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Abstract

The first deoxygenative Heck reactions are described, as illustrated by formate-mediated cine-

substitutions of vinyl triflates with aryl iodides. The collective data corroborate a mechanism 

in which Pd(OAc)2 and Bu4NI form the dianionic iodide-bridged dimer [Pd2I6][NBu4]2, which, 

under reducing conditions, serves as a precursor to the palladium(I) complex [Pd2I4][NBu4]2. 

Dinculear oxidative addition of aryl iodide forms [Pd2I5(Ar)][NBu4]2, which dissociates to the 

monometallic complex [PdI2(Ar)][NBu4]. Vinyl triflate migratory insertion-sulfonate elimination 

delivers a palladium(IV) carbene, which upon β-hydride elimination-C-H reductive elimination 

gives the product of cine-substitution. These processes are the first efficient formate-mediated 

cross-electrophile reductive couplings beyond carbonyl addition.

Graphical Abstract

Our laboratory has developed diverse metal-catalyzed carbonyl reductive couplings 

mediated by the feedstock reductants (hydrogen, 2-propanol, formic acid),1,2 as well 

as related hydrogen auto-transfer reactions in which alcohols serve dually as reductant 
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and carbonyl proelectrophile.2 Such methods bypass use of premetalated C-nucleophiles, 

which are often hazardous and expensive. In an outgrowth of this work, the first 

carbonyl reductive couplings of aryl halides beyond discrete arylmetal nucleophiles or 

metallic reductants were discovered,3a along with related formate-mediated reactions of 

vinyl halides or triflates.3b,c The ability to exploit sp2-halides as aryl- and vinylmetal 

pronucleophiles in formate-mediated carbonyl addition impelled investigations into “cross-

electrophile reductive couplings” – an emerging class of C-C couplings that typically 

require elemental zinc or manganese as the terminal reductants.4,5,6,7 Here, we report 

formate-mediated reductive cross-couplings of vinyl triflates with aryl iodides, which, unlike 

longstanding palladium(0)-catalyzed cross-couplings of vinyl triflates,8,9 result in cine-

substitution through a deoxygenative Heck-type pathway (Figure 1).10,11,12 Our collective 

data corroborate a mechanism in which Pd(OAc)2 and Bu4NI form the dianionic iodide-

bridged dimer [Pd2I6][NBu4]2, which, under reducing conditions, serves as a reservoir 

for the active palladium(I) complex [Pd2I4][NBu4]2. Our data also corroborate the key 

role of iodide counterions vis-á-vis stabilization of palladium(I) under reductive coupling 

conditions.13,14,15 These transformations represent the first non-photochemical reductive 

C-C couplings via palladium(I)-catalysis, and highlight the distinct reactivity of dinuclear 

iodide-bridged palladium(I) complexes.16,17,18

Optimal conditions identified for palladium(I)-iodide-catalyzed deoxygenative Heck 

reaction represent the culmination of numerous experiments. For the sake of brevity, key 

features of the catalytic system are highlighted by deviation from ideal conditions (Table 1). 

The most efficient conditions involved exposure of iodoanisole 1a (160 mol%) and vinyl 

triflate 2a (100 mol%) to Pd(OAc)2 (5 mol%) and Bu4NI (20 mol%) in the presence of 

NaO2CH (200 mol%) and Na2CO3 (100 mol%) in THF-H2O (0.2 M, 40:1) at 100 °C. 

The product of deoxygenative Heck reaction 3a was obtained in 88% yield along with a 

small quantity of iso-3a (Table 1, entry 1). The structural assignment of 3a was verified 

by its conversion to a reported compound (see Supporting Information). The presence of 

Bu4NI was found to be essential (Table 1, entries 2–4). As documented by Schoenebeck, 

iodide counterions stabilize palladium(I) species.13,14 Indeed, the unique influence of iodide 

counterions in ruthenium-catalyzed C-C coupling via hydrogen transfer is what led us to 

palladium(I) catalysis.14,15 The ammonium cation of Bu4NI is also necessary, as other 

iodide sources failed to animate the catalytic process (Table 1, entry 5). Bu4NI and 

Pd(OAc)2 form the dianionic iodide-bridged dimer [Pd2I6][NBu4]2, which, in the presence 

of NaO2CH, is a latent source of the palladium(I) complex [Pd2I4][NBu4]2 (vide supra), 

which is a competent catalyst for the reaction (Table 1, entry 6). Palladium(0) precatalysts 

diminish efficiency (Table 1, entry 7), and phosphine ligands completely suppress catalysis 

(Table 1, entries 8 and 9). Consistent with intervention of palladium(I) species, aryl iodides 

react with significantly greater efficiency than aryl bromides (Table 1, entry 10).11,12 Finally, 

water is required (Table 1, entry 11), presumably to solubilize NaO2CH and Na2CO3. Other 

enol derivatives (tosylates, phosphates, vinyl halides) were less efficient partners for C-C 

coupling (not shown).

To assess reaction scope, optimal conditions developed for formation of 3a were applied to a 

diverse combination of reactants (Table 2). Both para- and ortho-iodoanisoles 1a and 1b are 
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competent partners for C-C coupling, as are the corresponding unprotected phenols 1c and 

1d. Notably, as illustrated by the formation of 3f, aldehyde functional groups are tolerated 

under the conditions of formate-mediated reductive coupling. Other vinyl triflates, including 

the spirocyclic ketal-containing vinyl triflate 2b, and the steroidal vinyl triflates 2c and 2d, 

which are derived from estrone and cholestanone, respectively, engage in C-C coupling. 

Tolerance of acidic residues is evident in formation of salicylate adduct 3i. In the case of 

the estrone-derived vinyl triflate, the presence of a quaternary carbon center adjacent to the 

vinylic C-O bond does not preclude formation of adduct 3j. Finally, the N-heterocyclic fused 

vinyl triflate 2e, and bridged bicyclic triflate 2f derived from tropinone, deliver products 

of C-C coupling in good yield, as demonstrated by formation of adducts 3l-3n and 3o-3q, 

respectively. As shown in formation of 3m and 3p, Lewis basic nitrogen atoms are tolerated. 

The presence of unprotected NH indoles is demonstrated by formation of adducts 3n and 

3q. Fully substituted vinyl triflates are not competent partners for the deoxygenative Heck 

reaction, presumably due to inefficient π-complexation/carbopalladation.

A series of experiments and observations from the literature provide insight into the reaction 

mechanism (Scheme 1).. Exposure of aryl iodide 1a to standard reaction conditions in 

the absence of vinyl triflate followed by filtration through Celite with the aid of THF 

and diffusion of hexane into the liquor led to the formation of the crystalline dianionic 

iodide-bridged dimer [Pd2I6][NBu4]2 (Scheme 1, eq. 1).19 At longer reaction times under 

the conditions of formate-mediated reduction, we believe [Pd2I6][NBu4]2 slowly releases 

the palladium(I) complex [Pd2I4][NBu4]2. The formation of the palladium(I) complex 

[Pd2I4][NBu4]2 is corroborated by 31P NMR studies in which [Pd2I6][NBu4]2 is exposed 

to tBu3P•HBF4 in the presence of formate (Scheme 1, eq. 2). The signal corresponding 

to the known palladium(I) dimer [Pd2(tBu3P)2(I)2] is the only signal observed in the 
31P NMR (See Supporting Information). In the absence of formate, the palladium(I) 

dimer [Pd2(tBu3P)2(I)2] is not observed. Similarly, exposure of Pd(OAc)2 to tBu3P•HBF4 

in the presence formate and Bu4NI leads to clean formation of the palladium(I) dimer 

[Pd2(tBu3P)2(I)2] (Scheme 1, eq. 3). Again, in the absence of formate, [Pd2(tBu3P)2(I)2] 

is not observed. These data corroborate intervention of the dianionic palladium(I) complex 

[Pd2I4][NBu4]2 under catalytically relevant conditions. In the absence of tBu3P, [Pd2I4]

[NBu4]2 and [Pd2I6][NBu4]2 may exist in equilibrium with higher polynuclear palladium-

iodide complexes (including nanoparticles)20 that may or may not be catalytically relevant. 

DFT calculations by Schoenebeck13b support the feasibility of aryl iodide oxidative addition 

by the dinuclear palladium(I) complex [Pd2(tBu3P)2(Br)2] in the catalytic conversion of aryl 

iodides to aryl bromides (Scheme 1, eq. 4). Finally, exposure of deuterio-2b to iodoanisole 

1a under standard conditions provides deuterio-3g, demonstrating deuterium transfer from 

the vinylic position of the triflate to the vicinal vinylic carbon atom of the product (Scheme 

1, eq. 5).

Based on these data, the following mechanism for the deoxygenative Heck reaction of 

vinyl triflates is proposed (Scheme 2). Entry into the catalytic cycle occurs via conversion 

of Pd(OAc)2 to the iodide-bridged palladium(II) dimer [Pd2I6][NBu4]2. Formate-mediated 

reduction of [Pd2I6][NBu4]2 provides the palladium(I) dimer [Pd2I4][NBu4]2. Oxidative 

addition of aryl iodide generates the arylpalladium(II) complex [Pd2I5(Ar)][NBu4]2,13b 

Chang et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2024 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which exists in equilibria with the monometallic complexes [PdI3][NBu4] and [PdI2(Ar)]

[NBu4]. The latter complex reversibly coordinates the vinyl triflate, which triggers migratory 

insertion. Carbopalladation occurs with concomitant elimination of triflate to form the 

palladium(IV) carbene.21 β-Hydride elimination followed by C-H reductive elimination 

releases the product and generates PdI2, which combines with [PdI3][NBu4] and Bu4NI 

to close the catalytic cycle. The absence of palladium(0) species is consistent with 

the requirement of aryl iodides (and tolerance of aryl bromides) in this process. This 

mechanism illustrates an important and distinctive feature of the bimetallic palladium(I) 

catalyst: conventional formate-mediated transfer hydrogenolysis of reactant C-I bonds (i.e. 

hydrodehalogenation)22 is suppressed as the hydride and aryl/vinyl moieties do not cohabit 

the metal.

In conclusion, we report a new catalytic transformation; the deoxygenative Heck reaction 

of vinyl triflates. Notably, these processes represent the first efficient cross-electrophile 

reductive couplings mediated by an inexpensive feedstock reductant, sodium formate. 

Additionally, the ability to affect vinylic cross-coupling with cine-substitution unlocks 

access to products that would otherwise require more circumlocutious methods of 

preparation. Most importantly, the present data add to a growing body of work16 in which 

the distinctive structural-interactional features of dinuclear iodide-bridged palladium(I) 

complexes unlock unique catalytic pathways. Specifically, in the context of reductive 

coupling, the bimetallic nature of the palladium(I) species assists in suppressing competing 

hydrodehalogenation,22 as the aryl and hydride ligands do not simultaneously reside on the 

metal center. Reductive biaryl cross-couplings will be disclosed shortly.
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Figure 1. 
Cross-coupling with ipso- vs cine-substitution.
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Scheme 1. 
Mechanistic studies.a

aSee Supporting Information for experimental details.
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Scheme 2. 
Proposed catalytic cycle for palladium(I)-catalyzed deoxygenative Heck reaction of vinyl 

triflates.
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Table 1.

Palladium(I)-iodide-catalyzed deoxygenative Heck reaction of aryl iodide 1a with vinyl triflate 2a: Deviation 

from optimal conditions.a

Entry Deviation from Optimal Conditions 3a Yield (%) 3a:iso-3a

→1 None 88 14:1

2 Without Bu4Nl <5 ---

3 Bu4NCl vs Bu4Nl <5 ---

4 Bu4NBr vs Bu4Nl <5 ---

5 Nal vs Bu4Nl <5 ---

6 [Pd2|6]|TBA]2 (2.5 mol%) vs Pd(OAc)2 65 >20:1

7 Pd2(dba)3 (2.5 mol%) vs Pd(OAc)2 40 8:1

8 [Pd(l)(tBu3P)]2 (2.5 mol%) vs Pd(OAc)2 <5 ---

9 tBu3P●HBF4 (5 mol%) <5 ---

10 Ar-Br vs Ar-I 15 >20:1

11 Without H2O <5 ---

a
Yields of isomeric mixtures isolated by silica gel chromatography.
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