 1.37, 95%C.I.= 0.45,
2.29; p= 0.004; I2= 83.60%; based on 12 comparisons from six
studies [94–99]) and insulin-resistant animals (Hedges’g= 0.34,
95% C.I.= 0.02, 0.66; p= 0.04; I2= 0%; based on two studies
[57, 100] providing eight comparisons). Please, see Fig. 5 for a full
acknowledgment of effect sizes and 95% confidence intervals
related to GABAergic pathway outcomes.

Serotonergic outcomes
With the regard to the serotonergic pathway, we observed a
significant reduction in tryptophan (Trp) concentration
(Hedges’g=−1.35; 95% C.I.=−1.75; −0.96, p < 0.001;
I2= 63.92%, based on seven studies [75, 101–106] fetching 17
comparisons), Trp hydroxylase (TPH) activity rate (Hedges’g=
−3.93, 95% C.I.=−5.83; −2.03; p < 0.001; I2= 82.56%; based on
two studies [104, 107] providing five comparisons), and TPH
Vmax (Hedges’g=−45.64; 95% C.I.=−57.74, −33.53; p < 0.001;
I2= 27.62%; based on one study [107] providing four compar-
isons) in hypoinsulinemic animals. Moreover, hyperinsulinemic
animals displayed a significant increase in the concentration of
5-hydroxyindoleacetic acid (5-HIAA) (Hedges’g= 0.40; 95%
C.I.= 0.12, 0.68; p= 0.005; I2= 75.62%; based on 64 compar-
isons from 17 studies [62, 63, 65, 68, 72, 73, 75, 76, 108–116])
and Trp accumulation (Hedges’g= 2.22; 95% C.I.= 1.39, 3.05;
p < 0.001; I2= 41.79%; based on one ex vivo study [63] fetching
five comparisons). Conversely, 5-HIAA levels were significantly

reduced in the hypoinsulinemic model (Hedges’g=−0.37; 95%
C.I.=−0.59, −0.16; p= 0.001; I2= 73.97%; based on 71
comparisons from 21 studies [75, 95, 101–106, 117–129]).
Please, see Fig. 6 for a full acknowledgment of effect sizes and
95% confidence intervals related to serotonergic pathway
outcomes.

DISCUSSION
To the best of our knowledge, this is the first quantitative
synthesis of molecular components belonging to the glutamater-
gic, dopaminergic, serotonergic, and GABAergic systems in
response to perturbations of insulin action. We detected
significant impairments as consequences of systemic and brain-
selective insulin manipulations in animal models. These observa-
tions support a possible role for dysregulation of insulin action in
the neurobiology of psychotic disorders [17–22] in which the
above neurotransmitters have been implicated. In light of the data
produced, not only might insulin resistance be seen as a relevant
factor in the pathophysiology of schizophrenia, but also a
determinant player in its treatment response and resistance.

Insulin and glutamatergic pathway
NMDARs are ionotropic glutamate receptors involved in excitatory
neurotransmission and synaptic plasticity, displaying a heterote-
trameric assembly composed of two NR1 and two NR2 subunits,
with PSD-95 as a major protein at PSD playing both a functional
and structural role in their regulation [130]. In literature, the role of
NMDAR in the pathogenesis of schizophrenia has been well
characterized, pointing to the receptor hypofunction as a driver
for the onset of psychotic symptoms [131–133], and novel direct
or undirect receptor modulators are currently under development
as potential therapeutic agents in schizophrenia and treatment-
resistant schizophrenia (TRS) [134].
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Fig. 5 GABAergic outcomes effect sizes (Hedges’g) and 95% confidence intervals. Effect size and 95% confidence intervals are provided for
each outcome included in the GABAergic pathway and grouped into hyperinsulinemic, hypoinsulinemic, and insulin-resistant respectively. α1
GABA-A receptor α1 subunit mRNA, β2/β3 prot GABA-A receptor β2/β3 subunits protein levels, [GABA] GABA concentration, GABA t.c. amp
GABA tonic current amplitude, GABA t.c.d. GABA tonic current density, GABA t.o. GABA turnover, GABA upt GABA uptake, GABA-A t.c. amp
GABA-A receptor tonic current amplitude, GABA-R Bmax GABA receptor maximal binding capacity, GABA-R Kd GABA receptor dissociation
constant, GAD act glutamic acid decarboxylase activity, GAD mRNA glutamic acid decarboxylase mRNA, GAD65 prot glutamic acid
decarboxylase 65 kDa form protein levels, GAD65/67 prot glutamic acid decarboxylase 65/67 kDa form protein levels, GAD67 prot glutamic
acid decarboxylase 67 kDa form protein levels, mIPSCs amp miniature inhibitory postsynaptic currents amplitude, mIPSCs Hz miniature
inhibitory postsynaptic currents frequency, mIPSCs t.c.d. miniature inhibitory postsynaptic currents total current density, sIPSCs amp
spontaneous inhibitory postsynaptic currents amplitude, sIPSCs Hz spontaneous inhibitory postsynaptic currents frequency, sIPSCs t.c.d.
spontaneous inhibitory postsynaptic currents total current density, vGAT prot vesicular GABA transporter protein levels.
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According to the results of the present meta-analysis, we
observed a significant reduction in NR2A, NR2B, and PSD-95
hippocampal levels and a significantly higher NMDAR Bmax in
hypoinsulinemic or insulin-resistant animals consistent with the
view of insulin manipulations leading to crucial changes in the
glutamatergic pathways.
A decrease in PSD-95, a major protein at PSD playing both a

functional and structural role in NMDAR regulation and allowing
the multimerization and clustering of protein complexes within
the postsynaptic density, may affect the ability to recruit receptors
and enhance synaptic strength [135]. It should be noted that a
reduction in hippocampal expression of PSD-95 has been
observed in post-mortem brain tissue of schizophrenia patients
[136]. Of interest, PSD-95 directly binds to the NR2A subunit of
NMDAR, which in the present meta-analysis was found likewise
reduced. Furthermore, since NR2B-containing NMDARs are mainly
involved in plasticity, synapse activation, and circuit integration
[137], the detected reduction in NR2B may account for the
weakening of hippocampal synapses. In this respect, the increase
in the receptor total density measured as binding availability
(Bmax) could be instead explained as a compensatory mechanism
to counterbalance the NMDAR hypofunction.
Hippocampal NMDAR hypofunction has been related to a

higher glutamate release in schizophrenia [138, 139]. Although no
significant increase in glutamate concentration was reported in
preclinical models of insulin resistance, our analysis revealed a
parallel reduction in glutamate and glutamine levels associated
with hyperinsulinemia and a trend toward the significance of
increasing glutamate levels in hypoinsulinemic and insulin-
resistant models. These findings are further supported by the
increase in glutamine synthetase activity observed in hyperinsu-
linemic animals that may reflect the reduction in end products of
glutamine metabolism [140]. Moreover, the meta-analysis of
glutamate and glutamine concentrations in human subjects with
T2D or prediabetes did not provide significant results, probably
due to the limited number of included studies [141–143].

However, a study of 40 adults with a negative history of
psychiatric illness demonstrated decreased cortical plasticity in
both T2D and prediabetic subjects compared with controls as
measured by transcranial magnetic stimulation [141].
Taken together, the data suggest that the decrease in insulin

action, due to either insulin resistance or experimentally induced
hypoinsulinemia, is associated with disturbances in synaptic
plasticity processes and hypofunction of the glutamate receptor
machinery, and, combined with the changes in glutamine/
glutamate concentrations shown in the hyperinsulinemic model,
resembles those alterations observed in schizophrenia patients.
Consistently, hyperinsulinemia was associated with an increased
expression of glutamate ionotropic receptor kainate type subunit
5 (GRIK5 or KA2) and glutamate ionotropic receptor kainate type
subunit 1 (GRIK1 or GLUR5), whose loss-of-function mutations
have recently been identified in schizophrenia patients and shown
to weaken the interaction with PSD-95 [144].
The neurobiological bases of TRS remain elusive, although

significant growing evidence supports the involvement of the
glutamatergic pathway. While striatal dopamine synthesis capacity,
measured by 3,4-dihydroxy-6-[18F]fluoro-l-phenylalanine (18F-
DOPA) positron emission tomography (PET), has been demonstrated
to be increased in patients responsive to antipsychotics, it did not
substantially differ between TRS patients and healthy controls
[145, 146]. Conversely, a significant increase in glutamate levels has
been detected in multiple brain regions and notably in the anterior
cingulate cortex (ACC) of TRS patients compared to responders and
healthy controls, as measured by 1H-magnetic resonance spectro-
scopy (H1-MRS) [147–151]. Moreover, in the attempt to shed light on
the neurobiological background of TRS, a multicenter study proved
at once both an elevation in ACC glutamate levels and no major
striatal dopamine uptake in resistant patients compared to
responsive ones [147]. In conclusion, glutamatergic dysregulation
may represent a molecular pattern specific for TRS whereas changes
in the dopaminergic function may account for psychotic symptoms
in drug-responsive patients.
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Fig. 6 Serotonergic outcomes effect sizes (Hedges’g) and 95% confidence intervals. Effect size and 95% confidence intervals are provided
for each outcome included in the serotonergic pathway and grouped into hyperinsulinemic, hypoinsulinemic, and insulin-resistant models
respectively. In the hypoinsulinemic model, TPH V max and SERT mRNA values have been scaled for easier viewing; the real values have been
reported in the supplementary materials. [5-HIAA] 5-hydroxy indole acetic acid concentration; [5-HT] serotonin concentration; [5-HTP]
5-hydroxytryptophan concentration; [Trp] tryptophan concentration; 5-HT R Bmax serotonin receptor maximal binding capacity; 5-HT R Kd
serotonin receptor dissociation constant; 5-HT2A R Bmax serotonin receptor 2 A maximal binding capacity; 5-HT2A R Kd serotonin receptor 2A
dissociation constant; 5-HTP acc 5-hydroxytryptophan accumulation; SERT mRNA serotonin transporter mRNA; TPH act tryptophan
hydroxylase activity; TPH Km tryptophan hydroxylase Michaelis constant; TPH Vmax tryptophan hydroxylase maximal velocity; Tryp acc
tryptophan accumulation.
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Additionally, the present analysis showed a significant rise in
3[H]-AMPAR binding in hypoinsulinemic animals. There might be
various reasons for this increase. However, considering this finding
and the reduction in NMDAR subunits, it is conceivable that
reduced insulin signaling may replicate some of the molecular
changes observed in animal models of long-term antipsychotic
therapy. Specifically, Kruyer and colleagues have recently
described that, beyond the D2R upregulation and the increased
proportion of high-affinity D2R, glutamatergic dysregulations,
including the insertion of AMPA receptors and an increased
AMPAR/NMDAR ratio combined with the loss of D2R-dependent
inhibitory postsynaptic currents, might represent the molecular
underpinning of behavioral supersensitivity [152]. Otherwise, the
significant elevation in 3[H]-AMPAR binding and also in the Vmax of
glutamate dehydrogenase observed in hypoinsulinemic models
might follow a possible increase in glutamate concentrations,
which was not remarkably detected in the current study [153].
Overall, albeit with caution, these results let us hypothesize that

insulin dysregulation in the glutamatergic signaling may mimic
some of the discrete features of psychotic disorders and may
provide a fertile background for antipsychotic refractoriness,
contributing possibly to TRS, and thus triggering a “double
resistance” state, namely the resistance to both insulin and
antipsychotics.

Insulin and dopaminergic pathways
Over time, several lines of evidence have highlighted the
dopamine involvement in the neurobiology of psychotic symp-
toms, and, among others, PET neuroimaging approaches have
provided the most replicated in vivo findings. The observations of
a significant surge in dopamine release after amphetamine
administration, as well as an increase in dopamine synthesis
capacity in psychotic patients compared to healthy controls,
detected by PET imaging studies, strongly support the dopamine
hypothesis of schizophrenia [154–156].
In the present meta-analysis, dopamine concentration showed a

significant decrease in hyperinsulinemic animals and a significant
increase in brain insulin-resistant animal models, especially in
limbic and striatal regions, suggesting a possible role for insulin
resistance in the onset or maintenance of psychotic symptoms via
augmentation of mesolimbic dopaminergic signaling. In this
regard, dysfunctions of the mesolimbic pathway, as in a condition
of striatal hyperdopaminergia, have been associated with
psychotic symptoms and cognitive impairment in patients with
schizophrenia, possibly by affecting the salience of environmental
stimuli, perceptions processing, reward-based learning, and brain
functional connectivity [157, 158]. Of interest, this finding has
recently been reported also in humans, by the detection of
reduced synaptic dopamine levels in response to central insulin
stimulation as evidenced by a higher [11C]-raclopride binding
potential at the striatal level [159]. The further observation of
increased 3,4-dihydroxyphenylacetic acid and 3-methoxytyramine
(3-MT) concentrations, DOPA accumulation, and tyrosine hydro-
xylase (TH) mRNA under conditions of hyperinsulinemia sug-
gested a possible impairment of both dopamine synthesis and
catabolism as the putative mechanism responsible for the altered
dopamine levels [160].
Furthermore, we found significant impairment of DAT function

in the striatum of insulin-resistant animals, with a decrease in DAT
Bmax, Km, Vmax, and cell surface expression. Recently, a lower DAT
expression has been found in the dorsal striatum of post-mortem
tissue extracted from patients diagnosed with schizophrenia
compared to controls, accountable for a striatal hyperdopaminer-
gic state [161]. Although the reduction in DAT levels could be
interpreted as the result of chronic drug administration in patients
with schizophrenia, the impairment observed in insulin-resistant
antipsychotic-free animals may suggest a possible involvement of
insulin perturbation in the complex regulation of dopamine

transporter [79, 80]. Thus, insulin signaling alterations may impair
dopamine reuptake via dysregulation of DAT expression/function
[161] and enhance synaptic dopamine release as endorsed by our
observation of a significant decrease in dopamine clearance and
[3H] dopamine uptake and supported by a remarkable increase in
dopamine extraction fraction in insulin-resistant/hypoinsulinemic
animals. Moreover, the reduction and elevation observed in MAO
activity in hyper- and hypoinsulinemic conditions respectively
may serve as a mechanism to balance dopamine levels, given the
specific role in intracellular monoamine metabolization exerted by
MAO enzymes [162].
The increase of D2R mRNA detected in both hyperinsulinemic

and hypoinsulinemic animals included in the present meta-
analysis may be explained by the different patterns of brain
regions explored. Specifically, D2R expression was significantly
increased in the striatum of hypoinsulinemic animals whereas in
hyperinsulinemic models a quantitative analysis in this region of
interest was not performed. Although changes in D2R protein
levels apparently did not follow insulin-induced changes in D2R
mRNA expression, a trend toward significance was detected in
insulin-resistant animals. Further studies will be needed to assess
whether the insulin pathway may be involved in modulating D2R
protein levels over transcript regulation or not. However, it should
be considered that insulin alterations may prime the dopaminer-
gic system and facilitate dopamine sensitization in regions
involved in schizophrenia pathophysiology, such as the striatum
[84]. The role of striatal D2R has been well-defined in its
association with schizophrenia neurobiology [163]. The upregula-
tion of striatal D2R has been identified as a specific feature of
supersensitivity psychosis, accounting for the relapse of psychotic
symptoms and the development of a resistance condition by
hindering effective blockade of D2Rs [164]. Moreover, the
subchronic administration of haloperidol, a strong D2R blocker,
has been associated with a striatal increase in the gene expression
of multiple postsynaptic clustering regulators such as Homer1a/b/
c [165]. Thus, insulin dysregulation by increasing striatal D2R
expression may replicate the neurobiological correlates of super-
sensitivity psychosis and exhibit an inverse pattern of postsynaptic
modifications compared to those elicited by antipsychotics,
accounting for possible detrimental effects on neuronal plasticity.

Insulin effects on GABA and serotonergic pathways
GABA concentration resulted significantly decreased under hyper-
insulinemia and oppositely increased in hypoinsulinemic/insulin-
resistant animals as detected in several brain areas, especially in
the hypothalamus. Although decreased GABA levels in the
midcingulate cortex and reduced GAD67 expression in the
dorsolateral prefrontal cortex have been associated with schizo-
phrenia pathophysiology by MRS and post-mortem studies
[166–168], in the current meta-analysis cortical GABA concentra-
tions were significantly different from controls only in the
hyperinsulinemic model whereas no significant change was
detected in the cortex of hypoinsulinemic and insulin-resistant
animals.
Moreover, GABA concentration might mirror changes in

glutamate levels as shown by the significant increase in the
protein levels of GAD67, the rate-limiting enzyme catalyzing the
conversion of glutamate to GABA [167], measured in the
hippocampus of insulin-resistant animals.
Similarly, the reduction in GABA binding and turnover observed

under hyperinsulinemic conditions could reflect changes in GABA
concentrations [86] whereas the mismatch between GABA
receptor Bmax values as well as GAD mRNA levels in hypoinsuli-
nemic and hyperinsulinemic models could be the consequence of
neuronal injuries triggered by glucose homeostasis dysregulation,
as suggested by the authors [87].
In addition, insulin concentrations were found to modulate the

hippocampal levels of GABA receptor type A β2/β3 subunits,
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whose single nucleotide polymorphisms have been associated
with cognitive function in schizophrenia patients [169].
Thus, further studies are needed to better clarify the GABAergic

involvement under manipulations of insulin action apart from
changes in glutamate levels and neuronal damage, focusing also
on receptor modifications and possible different regional patterns
of expression.
In the present meta-analysis, a significant reduction in the

concentration of 5-HIAA and Trp was detected in hypoinsulinemic
animals, as well as an alteration in TPH function, witnessed by a
decrease in TPH activity and Vmax and an elevation in TPH Km
[170], whereas a significant increase in Trp accumulation and
5-HIAA levels was found in the hyperinsulinemic model. These
findings support the insulin role in the regulation of Trp brain
availability [171] and thus, the presumptive downregulation of the
Trp pathway, at least toward serotonin and 5-HIAA formation,
under insulin deficiency conditions.
Of interest, three main different metabolites have been found

to originate directly from the Trp pathway: indole and
5-hydroxyindole (5-HI); kyurenine with its metabolites kynurenic
acid (KYNA) and quinolinic acid; serotonin (5-HT) and 5-HIAA via
TPH, the rate-limiting enzyme for 5-HT biosynthesis, activity [172].
In schizophrenia patients, 5-HI levels have recently been

positively associated with the cortical thickness of the left lateral
orbitofrontal cortex and an increased 5-HI/KYNA ratio has been
related to better working memory performances [172], suggesting
a different role for Trp metabolites on cognitive processes.
However, only future studies precisely assessing 5-HI and KYNA

changes after insulin manipulations, as well as exploring other
components of the serotoninergic system, will shed light on the
insulin regulation of Trp and 5-HT pathways.

Limitations
Our study presents several limitations. First, only a limited number
of studies were conducted on humans. Second, the variability in
animal models and study types might account for high hetero-
geneity, though partially reduced by subgroup analyses. Thus,
attention needs to be paid to extending results to humans. Lastly,
whilst informative and comprehensive, the present meta-analysis
could not systemically allow for in-depth stratification of the
results. Specifically, subgroup and meta-regression analyses could
not selectively compare different brain regions and other mean-
ingful variables such as glucose and insulin plasma levels across
the additional study and animal types due to the lack of
correspondingly primary studies, resulting in residual confounding
factors. From this perspective, the present results need to be
interpreted with caution.

Conclusions and future direction: implications for treatment-
resistant schizophrenia
Despite the limitations, the present meta-analysis provided strong
evidence that systemic and brain-selective insulin action manip-
ulations might produce significant dysregulation in multiple
neurotransmitter pathways, including the glutamatergic, dopami-
nergic, serotonergic, and GABAergic ones. The most striking
observation was the effects of insulin resistance on glutamatergic
and dopaminergic neurotransmission, which reproduced a few
cores of abnormalities reported in animal modeling of psychotic
disorders (i.e., reduction in NMDAR subunits NR2A and NR2B, PSD-
95, altered DAT activity) [173, 174] and in post-mortem studies
conducted on schizophrenia patients [133, 136, 175]. Based on
preclinical studies, these findings could be of relevant translational
value in light of growing evidence pointing to metabolic
disturbances as primitive features of schizophrenia, and not only
secondarily due to antipsychotic medications [176]. Considering
the multifactorial etiology of schizophrenia, dysfunction in insulin
action could be regarded as one of the multiple factors potentially
contributing to the pathophysiology of the disorder and possibly

associated with the heterogeneity of the clinical manifestations
and related neuroimaging findings. Consistently, in first-episode
psychosis and antipsychotic naïve patients, a potential association
of insulin resistance with diminished response to antipsychotic
treatment can be identified [8]. Further, abnormal neuroimaging
findings have been detected in diabetic and pre-diabetic patients
without psychiatric illness [177–179]. Thus, greater attention
should be paid to different patterns of brain functional and
structural connectivity in psychotic patients detected in the
absence or presence of metabolic abnormalities, with further
implications for treatment responsiveness and resistance. In
addition, studies exploring alterations in neurotransmitter path-
ways in patients with schizophrenia should also control for
metabolic variables to discern effects due to insulin action
disorders from those related to schizophrenia per se.
As extensively discussed above, insulin dysregulation may

mirror some of the neurobiological features detected in transla-
tional and clinical models of TRS and thus undermine the efficacy
of antipsychotics. Specifically, it has been proposed that
antipsychotics may enhance the insulin/Akt/FOXO signaling
[180], which is less likely to be activated in a condition of insulin
resistance. This pathway may, at least in part, be involved in the
antipsychotic mechanism of action and its impairment may, in
turn, reflect on treatment efficacy. In agreement with this
hypothesis, Sevak et al. reported a markedly reduced sensitivity
to behavioral effects of D2R antagonists in an animal model of
streptozotocin-induced diabetes [20] and a decrease in raclopride-
induced catalepsy after both streptozotocin administration and
food deprivation, restored by insulin exposure and free access to
food respectively [21, 22].
In addition, clozapine, the most effective antipsychotic

approved for TRS therapy [181–183], has shown to enhance Akt
activation and the following inhibitory phosphorylation of
glycogen synthase kinase-3β, accountable for an increase in cyclic
AMP response element binding protein DNA binding and
beneficial effects on synaptic plasticity and metaplasticity
[184–187]. Noteworthy, it has been proven that clozapine-
induced Akt activation requires integrity of the insulin signaling
and seems to be attenuated when insulin secretion is reduced by
octreotide exposure [19].
The Akt pathway is gradually gaining interest as a putative

target for the development of senolytic agents, which selectively
clear senescent cells with detrimental effects on tissue function
and integrity [188]. In light of the Geroscience Hypothesis,
interventions that regulate cellular senescence may attenuate
neuroinflammation, tissue remodeling, and mitochondrial dys-
function and exert, at once, beneficial effects on the course of
multiple chronic diseases, including schizophrenia and diabetes
[188].
The onset of insulin resistance condition during the neurode-

velopmental process may be associated with stable neurotrans-
mitter and molecular alterations in the central nervous system, as
proved by the high prevalence of neurodevelopmental disorders
in childhood-onset diabetes [189]. On the other hand, late-onset
glucose metabolism dysregulations, typical of T2D, may not be
accompanied by stable brain abnormalities or induce only slight
modifications because the neurodevelopment process is already
completed. However, in patients with schizophrenia, alterations in
the insulin pathway may be noteworthy by affecting already
dysfunctional neurotransmitter systems and impacting clinical
outcomes [8]. In this regard, the administration of antipsychotics
could have different, time-dependent consequences. Short-term
antipsychotic therapy may result in a condition of increased blood
glucose and hyperinsulinemia [190], possibly leading to increased
brain levels of insulin as well as overstimulation of the brain insulin
receptor downstream pathway. On the other hand, antipsychotic
chronic treatment may induce an inflammatory state, peripheral
insulin resistance, and metabolic syndrome [191], with harmful
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consequences on the central nervous system possibly triggering a
state of brain insulin resistance. Therefore, not only could
treatment and prevention of insulin resistance improve the quality
of life and clinical outcomes of patients with schizophrenia [192],
but also influence psychopathological manifestations.
The high concordance between brain and systemic insulin-

resistant and hypoinsulinemic models, exhibiting often changes in
molecular outcomes towards the same direction, strongly
supports the involvement of the insulin receptor and the
downstream pathway and no other epiphenomena of insulin
resistance as responsible for the above-discussed disruptions.
Therefore, novel agents specifically targeting the brain insulin
pathway may represent a futuristic strategy to counteract
psychotic features even in TRS patients, especially in addition to
already available drugs such as D2R-blockers and clozapine, upon
careful selection of specific patient subsets.
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