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A B S T R A C T   

Understanding the mechanism by which cells coordinate their differentiation and migration is critical to our 
understanding of many fundamental processes such as wound healing, disease progression, and developmental 
biology. Mathematical models have been an essential tool for testing and developing our understanding, such as 
models of cells as soft spherical particles, reaction-diffusion systems that couple cell movement to environmental 
factors, and multi-scale multi-physics simulations that combine bottom-up rule-based models with continuum 
laws. However, mathematical models can often be loosely related to data or have so many parameters that model 
behaviour is weakly constrained. Recent methods in machine learning introduce new means by which models 
can be derived and deployed. In this review, we discuss examples of mathematical models of aspects of devel
opmental biology, such as cell migration, and how these models can be combined with these recent machine 
learning methods.   

1. Introduction 

Mathematical models have been a central tool in the search for laws 
underpinning biological organisms, at least as far back as Galileo, and 
possibly as far back as Aristotle [1]. These models have been used to test 
hypotheses, plan experiments, and conceptualise life at the smallest 
length scales. However, as the rate of data generation has increased, due 
to increased compute power and advanced microscopy techniques, the 
role of mathematical models has changed. Traditional biophysical 
models such as those developed using equations and assumptions of 
Newtonian mechanics, statistical physics, or hydrodynamics simplify 
biological objects into minimal systems described by parameters which 
relate to biologically meaningful properties including the stiffness of a 
cell or the cortical tension of its membrane [2–4]. These models are 
developed to be sparse, such that they contain a small number of pa
rameters, typically fewer than ten and almost always fewer than hun
dreds. These models are then verified by comparing model output, such 
as the speed and/or persistence time of a single cell or cellular cluster, 
with experiment observations. These simplified models of biology are 
not expected to describe all the complexities of the phenomenon of in
terest, but only those aspects which are thought to be fundamental to the 
underlying causal mechanism giving rise to the phenomenon. As such, 
they are well suited as a conceptual tool for describing mechanism and 

planning down-stream experiments. 
Simultaneously, the era of big data and compute has introduced a 

new family of mathematical models which are extremely well suited to 
high dimensional and multi-modal data but significantly less interpret
able. Deep learning models, which make use of artificial neural networks 
(NNs), have been shown to be adept at many tasks including image 
classification, translation, grid-based game playing, and text-to-image 
generation. These models have hundreds of parameters at a minimum, 
but typically hundreds of thousands, if not millions. Furthermore, these 
variables are not, prima facie, related to biological or physical features 
within the data. While downstream methods can be used to correlate 
model parameters with observable features, such as cell shape or fluo
rescence intensity [5,6], these methods for interpretability are typically 
only partially sufficient, such that the biological or physical interpre
tation of most model parameters remain inaccessible. Despite, or 
perhaps because of, the poor interpretability of these models, they can 
be extremely powerful at pattern recognition and discovery. For 
example, NNs are now standardly used for segmentation and tracking of 
cells in timelapse microscope data [7,8]. 

Both deep learning and traditional mathematical models appear to 
be two distinct tools that serve biological inquiry. On the one hand, 
biophysical models are highly interpretable, are developed to have as 
few parameters as possible, and are applied to relatively low 

* Corresponding author. 
** Corresponding author at: Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK. 

E-mail addresses: n.shatil@ucl.ac.uk (N.R. Stillman), r.mayor@ucl.ac.uk (R. Mayor).  

Contents lists available at ScienceDirect 

Seminars in Cell and Developmental Biology 

journal homepage: www.elsevier.com/locate/semcdb 

https://doi.org/10.1016/j.semcdb.2023.02.001 
Received 20 December 2022; Received in revised form 2 February 2023; Accepted 2 February 2023   

mailto:n.shatil@ucl.ac.uk
mailto:r.mayor@ucl.ac.uk
www.sciencedirect.com/science/journal/10849521
https://www.elsevier.com/locate/semcdb
https://doi.org/10.1016/j.semcdb.2023.02.001
https://doi.org/10.1016/j.semcdb.2023.02.001
https://doi.org/10.1016/j.semcdb.2023.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.semcdb.2023.02.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Seminars in Cell and Developmental Biology 147 (2023) 83–90

84

dimensional data or, at least, summarising features of high-dimensional 
data. On the other hand, deep learning models work with high dimen
sional data and a very large number of parameters. These models ach
ieve high accuracy at many tasks with little to no domain knowledge 
while sacrificing interpretability for statistical power. However, as we 
shall describe, both modelling paradigms can be understood under the 
broader framework of generative modelling. Generative models seek to 
model the underlying stochastic procedure for generating data, opposed 
to discriminate models which seek to separate data into sub-classes or 
categories. When understood as generative models, both approaches 
share many similarities and can, in principle, be combined. We posit that 
doing so would allow for interpretable models of high-dimensional data 
or, alternatively, low-dimensional models that can provide highly ac
curate predictions of experiment observations. 

In this paper, we describe how biophysical models have been used in 
developmental biology and describe some of their limitations as tradi
tional forms of generative models. We describe biophysical models of 
three processes fundamental to developmental biology: cell-cell in
teractions, collective cell migration, and physical morphogenesis. We 
then describe generative models that use neural network models, so- 
called deep generative models. We set out the main forms of deep 
generative models and provide recent examples of their use. As a nascent 
field, we are limited by the number of applications of deep generative 
models to developmental biology specifically, and instead describe the 
application of deep generative models to cell biology more broadly. We 
additionally set out how both traditional and deep generative methods 
might be combined as a form of hybrid models that both retain the 
explainability of biophysics and the flexibility of deep learning models. 
Finally, we conclude with some future perspectives on the role of 
generative models in cell biology. 

2. Biophysics models 

The application of physics-based models to biology has provided 
significant insights into the mechanisms that underpin many biological 
processes. These biophysical models make explicit assumptions on the 
balance of forces on cell sheets, single cells, or intracellular dynamics. 
The models are in constant development, with new models constantly 
being proposed to account for newly observed phenomenon. As such, a 
comprehensive review will always be insufficient to fully account for the 
many active avenues of research. For example, we do not address recent 
models of bioelectrical signalling, recently described for observations in 
both morphogenesis and regeneration, as reviewed in [9]. Similarly, we 
do not fully detail models for gene-regulatory networks (GRN) which 
have been reviewed in, for example, [10]. Instead, we describe a rela
tively small subset of mathematical models as related to three funda
mental processes of development biology: cell-cell interactions, 
collective cell migration, and physical models of morphogenesis (Fig. 1). 
We note that these three processes are not disjoint but rather describe 
features of an organism’s development from increasingly large 

length-scales. Hence, each model can rely, in part, on the subsequent 
model and this reasoning has motivated interest in multi-scale models to 
more fully account for these coupled coarse-grain levels of enquiry. In 
this review, we consider each level in isolation and refer the interested 
reader to the following reviews specific to multi-scale models [11–13]. 
Finally, we do not to describe the relative strengths or weaknesses of 
specific biophysics modelling frameworks, for which much has been 
written elsewhere, as in [14,15], and where the success of a model 
should partially be judged on a case-by-case basis, but instead choose to 
discuss the broader limitations of traditional biophysics models and 
neural networks-based models in Section 4. 

2.1. Models of interactions between cells 

Understanding how cells maintain rheological states, such as 
confluent tissue or co-ordinated fluid migration, involves understanding 
effects at length-scales both larger and smaller than that of a single cell. 
For example, the rheology of cellular collectives is known to be influ
enced both by the number (or packing fraction) of cells within a region 
as well as the adhesion or stiffness by which a cell pulls or pushes on its 
nearest neighbour. These forces, exerted on and by cells, are a result of 
cell-cell and cell-substrate interactions and these, in turn, are due to the 
complex interplay of different molecules and signalling pathways. 
Hence, understanding the collective dynamics of cells requires multi- 
scale models that include a highly simplified model of cellular 
interactions. 

We assume that models of natural phenomena aim to reproduce at 
least some subset of observable features from a system of interest. For 
example, a model of cell-cell interactions might seek to, as accurately as 
possible, describe the impact of cells pushing and pulling on observables 
such as the position and/or velocity of neighbouring cells [16]. This 
model is likely to be simplified as the known mechanism by which cells 
push and pull depends on nanoscale surface components, such as 
membrane receptors, and on cytoskeletal dynamics at the interface of 
two or more cells. Yet, the model might also account for known changes 
in migratory behaviour that results in changes in interactions. The 
complex dynamic between the cell, its environment, and its internal 
cytoskeleton results in three broad classes of migratory modes: amoe
boid, epithelial, and mesenchymal. These modes are transient, whereby 
cells can transition between, for example, epithelial to mesenchymal 
modes (undergoing the so-called epithelial-mesenchymal transition or 
EMT) or from mesenchymal to amoeboid (the so-called mesen
chymal-amoeboid transition or MAT) [17–20]. A sheet of epithelial cells 
is typically characterised by strong and long-lasting tight junctions be
tween cells, such as E-cadherin, whereas mesenchymal clusters have 
been observed to migrate with weaker bonds between cells, such as 
N-cadherin. For further information about both modes of migration and 
the relevant molecular junctions, see for example [21]. More recently, 
amoeboid cells have also been observed to act as a collective, and 
whereas the interactions between amoeboid collectives is unclear, it is 

Fig. 1. Mathematical models across length scales. We give examples of three phenomena at increasing length-scales where mathematical models are often used 
including at the scale of (a) single cells, where cell-cell interactions are modelled as repulsive and adhesive forces, (b) cell clusters which migrate with coordinated 
motion across distances larger than a single cell radius, and (c) morphogenesis which involves the interaction of both chemical and mechanical cues. 
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expected that cell-cell interactions for amoeboid clusters are signifi
cantly weaker than even mesenchymal [22]. The observation that even 
amoeboid cells, which are thought to interact weakly, can exhibit co
ordinated collective behaviours, demonstrates that cells have a high 
sensitivity to forces exerted by their neighbours and substrate. Despite 
the identification of different migratory phenotypes, it remains unclear 
how these modes arise from changes at the molecular basis of cell-cell 
interactions, such as in E- and N-cadherin expression, and how this 
leads to changes in collective states. 

Whereas the molecular basis for many cell-cell interactions has been 
well characterised, an appropriate biophysics model of cell-cell in
teractions is far from complete. Cell-cell interactions can be modelled as 
a pair-potential function which describes the energy, and hence forces, 
experienced by each cell as a function of distance [23,24]. Repulsive 
(pushing) forces are applied when cell volumes overlap, for example, 
whereas adhesive (pulling) forces might be introduced within some 
pre-defined radius of interaction. Modelling cell-cell interactions as pair 
potential has led to realistic simulations for many observed phenomena 
including contact-inhibition of locomotion (CIL), the influence of 
actin-cables on supracellular systems, cell-cell alignment and flocking, 
and cell jamming transitions [25–28]. These models assume that all cells 
interact as soft or stiff spheres, borrowing potential functions from those 
in colloidal sciences [29], and that the potentials are constant and uni
form across the cellular system. Hence, only one or two parameters, such 
as the strength of attractive and repulsive forces, are needed to describe 
all interactions between cells. 

There is clear evidence that mechanical forces between cells are 
known to be critical for both tissue homeostasis and in initiating col
lective behaviours such as migration in scratch assays [30,31]. 
Furthermore, interactions between cells are known to be highly heter
ogenous both across different migratory models (epi
thelial/mesenchymal), within migratory modes (epithelial), and across 
time (initiation of leader cells during wound healing). Hence, it is often 
remarkable that many mathematical models can recapitulate observa
tions using a simple, uniform, and constant description of cell-cell in
teractions. A more complete understanding of interactions might extend 
one of the mathematical potentials used to model cellular forces to ac
count for cellular heterogeneity. Interactions would then be described 
by a pair-potential that varies across a population and, possible, in time. 
Identifying the parameters for this heterogenous and dynamic potential 
would require careful coupling of models to cell assays and may benefit 
from hybrid approaches. In Section 4, we set out an illustrative example 
of how this might be achieved. 

2.2. Models of collective cell migration 

Cell-cell interactions can only be understood in the context of multi- 
cellular systems. While single cells can change their migratory behav
iour based on environmental factors, such as the local chemical, mate
rial, or geometric properties, cell collectives additionally alter their 
migratory behaviour based on interactions with their nearest neigh
bours. The cellular collective can then be biased towards certain direc
tional cues and this collective migration can be more persistent than the 
directionality of the single cell. For example, bacterial populations that 
migrate as a collective can move more persistently due to a ‘collective 
smoothing’ of their perturbations at the scale of single cells [32]. 
Additionally, cells have been observed to migrate across a gradient of 
surface tension within the collective, taking advantage of surface phe
nomena such as the Marangoni effect [33]. 

Models of cell collectives incorporate both cell-cell interactions with 
models of self-propulsion and other cellular forces. For example, a model 
of cells as soft spheres, as described above, will typically include an 
active force and some stochasticity when modelling cell collectives, so- 
called active Brownian particle models [34,35]. Alternatively, the model 
might start with a description of the membrane of cells as a confluent 
sheet and resolve the elasticity and tension in the cell membrane, 

assuming a preferred area or volume for each cell, leading to so-called 
active vertex models [36,37]. Choices of which modelling framework 
to use, as well as which forces, and the dimensionality of the model will 
be driven largely by the mechanism under investigation as well as the 
available experimental data. 

Models of collective cell migration have been part motivated by the 
observations that cellular sheets share many of the micro-scale proper
ties of materials and that rheological models can be used to describe 
systems of cells [29,38-40]. For example, cellular systems have been 
well described as a viscoelastic material and this viscoelasticity is related 
to cellular rearrangements, division rates, and rigidity clusters [41–43]. 
These models involve both a description of the interaction between cells, 
modelled as springs or as soft spheres, as well as the active propulsion 
force that differentiates the trajectories of living cells from random 
Brownian motion. Under this view, cellular collectives become a form of 
active matter where the material properties do not reach steady state due 
to the self-propulsion (active) force of single cells but where the material 
has a determinable rheology. Identifying the parameters that describe 
cellular active matter, as relevant to experimental observations, is often 
calculated from point estimates of summary statistics, such as the slope 
of the mean square displacement or mean and variance of the distri
bution of velocities of cells, which are then compared to simulation 
output. In Section 3, we outline other recent methods for parameter 
inference of these systems. 

As cell density increases, cells can become jammed or packed such 
that the structural properties resulting from the collective dominate over 
effects from single cell dynamics. This transition has been referred to as 
the jamming or glassy transition and simulated using both active 
Brownian and vertex models [44–47]. Furthermore, these models have 
provided predictions for when this transition occurs, for example as a 
function of the structural order or packing fraction of the system, which 
have been verified in certain systems [48–50]. These phase transitions in 
cellular active matter, such as the jamming transition, highlight how 
rheological changes can arise from coordinated collective dynamics. 
However, how a transition induces a specific rheology remains an open 
question, even for inactive systems such as soft microgel particles [51]. 

The ability to predict the conditions for material phase transitions is 
important for understanding conditions that lead to the proper func
tioning of biological tissue. For example, identifying the conditions by 
which cells become more fluid or solid was used to explain the antero- 
posterior axis elongation in zebrafish [52]. For a review on the role of 
phase transitions in physical tissue, see, for example [53]. However, 
understanding cells as undergoing a glassy transition, for example, is in 
part hindered by the absence of a complete theory of glassy matter and 
non-equilibrium matter. Hence, models of cells as active matter typically 
use point estimates of summary statistics such as the exponent of the 
mean square displacement or average velocity to match simulations to 
observations and look for hallmarks of glassy behaviour such as cells 
becoming crowded, changes to the mean square displacement, and 
heterogeneity in their motion [50,53,54]. Chief among the challenge of 
understanding cells as active matter is the similar challenge in glassy 
physics, namely how we relate changes in the structural order of a 
system to the collective dynamics [55–57]. Recent research on under
standing glass transitions in silico has highlighted the strength of recent 
advances in machine learning tools, such as in [58], and we later make 
the argument that these tools are fitting for quantifying living matter 
too. The combination of statistical physics with machine learning 
methods might allow for detailed rheological models coupled with 
chemical processes of the cell. These multi-physics models are already 
being deployed, for example in understanding morphogenesis. 

2.3. Models of morphogenesis 

At larger length-scales, models of morphogenesis seek to reproduce 
the form and structure of a specific stage of embryo development [59]. 
These models combine models of collective cell migration and cell-cell 
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interactions with chemical cues that spread over the cellular system by 
coupling discrete models of cell motion with, for example, 
reaction-diffusion or hydrodynamic equations. Hence, morphogenesis 
models are typically multi-physics, contain more parameters and can be 
computationally expensive to simulate. Furthermore, these models also 
depend implicitly on complex gene-regulatory networks (GRN) which 
require their own specific modelling approaches, as in, for example. [60, 
61]. 

Models of morphogenesis can combine multiple complementary 
models of developmental biology. For example, the combination of 
growing tissue with signalling pathways has been shown to reproduce 
certain patterning on, for example, catfish shark [62]. Indeed, many 
morphogenesis models use models of pattern formation such as 
reaction-diffusion equations that lead to Turing patterns. These models 
have been used to describe features ranging from striped patterning in 
Drosophila melongaster embryos, somite formation and vertebrate limb 
bud development [63–67]. At sufficient scale, these models can average 
across discrete representations of cells to describe instead the devel
oping tissue as a continuum with relevant constituent equations taken 
from continuum mechanics [68–70]. These coarse-grain description of 
cell migration highlights the power of rheological descriptions of cells at 
multiple length scales. 

Furthermore, these models allow for the inclusion of several com
plementary cell types within a system. For example, embryonic devel
opment involves the cells which vary not just in spatial and mechanical 
composition but also in biological function such as tissue cells and im
mune cells [71]. Accounting for heterogenous cellular populations re
quires distinct modelling frameworks, in part due to their distinct 
migratory modes. For example, tissue cells are typically more epi
thelial/mesenchymal and immune cells are more amoeboid. Hence, 
models of morphogenesis are sometimes required to combine several 
models at smaller length scales [72,73]. This again highlights the 
interconnectedness and multi-scale requirement for comprehensive 
models for developmental biology, where models across length-scale 
should be consistent. 

Whereas the requirement for consistency across length scales can be 
a challenge, especially for models that aim to combine multiple obser
vations of the behaviour of single cells into models of several hundreds 
of thousands, this can also provide an opportunity for the role of 
mathematical models [74]. Recent advances in synthetic biology and 
organoid technologies allows for high-precision control over the design 
of biological environments and cell culture [75–78]. For example, cells 
cultured in three dimensional aggregates and with physiologically 
realistic extracellular matrix can be combined with a vasculature that 
introduces hydrodynamic effects in a semi-controllable fashion [79,80]. 
These in vitro models provide large data output for fitting mathematical 
models which seek to explain the compounding effects of multiple 
bio-physical phenomena [81,82]. The challenge in the future is expected 
to be in fitting these models whereby the number of parameters and 
observations can be considerably large. 

3. Deep generative models 

In the preceding sections, we have described examples where 
biophysics has been used to model an underlying process as accurately 
as possible. Typically, model accuracy is evaluated by comparing model 
output to some specific observables or summary statistics. In this sense, 
biophysical models can be understood as describing a generative pro
cess, namely a process which leads to the generation of a measurable 
quantity, where we measure the system and/or computational output 
using summary statistics [83,84]. Generative models are distinct from 
discriminative models which separate data into subsets, for example 
through a classification or clustering algorithm. Instead, generative 
models aim to describe the entire dataspace and the underlying data 
generating process [85]. 

By describing biophysical models as generative models, we gain 

insight into the main process by which a model might be developed. 
First, we observe some specific behaviour or phenotype of interest. We 
then attempt to develop a model that can reproduce this behaviour in as 
simple a system as possible, such that the model can reproduce only 
observed behaviours rather than observed and opposing. We might seek 
models with as few unfixed parameters as is possible to construct. With 
both model and experiment observations, we would then fit the 
remaining unfixed parameters using our experiment observations. 
Assuming that we have been able to estimate the required parameters 
and our model can reproduce observed behaviours, we can use our 
model to predict new behaviours of the system and suggest new ex
periments. This lifecycle of a model is well described by [86] and set out 
schematically in (Fig. 2) for the case of cell biology. 

As described, biophysics models are generative, in that they seek to 
describe the underlying generative process of the phenomenon and 
require observations and parameters to assess the robustness and val
idity of the model. These models share similarities with deep generative 
models, an active sub-class of machine learning models, which also seek 
to describe the data generative process but using artificial neural net
works. These models typically have many thousands or hundreds of 
thousands of parameters and do not rely on the same biological and 
physics-based intuition as biophysics models. These deep generative 
models are also more expressive, such that they can reproduce more 
complex phenomenon than traditional generative models, are much 
better at processing high dimensional datasets, and are typically much 
less interpretable. Yet, they can also be combined with biophysics 
models to estimate parameters, model error, or unknown model com
ponents. In what follows, we give an overview of some recent deep 
generative models that have been applied to cell biology. Examples of 
both implicit and explicit model architectures is shown in (Fig. 3). 

3.1. Implicit generative models 

Deep generative models use artificial neural networks to approxi
mate the data generating process. These models can then be used to 
generate new synthetic data which is similar to the data used for training 
the artificial neural networks. Models that learn only the stochastic 
procedure used for generating data are known as implicit models and 
include generative adversarial networks (GANs) as well as the more 
recent denoising diffusion models which have shown extremely strong 
performance at generating, for example, text-to-image models that can 
generate highly expressive images from text prompts [87–89]. See 
(Fig. 4) for example images generated from text prompts. 

Implicit models such as GANs have been used extensively in cell 
biology in recent years to aid computer vision tasks such as segmenting 
and tracking cells [90,91]. Furthermore, given the success of recent 
diffusion models, we expect that there will be a similar increase in 
diffusion-based models being used to aid image analysis such as to 
predict 3D cell geometries from 2D images [92]. While this will almost 
certainly allow for new and exciting avenues of research, implicit 
models are particularly prone to limitations of interpretability as the 
learnt generative process is typically not straightforwardly accessible 
[93,94]. 

3.2. Explicit generative models 

Rather than learning only the stochastic procedure, explicit genera
tive models learn to reproduce the underlying data distribution as 
accurately as possible and this learnt representation, often referred to as 
the latent space, is sampled from to be able to generate new synthetic 
examples. As a result, the learned distribution can be probed to identify 
key features that represent changes in data or combined with other 
methods to, for example, estimate parameters [95]. 

One of the most popular explicit models is the autoencoder (AE) and 
the probabilistic extension, the variational autoencoder (VAE). Both AEs 
and VAEs follow a bottleneck-like approach to approximating the 
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dataspace, whereby artificial neural networks learn to encode the input 
data into a low dimensional space, the latent space, and a decoder learns 
to take samples from the latent space and turn them back into the input 
data as closely as possible. This is done by minimising the difference 
between input data (that is passed to the encoder) and the output data 
(which decodes samples from the latent space) and, for VAEs, ensuring 
that the latent space is represented by an appropriate probability density 
which can be sampled from. Recent work has demonstrated that VAEs 
can be used to not only generate new synthetic data in cell biology but, 
crucially, that the latent space also corresponds to biophysical properties 
relating to, for example, cell cycle or metastatic properties of carcinoma 
cells [5,96]. 

Explicit models often seek to model the entire data space in terms of 
probability densities. These probabilistic models include both AEs, and 
VAEs, as well as normalising flows (NFs) which learn to generate sam
ples by performing a series of nonlinear transformations on the distri
bution of data [97,98]. By learning probability densities, explicit models 
can also be used for tasks other than data generation. One of the recent 
applications of explicit models is in model inference, where simulations 
are combined with deep generative models to better estimate parameter 
uncertainty or model misspecification. 

Known more broadly as either simulation-based inference or 
likelihood-free inference, these methods use artificial neural networks, 
such as NFs, to approximate the probability density of model parame
ters, conditioned on experiment observations, to give information on 
which parameter sets are most likely, given some observations [95,99, 
100]. SBI is similar to previous parameter estimation techniques such as 
approximate Bayesian computation. However, the benefit of SBI 
methods is the application of neural networks which improves the effi
ciency and accuracy of the inference, as well as increasing both the 
dimensionality of the summary statistics used to estimate parameters, as 
well as the number of parameters. This is seen in, for example, [101], 
which included a 37-parameter system of neural dynamics. SBI and 
explicit models more broadly have yet to be used extensively in cell 
biology. 

4. Hybrid generative models 

The above description of deep generative models demonstrates their 
applicability for computer vision tasks, such as segmentation, and some 
initial research on applying explicit generative models to inferring 
biologically relevant data. Furthermore, SBI methods provide a means 

Fig. 2. Lifecycle of a model. We provide a schematic of Box’s loop, in which models are generated by inferring from data and then criticised by generating new data 
to test model hypotheses. 

Fig. 3. Examples of deep generative models. In (a) we give the schematic for the generative adversarial network (GAN) which is a type of implicit model, whereas in 
(b) we show an autoencoder (AE) architecture which is explicit, as the latent space can be directly sampled from. When the latent space is composed of probability 
densities, this architecture is known as variational autoencoder (VAE). 

Fig. 4. Generating images from text prompts. We demonstrate three example images generated using the DALL-E2 model from OpenAI, using the prompts (a) “cell- 
cell interactions”, (b) “collective cell migration”, and (c) “cell and developmental biology”. 
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for better coupling simulation data with experiments and provides a new 
framework by which we can better estimate whether parameters and 
models accurately reproduce experiment observations. However, 
generative models might be used to infer biophysics models directly 
from data and, under certain conditions, biophysics can be combined 
with artificial neural networks so that model components are directly 
learned from data rather than through assumptions by the model 
developer. 

To develop models directly from data, explicit generative models can 
be combined with methods for inferring symbolic equations. For 
example, symbolic regression has been applied to an explicit generative 
model (a VAE) of a simulation of interacting particles and the system 
was able to correctly identify the equations for the interaction between 
particles, such as being connected by springs or by gravitational forces 
and gave a proposed equation for astronomical bodies [102]. While this 
approach has yet to be applied to interacting biological objects, such as 
cells, doing so could provide new insights. Alternatively, artificial neural 
networks have been used to augment model equations where only par
tial dynamics are known but full model output is available, as in [103] 
which demonstrated that such a system can predict missing forces in, for 
example, a reaction-diffusion system, even when only partial model 
equations are provided. Again, this work has yet to be applied to 
problems in biology but could have impact on systems where multiple 
physical processes are known to take place, such as during morpho
genesis, to approximate unknown force terms. Finally, recent work has 
shown that neural networks can learn an entire cell simulator, and this 
learnt simulator is able to reproduce simulation output several orders of 
magnitude faster than the original simulator [104]. These hybrid and 
generative approaches are expected to increase in the future and point 
towards a new era in AI-assisted biophysics research. 

To better understand how these hybrid and generative models might 
be used in practice, it is useful to consider an illustrative example. 
Suppose several timelapse videos of cell migration are obtained with the 
aim of identifying the effect of a molecular knock-out experiment on cell 
behaviours. The first aim is to reproduce, as faithfully as possible, salient 
features of the control group. This requires a biophysics model which 
might be, for example, constructed using a cellular automata or particle- 
based framework. To couple model to data, simulation-based inference 
can then be used, where parameters such as the active force, persistence 
timescale, or interaction strength are inferred from measures such as the 
average speed of the cluster or their mean square displacement. We 
might then suppose that the inferred posterior, describing the certainty 
of parameters given the experiment observations, shows a high uncer
tainty on the parameters describing the cell-cell interactions. 

To improve upon the model and address this uncertainty, the inter
action potential in the model might be replaced with a neural network 
which learns to predict forces from both experiment and simulation 
data. This neural network is passed the metric distance between cells as 
input and returns the physical forces as output. The simulation model is 
now a hybrid model that contains both biophysics (encoded in model
ling framework) and a ‘black box’ (represented by the neural network). 
If simulation-based inference is applied again, it might then find that the 
active force and persistence timescale has much higher certainty and the 
model output better matches observations. Finally, we might want to 
understand how the interactions are affected by the knock-out experi
ment. To do so, we could apply symbolic regression to the neural 
network to retrieve a closed-form symbolic equation with few parame
ters (opposed to the high-parameter NN). These derived symbolic 
equations can be interrogated alongside experiments to link changes in 
collective dynamics to molecular dynamics or returned to simulation- 
based inference to further identify uncertainty within the hybrid model. 

The above example makes explicit how hybrid models can address 
the tension between models that rely on ‘black-box’ (NN) and ‘white- 
box’ (biophysics) components. A NN-based model can identify system 
features, including cell phenotypes such as their metastatic potential, 
from over-parameterised models and large amounts of e.g., image data. 

However, unlike biophysics models, they are blind to what aspects of 
cell biology that are used to build this inference. For example, a VAE 
trained on image data will learn associations not just based on cell- 
geometries but also image quality, lighting, and experimental noise. 
Hybrid models overcome this by replacing singular aspects of a 
biophysics model (such as cell-cell interactions) with a NN- 
approximator, restricting the aspects that the black-box components 
are required to learn. Given this restricted domain, we can then combine 
NNs with symbolic regression to untangle the inferred dependences into 
something that can be interpreted such as an equation for distance-based 
cellular forces. Hence, hybrid learning resolves the tension between 
modelling paradigms by restricting the application of NNs to a subset of 
the broader biology under investigation. 

5. Future perspectives 

We present the above discussion as a high-level overview on recent 
advances in machine learning and their relevance to models of cell 
biology more broadly and developmental biology specifically. Mathe
matical models have been a crucial part in building and advancing our 
understanding of biological processes, through the development of 
simplified models which can be used to test predictions and promote 
new hypothesis. However, the ubiquity of cheap computing means that 
it is now easier than before to develop complex simulations that 
reproduce, in part, observations of the relevant biological process. This 
is advantageous in that we can produce models faster but comes at the 
cost of increasing model complexity without corresponding certainty in 
results. Models designed for specific observed behaviours can have 
multiple parameters with high uncertainty that reproduce a multitude of 
conflicting behaviours. Alternatively, researchers might purposefully 
restrict the number of parameters within a model to avoid ‘overfitting’ 
but use broad system measures, such as the speed of a cellular collective, 
which weakly constrains the fitting procedure. Finally, these models 
can, at times be used to support experimental observations as evidence, 
rather than to drive new hypotheses or as tools for conceptual under
standing. This is especially problematic where models are developed 
post hoc to reproduce experiment observations and become purpose built 
for a specific set of experiments, making them narrowly defined and 
weakly generalizable. 

The advent of machine learning methods does not, prima facie, pre
sent a means for resolving the tension of how models are used or abused 
in biology. Indeed, many machine learning methods have been used to 
infer models of GRN directly from data, for example in [105,106]. 
However, in this paper we are specifically interested in the role of ma
chine intelligence in identifying mechanistic or causal models in 
developmental biology. Deep generative models, especially those that 
allow for explicit formulation of the learned representation, provides a 
way to better couple models to data in a way that makes it much more 
difficult to use models as evidence and identify low-level mechanisms. 
This might be achieved by using SBI methods to estimate parameter 
uncertainty more robustly and to make use of all the data when cali
brating models, as we set out in Section 3. Moreover, hybrid models 
combine NNs with biophysics models to learn individual model com
ponents directly from data. In this context, NNs learn specific features 
for the biophysics models which has the effect of both restricting the 
domain for black-box inference and increasing their explainability. 
Additionally, this allows biophysics models to incorporate, for example, 
experiment noise or cellular heterogeneity through the NN components 
without having to explicitly state these effects. Furthermore, by identi
fying which (physical) model components or parameters are observed to 
be similar across different model systems and multiple independent 
observations, we can improve our understanding of whether such 
components accurately represent biophysical properties and are not 
artefacts of the modelling framework or a specific experimental set-up. 
For example, a collective effort to identify cell-cell interaction forces, as 
relied upon in many biophysics model frameworks, could be performed 
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across multiple different research groups and cellular systems to isolate 
common features that would underpin future modelling approaches. 

We believe that many future findings in developmental biology will 
likely come from increased collaboration between biologists, physicists, 
and experts in machine intelligence. As our theoretical understanding 
increases and we identify more causal mechanisms, recent advances in 
synthetic biology and cell engineering means that we can better build 
and break these mechanisms through precise experiment design [107]. 
In this work, we focus predominately on the future of model building in 
developmental biology but refer the reader to recent advances in syn
thetic engineering, such as morphogenesis, for further details 
[108–110]. 

The final balance between machine learning and biophysics will 
likely take time to resolve but we overview both fields to foster collab
oration and highlight future opportunities. Given that machine learning, 
and especially deep learning, methods are typically viewed as ‘black 
box’ approaches that are not straightforwardly amenable to identifying 
causal mechanisms but able to perform well on large data and given that 
biophysics models are typically well-coupled to physical processes but 
applied to low dimensional data such as point estimates of a system (the 
average speed of a cell cluster), then the possible benefits of combining 
both methods seem clear. At the same time, we note that the integration 
of distinct frameworks can be a considerable challenge, both culturally 
and technically. To do so requires a shared theoretical language and 
awareness of current and outstanding theoretical questions. Developing 
both will also take time. However, we believe that cell and develop
mental biology is well placed to foster this collaborative spirit, given the 
interdisciplinary exchange between biologists and biophysicists to date. 
Hence, we look forward to shared future research that uncovers more of 
how we understand life at the smallest length scales and how we might 
integrate advances in machine intelligence to do so. 
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