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Leveraging data from the Genomes-to-Fields
Initiative to investigate genotype-by-
environment interactions in maize in North
America

Marco Lopez-Cruz 1,2 , Fernando M. Aguate1,2, Jacob D. Washburn3,
Natalia de Leon4, Shawn M. Kaeppler4,5, Dayane Cristina Lima 4, Ruijuan Tan6,
Addie Thompson 6,7, Laurence Willard De La Bretonne4 &
Gustavo de los Campos 1,2,8

Genotype-by-environment (G×E) interactions can significantly affect crop
performance and stability. Investigating G×E requires extensive data sets with
diverse cultivars tested over multiple locations and years. The Genomes-to-
Fields (G2F) Initiative has testedmaize hybrids inmore than 130 year-locations
in North America since 2014. Here, we curate and expand this data set by
generating environmental covariates (using a crop model) for each of the
trials. The resulting data set includes DNA genotypes and environmental data
linked to more than 70,000 phenotypic records of grain yield and flowering
traits for more than 4000 hybrids. We show how this valuable data set can
serve as a benchmark in agricultural modeling and prediction, paving the way
for countless G×E investigations in maize. We use multivariate analyses to
characterize the data set’s genetic and environmental structure, study the
association of key environmental factors with traits, and provide benchmarks
using genomic prediction models.

Genotype-by-environment (G×E) interactions play a major role in crop
performance and stability1,2. Modeling and studying G×E has enjoyed a
resurgence in recent years with both the development of new
approaches, the increased availability of high throughput genotype
and environmental data, and the increased interest in applying pre-
viously developed approaches on larger datasets and with more high-
powered modern computers. These advances have been reviewed
extensively elsewhere3–5.

Numerous attempts have beenmade to usemachine learning and
deep learning approaches on this problemwith some success, but also
the continued realization that larger and more comprehensive data
sets are likely needed to truly take advantage of deep learning
approaches6–9. Another family of approaches that has shown great
promise in recent years is the use of a traditional genomic best linear
unbiased prediction (GBLUP) models but with the incorporation of
environmental effects via environmental indices and other reduced

Received: 8 May 2023

Accepted: 18 October 2023

Check for updates

1Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA. 2Institute for Quantitative Health Science and
Engineering, Michigan State University, East Lansing, MI 48824, USA. 3United States Department of Agriculture, Agricultural Research Service, University of
Missouri, Columbia, MO 65211, USA. 4Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA. 5Wisconsin Crop Innovation Center,
University ofWisconsin,Middleton,WI 53562,USA. 6Departmentof Plant, Soil andMicrobial Sciences,MichiganStateUniversity, East Lansing,MI48824,USA.
7Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA. 8Department of Statistics and Probability, Michigan State University, East
Lansing, MI 48824, USA. e-mail: lopezcru@msu.edu; gustavoc@msu.edu

Nature Communications |         (2023) 14:6904 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2548-1766
http://orcid.org/0000-0002-2548-1766
http://orcid.org/0000-0002-2548-1766
http://orcid.org/0000-0002-2548-1766
http://orcid.org/0000-0002-2548-1766
http://orcid.org/0000-0002-5327-2160
http://orcid.org/0000-0002-5327-2160
http://orcid.org/0000-0002-5327-2160
http://orcid.org/0000-0002-5327-2160
http://orcid.org/0000-0002-5327-2160
http://orcid.org/0000-0002-4442-6578
http://orcid.org/0000-0002-4442-6578
http://orcid.org/0000-0002-4442-6578
http://orcid.org/0000-0002-4442-6578
http://orcid.org/0000-0002-4442-6578
http://orcid.org/0000-0001-5692-7129
http://orcid.org/0000-0001-5692-7129
http://orcid.org/0000-0001-5692-7129
http://orcid.org/0000-0001-5692-7129
http://orcid.org/0000-0001-5692-7129
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42687-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42687-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42687-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42687-4&domain=pdf
mailto:lopezcru@msu.edu
mailto:gustavoc@msu.edu


representations10–14. A third and final area of renewed G×E research,
particularly by private seed companies, is the combination of GBLUP
models with physiological crop growthmodels (CGMs) in the hopes of
better integrating environmental factors into genomic prediction and
breeding15–18.

In recent years, there has been tremendous growth in web
resources that allow easy access to local weather and soil data. These
data can be used as inputs for crop modeling to simulate crop per-
formance under varying environmental conditions. Crop model-
derived environmental covariates (EC) linked to phenotype data can
be used to study how cultivars will react to environmental conditions.
However, learning such patterns requires large phenotypic data sets,
including diverse cultivars evaluated over many years and locations.
These data sets are labor intensive to generate and, therefore, are less
commonly available.

The G×E project of the Genomes-to-Fields (G2F) Initiative19–24 has
evaluated more than 4,000 maize (Zea mays) hybrids in multiple
locations and years since 2014, resulting in a large, valuable andunique
phenotypic data resource. This data set represents an opportunity for
genetic investigations of cultivars’ performance and stability across
environments, but the size and breadth make it challenging to orga-
nize, filter, and distribute to the community in an accessible manner.

The data sets from the Maize G×E project are released with
minimal formatting and data verification following a set of standard
operating procedures published and revised each year of the project,
as detailed in the ‘description’ and ‘README’ files in each release19.
While the G2F organization oversees the collection of these data sets,
to date, their project has not included comprehensive data cleaning,
organizing, synonymizing, or any other extensive data curation efforts
for all years of available data. This is done purposefully tomaintain the
maximum proportion of information collected by the project colla-
borators and allow individual researchers to define appropriate quality
controls for specific projects. However, this curation strategy might
limit the usability of this data set by users who are either unfamiliar
with the type of data or are unable to invest the effort required to
perform a more in-depth data curation prior to performing their
desired analyses. Furthermore, the lack of a standardized curation
process may limit reproducibility and may question the validity of
comparisons between studies.

Here, we develop an automated workflow for curating the G2F
genotypic and phenotypic (2014-2021) data, matching it with public
weather and soil characterization data sets, and generating ECs for
each year-location combination. The workflow is designed and tested
using all publicly available data from the G2F trials since 2014 in the

United States; however, it can be used to generate ECs for future years
and historical data. This information can serve as a valuable resource
to buildmodels to predict how cultivars are expected to perform over
a wide range of environmental conditions25, including potential future
climate scenarios. With this manuscript, we share this valuable
resource and report on five investigations conducted using the
resulting data set. First, we study the genetic and (spatial-temporal)
environmental structure present in this data set. Results from this
analysis provide valuable information for thedesign and interpretation
of future studies utilizing this data set. Second, we perform analysis of
variance (ANOVA) on individual ECs to determine the proportion of
variance (across year-locations) attributable to region (north/south),
location, and year-location interactions. Third, we study the associa-
tion of individual ECs with grain yield and flowering traits using a
mixed-effects model that accounts for hybrid and year-location
effects. Fourth, using the EC data, we develop indices for drought
and heat stress during reproductive stages and estimate the impact of
such stresses on grain yield and flowering traits. This allows us to
identify naturally occurring events that lead to water and heat stress
during reproductive stages. Fifth, using variance components and
prediction analysis (with two validation designs), we benchmark
models including all the available SNPs and all the ECs and show that
such models can provide moderately accurate predictions of grain
yield, and highly accurate predictions of flowering traits.

Results
The G2F network of trials
TheG2F-G×E Initiative is a collaborative testingnetwork that has tested
maize hybrids in the US and Canada since 2014. The curated pheno-
type data set includes 78,686 records of 4372 hybrids, tested over 8
years (from 2014 to 2021) and 38 locations in the United States
(Tables 1, 2, see Supplementary Fig. 1 for amap of these locations). The
number of hybrids connecting year-locations was substantial (Sup-
plementary Fig. 2). However, it is worth noting that, as expected for a
large-scale network of trials that includes a large number of hybrids,
not all cultivars were tested within all year-locations within a two-year
period. The data set includes plot-level phenotypic measurements of
grain yield (ton/ha), days-to-anthesis, days-to-silking, and anthesis-
silking interval (ASI, Supplementary Figs. 3–6 show boxplots of these
traits by year, location, and region).

The genetic structure of the hybrids tested in G2F trials
The curatedgenotypefile includes 4372hybrids and98,026 SNPs. A PC
analysis of an SNP-derived genomic relationship matrix26 (G) reveals
the structure present in this data set which includes numerous sub-
populations with the clustering of hybrids being primarily associated
with the (family of) tester used to develop the hybrids (Fig. 1a, Sup-
plementary Table 1). The top-10 PCs explain roughly 50% of the var-
iance in hybrids (Fig. 1b), providing a quantification of the strong
genetic structure of the materials tested in G2F trials.

Spatial-temporal patterns of variation in environmental
covariates
We derived a set of environmental covariates specific to each year-
location using the Agricultural Production Systems sIMulator (APSIM)
crop model27. The final EC file includes 189 ECs (corresponding to the

Table 1 | Number of records per year and region

Region Year Total

2014 2015 2016 2017 2018 2019 2020 2021

North 5306 5514 6816 5237 11,189 10,502 6476 8029 59,069

South – 930 1481 1946 4344 3371 3575 3970 19,617

Total 5306 6444 8297 7183 15,533 13,873 10,051 11,999 78,686

Table 2 | Number of hybrids, locations, and year-location
combinations by region

North South Total

Hybridsa 4344 3013 4372

Locations 25 13 38

Year-locations 97 39 136
aThe sum of the number of hybrids tested in the north and south is not equal to the total number
of hybrids tested because many hybrids tested in northern locations were also tested in the
south (see Supplementary Fig. 2).
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combination of 21 EC types and 9 phenological stages, see Supple-
mentary Tables 2, 3) evaluated in 136 unique year-location combina-
tions. A PC analysis of these covariates showed that the top two PCs
accounted for approximately 33% of the variance in the ECs (Fig. 2).
Furthermore, the first two PCs effectively distinguish between north-
ern and southern locations. To demonstrate this more clearly, we
found an optimal rotation of the top two PCs that maximized the
summed correlation with the longitude and latitude of the locations28.
The optimal angle was 119 degrees clockwise. Figure 2a displays the

loadings of each year-location combination (represented by points) on
rotated PCs, as well as themedian loading for locations with data from
multiple years (represented by labels). Overall, the rotated PCs plot
shows geographic patterns, most clearly separating between northern
and southern locations based only on the first two PCs. However, a
separation between western and eastern locations is not easily dis-
tinguished. A few year-locations from the south are mapped to the
north region and vice versa, possibly reflecting year-location effects—
we study this into more detail in the next section.
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Fig. 2 | Principal component analysis of the environmental covariates (EC).
a Loadings of the year-locations (points) in the first 2 PCs after rotating these PCs.
An optimal rotation of 119 degrees clockwise was determined by maximizing the
sum of the correlation of PC1 with longitude, and the correlation of PC2 with
latitude. The labels correspond to the state abbreviation of locations with

coordinates being the median loadings of all the year-locations with data for the
corresponding location (labels for a state that appear more than once correspond
todifferent locationsof the same state).bCumulative proportionof varianceof ECs
explained by number of eigenvectors. Source data are provided as a Source
Data file.
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Fig. 1 | Principal component analysis of the SNP genotypes. a Loadings of
hybrids in the first 2 SNP-derived PCs. Colors represent (groups) of testers used to
develop the hybrids (Supplementary Table 1).b Cumulative proportion of variance

of hybrids explained by the number of eigenvectors. Source data are provided as a
Source Data file.
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Variability in environmental conditions explained by year-
location interactions
We conducted an ANOVA of environmental covariates to quantify the
proportion of variance of each EC that is attributable to systematic
differences between regions, locations, and year-location interactions
(see Methods for details). Results are presented in Fig. 3 for each EC-
type and phenological stage. Approximately 60% of the variability in
ECs is attributable to variability inweather conditions across years. The
proportion of location variancewas higher for thermal time (TT) and a
sub-group of water ECs corresponding to soil water (SW) (Fig. 3). For
many of the EC categories, the proportion of variance explained by
region increased along the crop development (for example, TT and
evaporation related categories), denoting cumulative environmental
effects (Fig. 3).

Association of individual environmental covariates with yield
and flowering traits
We tested the association of each EC with yield and flowering traits
using a mixed-effects model that includes the (fixed effect) regression
on a given EC, accounting for hybrid, year-location, and hybrid-by-
location interaction (random) effects (seeMethods). The results of the
association analysis (likelihood ratio test, LRT, followed by
Bonferroni29 correction) of ECs for northern locations are presented in
Fig. 4. In the north, several ECs were significantly associated with days-
to-anthesis, days-to-silking, and ASI. However, only a few environ-
mental covariates were associated with grain yield. An enrichment
analysis (EA, see redmarks �, *, **, and ***, on top of each of the plots in
Fig. 4) revealed that covariates significantly associated with flowering

traits were related to the cumulative thermal time (CumTT, EA,
P < 0:001) and above-ground biomass (EA, P =0:0214 for days-to-
anthesis, P =0:0245 for days-to-silking, and P < 0:001 for ASI). ECs
significant associated with grain yield are related to potential eva-
poration (Eos, EA, P =0:0096) and canopy variables (cover green,
cover total, biomass, and LAI=leaf area index, EA, P =0:0626). As
expected, grain yield was significantly associated with APSIM’s pre-
dicted yield (EA, P < 0:05) in late stages of the phenology. In contrast,
the number of ECs significantly associated (LRT) with traits was much
smaller in southern locations (Supplementary Fig. 7) compared to the
north, possibly due to the smaller sample size. In the south, only
evaporation-related ECs were found strongly associated with days-to-
anthesis (EA, P =0:0099) and days-to-silking (EA, P =0:0053, Supple-
mentary Fig. 7).

Phenotypic effects of drought and heat stress
Using the daily outputs of the crop model we derived the water
supply-demand ratio30 (SDR) and the number of days with a
maximum temperature over 30 °C (HI30) during the period
between flag leaf appearance and end of grain filling (see Meth-
ods). These indices summarize, respectively, water and heat stress
patterns during reproductive stages. As expected, the water SDR
index reached minimum values in the period spanning from flag
leaf appearance to end of grain filling in most environments
(Fig. 5a). In the north region, roughly 50% of the trials had SDR < 1
during reproductive phenological stages. Whereas in the south,
the prevalence of SDR < 1 was much higher (Fig. 5a). There were no
clear patterns of SDR association with year, indicating that SDR
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Water, ESW = Extractable soil water, Flow = Unsaturated watermovement between
layers, Flux= Saturatedwaterflux fromeach layer to layer below, TimeEvap2=Time
since the start of second stage evaporation, PotRunoff = Potential runoff, PotInfiltr
= Potential infiltration, and FlowNo3 = Amount of Nitrogen leaching as NO3 from
each layer. Source data are provided as a Source Data file.
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profiles vary substantially between locations within any given
year (Fig. 5a).

As expected, there was a negative correlation (r = � 0:54,
P < 0:001) between SDR and the HI30 index. In the south, 32 of the 39
year-locations had more than 36 days with temperatures above 30 °C
(denoted as HI30>36). In contrast, only 22% of the trials (22 of 97) in
the north region had HI30>36. Overall, 13% of the trials (19 of the 136
year-locations) experienced both water (defined as SDR≤0.54) and
heat (HI30>36) stresses during reproductive stages (Fig. 5b).

The results in Fig. 4 and Supplementary Fig. 7 tested the linear
association of SDR and HI30 with yield and flowering traits. The heat
stress index (HI30)wasmarginally (linearly) associatedwith grain yield
in the north, and the water SDR and HI30 covariates have a suggestive
association with ASI; however, the P-value was above the Bonferroni-
adjusted threshold (Fig. 4).

We use these ECs to define dummy variables that identify heat
(HI30>36) and drought (SDR≤0.54) stress. Then, we estimated (and
tested) the effects of heat and drought stress using the same mixed
model used in the association analysis (previous section) with the EC
replaced with the dummy variables above described. In northern
locations, SDR≤0.54was associatedwith an average reductionofgrain
yield of about 2.39 ton/ha (LRT, P<0:001), an average increase of days-
to-anthesis and days-to-silking of about 3 (LRT, P =0:017), and 4 days
(LRT, P =0:011), respectively; however, there was no clear evidence of
a significant effect in ASI being associated with SDR≤0.54 (Fig. 6a).

The patterns in the southern locations were similar, but showing a
smaller difference between groups, forflowering traits; however, there
were no significant differences in grain yield.

Likewise, in northern locations, HI30>36 was associated with a
reduction of yield of ~2.17 tons/ha and increases in days-to-anthesis,
days-to-silking, and ASI of 2.44, 2.97, and 0.55 days (all statistically
significant, LRT, P<0:05), respectively (Fig. 6b). The results for
HI30>36 in southern locations were not as clear as in northern loca-
tions, possibly reflecting that a large proportion of the southern
locations had more than 36 days with a maximum temperature over
30 °C (Fig. 5b).

Nine of the 97 northern year-locations and 10 of the 39 southern
year-locations experienced both SDR≤0.54 & HI30>36 (Fig. 5b). The
co-occurrence of SDR≤0.54 & HI30>36 was associated with a reduc-
tion in grain yield of ~2.29 ton/ha (LRT, P<0:001), and an increase of
days-to-anthesis of 3.6 days (LRT, P =0:017) and in days-to-silking of
4.1 days (LRT, P =0:012). In the south, the combined stress was
reflected in smaller increases in flowering traits (0.7–1.5 days) in days-
to-anthesis and days-to-silking, and ~0.8 days in ASI (Supplemen-
tary Fig. 8).

Analysis of variance using all SNPs and ECs
We analyzed grain yield and flowering traits using two single-stage
models. The firstmodel was a standard random effectsmodel (the one
used in the association analysis without the fixed effect of the EC) that
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does not include any SNP or EC information. The second model is a
reaction norm model13 with a regression on SNPs and ECs only (see
Methods). The results from the random effects model (without SNPs
and ECs) in northern trials showed that the combined effects of year,
location, and year-location interactions, explain roughly 50% of the
phenotypic variance of grain yield, 85% of the phenotypic variance of
days-to-anthesis and days-to-silking, and 31% of the variance of ASI
(Table 3). Location effects explained between 15% (days-to-silking) to
33% (grain yield) of the variance explained by year, location, and year-
location combined. Therefore, most of the variance in phenotype that
can be associated with year, location, and year-location is attributable
to random year and year-location effects. Within trials (year-location),
hybrids explained ~0.16 for grain yield, ~0.59 for days-to-anthesis and
days-to-silking, and ~0.1 for ASI (these were calculated as the ratio of
the hybrid variance relative to the sum of the hybrid plus the error
variance).

The estimated error variances from the reaction normmodel that
used SNPs and ECs were very similar (slightly smaller) to the error

variances estimated with a standard random effects model. Further-
more, the variance explained by SNPs was very similar to the variance
captured by the main effects of the hybrids in the random effects
model, and the variance captured by the main effects of the ECs was
very close to the variance explained by the year, location, and year-
location effects combined (Table 3 and Supplementary Table 4).
Therefore, from these results, we concluded that we do not have evi-
dence of missing heritability or missing environmentability (i.e.,
environmental variance not accounted for by ECs) in this data set.

Phenotypic and genetic correlation between traits
We estimated the phenotypic and genetic correlations between grain
yield and flowering traits. For genetic correlations, we implemented a
two-trait version analysis of the reaction norm model (see Methods).
Grain yield had very small phenotypic and genetic correlations with
anthesis and silking in the north (Supplementary Table 5). In this
region, ASI had a negative phenotypic and genetic correlation with
grain yield, but these correlations were also small in absolute value (~
−0.10, Supplementary Table 5). Interestingly, in the south, there was a
sizable positive genetic correlation between grain yield and both
anthesis and silking, and almost no phenotypic or genetic correlation
between grain yield and ASI (Supplementary Table 6). As one would
expect the phenotypic and genetic correlations between anthesis and
silkingwerevery close to 1 in both regions (Supplementary Tables 5, 6).
Likewise, as one would also expect from the trait definition, ASI had
positive (slightly negative) within-year-location phenotypic correla-
tions with silking (anthesis) in both regions (this is a direct con-
sequenceof the trait definition, ASI=silking-anthesis). Finally, we found
moderately positive genetic correlations between ASI and anthesis,
and between ASI and silking in the north (Supplementary Table 5) and
in the south (Supplementary Table 6). This reflects the fact that culti-
vars with higher growing degree days (GDD) requirement tend to have
longer phases across the entire phenology, including ASI.

Benchmark of genomic prediction models in cross-validation
We evaluated the prediction ability of the random effects and reaction
normmodels using two cross-validation (CV) schemes. We first used a
10-fold CV (10F-CV) with hybrids assigned to folds. This approach (aka
CV131) resembles the genomic prediction of performance for (new or
potential) hybridswithout field evaluation. The second approachwas a
leave-one-year-out CV (LYO-CV) with all the data from each year
assigned to testing and the data from the remaining years used for
training. This approach mimics the prediction problem faced when
predicting the performance of cultivars in future years with current
data. We report the average within-year-location correlation between
predicted and observed phenotypes for both approaches.

In the 10F-CV (hybrids assigned to folds) the average within the
year-location correlation of predicted and observed phenotypes was
near zero (averages between −0.10 and −0.03) for the random effects
model (Fig. 7). This is expected because thismodel cannot learnhybrid
effects because, in this CV, all the data from each cultivar is in either
training or testing data. However, the model including SNPs and ECs
can learn hybrid effects through genomic relationships; therefore, this
model yielded considerably higher (within-year location) correlations
in 10F-CV: ~0.39 (± 0.004) for grain yield, ~0.80 (± 0.002) for days-to-
anthesis and days-to-silking, and ~0.33 (± 0.004) for ASI. To assess
whether the prediction performance of the SNP + EC model was pri-
marily driven by the genetic and environmental structure of the data,
we considered a third model expanding the random effects model by
adding the fixed effects on top PCs (top 10 PCs derived from SNPs and
top 5 PCs from ECs). This random effects+PC model had a better
prediction performance than the random effects model that did not
use any SNP or EC information. However, the prediction performance
of the PC model was significantly worse than the model using all the
SNPs and ECs.
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The prediction correlations observed for each trait are directly
related to the traits’ (within-trial) heritabilities, which were highest for
days-to-anthesis and days-to-silking and much lower for yield and ASI
(Table 3). These differences in within-year-location prediction corre-
lations between the random effects and SNP + EC models were highly
significant for 10F-CV. The results for the southern locations were
conceptually similar to those for the northern locations (Supplemen-
tary Fig. 9); however, as expected, due to the smaller sample size, the

prediction correlations were slightly lower and more variable com-
pared to the northern locations.

In the leave-one-year-out CV (LYO-CV) analysis, all the models
yielded very similarprediction correlations ranging from~0.25-0.28 ( ±
0.004) for grain yield, ~0.68-0.73 (± 0.003) for days-to-anthesis and
days-to-silking, and ~0.22–0.25 ( ± 0.004) for ASI. For days-to-anthesis
and days-to-silking, the genomic SNP + EC model performed only
slightly better than the random effects model that did not use SNPs
and ECs (Fig. 7). These results can be explained as follows: within year-
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Table 3 | Analysis of variance for grain yield and flowering traits in northern trials using two models

Grain yield Days-to-anthesis Days-to-silking ASI

Source Random effects SNP + EC Random effects SNP+ EC Random effects SNP + EC Random effects SNP + EC

YEAR (Y) 0.202
(0.042)

– 0.273
(0.051)

– 0.276
(0.063)

– 0.045
(0.019)

–

LOC (L) 0.168
(0.046)

– 0.228
(0.039)

– 0.126
(0.032)

– 0.102
(0.034)

–

YL 0.202
(0.025)

– 0.403
(0.037)

– 0.485
(0.036)

– 0.214
(0.022)

–

(Total YL) 0.492
(0.005)

– 0.849
(0.004)

– 0.840
(0.004)

– 0.314
(0.004)

–

EC – 0.485
(0.012)

-- 0.853
(0.009)

-- 0.844
(0.009)

– 0.316
(0.010)

Hybrid (G) 0.079
(0.002)

– 0.103
(0.001)

– 0.116
(0.001)

– 0.066
(0.002)

–

SNP – 0.067
(0.004)

– 0.126
(0.005)

– 0.138
(0.005)

– 0.079
(0.006)

GxL 0.041
(0.002)

– 0.015
(0.001)

– 0.015
(0.001)

– 0.048
(0.003)

–

SNPxEC – 0.091
(0.004)

– 0.045
(0.001)

– 0.043
(0.001)

– 0.092
(0.004)

Error 0.387
(0.003)

0.380
(0.002)

0.074
(0.001)

0.058
(0.001)

0.077
(0.001)

0.062
(0.001)

0.566
(0.004)

0.551
(0.003)

All traits were scaled to a unit variance. In parenthesis, the posterior standard deviation.
Y Year, L Location, YL Year-location, G Hybrid, EC Environmental covariates.
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location, most of the predictable variability is attributable to differ-
ences between hybrids. Because most hybrids in the G2F data set are
tested over more than one year, in this CV scheme, the random effects
model can learn hybrid effects from the training data and, given the
level of replication of hybrids across years and locations, the model
can be as effective as the genomic model to learn those effects.

Discussion
Leveraging data generated by the G2F Maize G×E project, web-
resources that provide access to soil (SSURGO32) and weather (NASA
POWER) information, and the APSIM crop model27, we generated an
extensive open-resource for investigating genetic, environmental, and
G× E in maize in North America. The data set includes more than
70,000 phenotypic records, from more than 4000 hybrids tested in
more than 130 year-location combinations, linked to curated SNP
genotypes and ECs. In addition to sharing this valuable resource, we
provide all the workflows that were used to curate phenotype and
genotype data and to generate ECs.

Cropmodels rely onmultiple parameters which can be optimized
to match specific aspects of crop physiology to specific cultivars33.
However, when such parameters are optimized to match observed
phenotypes of specific cultivars, the resulting ECs are not purely
environmental as they depend on genetic factors that affect the crop
physiology. Our objective was to generate ECs that are just descriptors
of the environmental conditions present in the trials; therefore, we
opted not fitting a crop model with parameters to match hybrid-
specific phenotypic outcomes (e.g., flowering dates by cultivar).
Instead, for most crop-model parameters we used the same values
across year-locations and used year-location specific values for three

parameters (planting date, plant density, and GDD to juvenile stage).
Consequently, the EC data we provide and use in analyses is defined at
the year-location level (i.e., there is no variability in ECs within year-
location). Phenotypic prediction accuracy could be further improved
by optimizing crop model parameters for specific cultivar-year-
location combinations;14, 34 however, as stated, if one does so, ECs
will also be affected by genetic effects making the interpretation of
genomic models (such as the SNP + EC model used here) difficult.

The G2F Maize G×E project has collected substantial environ-
mental data (including temperature, precipitation) as well as man-
agement (e.g., fertilization) data. The incorporation of this
environmental data into prediction models has shown promise when
modeling G×E6, 7, 10, 35. However, some of this data is sparse because of
missed records in someyear-locations and the need to exclude specific
year-locations that appear to be outliers for one or more environ-
mental variables. In the early steps of our investigation, we used G2F
environmental data and imputed the missing records with data from
NASA POWER. However, this approach did not provide a clear
improvement of the correlation between the year-location mean and
the APSIM-predicted grain yield, over simply running the crop model
with a standard fertilization, and with soil and weather data entirely
downloaded from external web resources (SSURGO and NASA
POWER). However, we believe there is room to further improve the
resourceweproduced, at least for the trialswith completeweather and
management data, by detailed investigation of ways to incorporate
weather and soil data that has been collected for some trials.

In our study we present a series of analyses describing the genetic
structure of the hybrids tested in the G2F Maize G×E trials and the
spatial-temporal structure of the environmental conditions that took
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place at each year-location. We confirm a strong structure among the
genetic materials tested in these trials (Fig. 1); such structure must be
consideredwhenperforming genetic analyseswith thesematerials.We
also report that the spatial structure on the environmental conditions
was largely dominated by latitude (Fig. 2a); however, close to 60% of
the variability in environmental conditions was due to year and year-
location (Fig. 3).

The relevanceof (random) year-location effects on environmental
conditions provide interesting opportunities to learn about environ-
mental effects (as well as G× E) on the agronomic performance and
stability of cultivars. For instance, one can use this data set to identify
randomly occurring environmental events and use this to investigate
the impact of such events on the agronomic performance of cultivars.
We illustrated this by using the ECs to detect locations that may have
been under drought and/or heat stress during reproductive states.
Using this, we estimated a reduction in expected grain yield of about 2
ton/ha associated with the occurrence of drought stress during
reproductive stages (Fig. 6). This reduction in grain yield was asso-
ciated with longer days-to-anthesis and longer days-to-silking, and a
slightly longerASI.We found similar results for the effect ofheat stress.
A similar approach could be used to study how individual cultivars
react to environmental conditions using random regression models
where each cultivar has its own response to stressful conditions.

We also report on the association of individual environmental
covariates with phenotypes. Our results identified several thermal-
time, canopy, and water-availability ECs significantly associated with
flowering traits (Fig. 4 and Supplementary Fig. 7). Some of these cov-
ariates may be capturing the same (or related) effects. Indeed, canopy
ECs partially reflect water availability, radiation, and temperature.
Likewise, biomass covariates integrate effects from all the conditions
that contribute to the vegetative and reproductive development of the
crop. In general, covariates that aggregated effects over the phenology
(i.e., the ones evaluated in later stages), and those that aggregate
effects acrossdomains (e.g., canopyorbiomass EC)were, as onewould
expect, more strongly associated with phenotypes suggesting that
indeed the crop model is doing a good job at accumulating effects
fromvarious domains atdifferent time-points. The association analysis
that we presented assumed a linear relationship between the traits and
ECs; future studies should explore non-linear patterns as these would
be expected for many ECs.

Finally, we presented results from analyses integrating all SNPs
and all ECs, including both variance components analysis as well as
prediction-performance analysis. The result of the variance compo-
nents analysis (Table 3 and Supplementary Table 4) suggests that SNPs
fully captured hybrids effects (i.e., we found no evidence of missing
heritability) and that EC data fully captured year-location effects (i.e.,
we had no evidence ofmissing environmentability). The benchmark of
prediction performances confirmed that models integrating SNPs and
ECs can predict cultivars’performancemoderately accurately for grain
yield and ASI and with high accuracy for days-to-anthesis and days-to-
silking (Fig. 7 and Supplementary Fig. 9).

In a previous study involving the evaluation of wheat cultivars in
France, we reported a sizable missing environmentability25. Some dif-
ferences between the study presentedby de los Campos et al.25 and the
one reported here include the crop (wheat versus maize), the crop
model used, the fact that in our study ECs did not vary within year-
location, and, perhaps more importantly, the diversity of environ-
ments (here we present analysis from a highly diverse set of environ-
ments within the U.S.).

The data set generated by the G2F Maize G×E project, coupled
with the resources generated in this study, can enable many different
types of investigations. Examples include the evaluation of models
accounting for non-additive effects (here we only considered additive
effects) using parametric36–38 or semi-parametric39, 40 methods, the use
of ECs to study phenotypic plasticity, as well as the use of ECs to

identify trials that may have experienced specific weather events41.
Furthermore, the data set can be used to simulate crop performances
over possible weather conditions25. These are just examples of
countless research that could be conducted using the data and asso-
ciated resources described here.

While the data generated by the G2F Maize G×E project con-
stitutes a precious resource for maize genomic research, the data set
has some limitations and specific features that need to be considered
when interpreting results. First, the hybrids tested were selected to
havehighdiversity; while this featuremakes it highly valuable formany
research objectives, it is worth noting that the materials tested are not
representative of the elite materials currently used in commercial
production. Likewise, the genetic structure of the hybrids tested is
substantial and leads to a long-range linkage disequilibrium. There-
fore, performing mapping requires techniques that account for such
structure (e.g., within-family segregation analysis). Finally, the geo-
graphically widespreadnature of the testing locations required the use
of specific testers for hybrid production across subsets of locations.
Therefore, testers’ heterogeneity contributes to the genetic diversity
of the resulting hybrids and influences genetic and G×E parameters,
and models’ predictive performances.

Likewise, the analyses presented here are meant to be a bench-
mark, where there can be many improvements to consider. For
example, based on preliminary analyses (and to simplify models), we
did not account for experimental design (block and replicate effects
within year-location) in our models. However, the curated data set
includes this information which can be used in future analyses.

The G2F Maize G×E project will continue to test materials and
generate newwaves of data. As new data becomes available, we aim to
keep updating this valuable resource.

Methods
Data source
Phenotype, genotype, and metadata were downloaded from the G2F
Maize G×E project public repositories42. These data sets consist of raw
and unfiltered information from trials conducted every year from2014
to 2021 in many locations in the United States (see Supplementary
Fig. 1) and include over 4000 maize hybrids6, 7, 22.

Experimental design and genetic material
Hybrid phenotypic data originate from partially replicated field trials
conducted across various locations in the United States, Canada, and
one location in Germany. Slightly different randomization strategies
were employed across the years; however, there has always been a set
of common hybrids fully replicated in every location to establish a
connection between locations and years (Supplementary Fig. 2).

In 2014 and 2015, based on genetic background, female parents of
hybrids were classified into eight groups and crossed with up to five
male testers (PB80, LH195, CG102, LH198, and LH185). Additionally, a
set of common hybrids and local checks were included in the experi-
ments, which followed a modified split-plot design20, 22, 38.

In 2016 and 2017, along with the set of common hybrids, four
subgroups of hybrids were evaluated, and the experiments were
arranged in a randomized complete block design22, 38. The 2018-2019
experiments utilized genetic materials with a relatively narrow
maturity window; the hybrids resulted from the cross between
doubled-haploids (DH) from a collection of three biparental popula-
tions (PHW65 x PHN11, PHW65 x MO44, and PHW65 x MOG) to the
inbred testers LH195 andPHT69. In these two years all the hybridswere
evaluated in a modified randomized complete block design23, 43.

Finally, infield seasons 2020 and 2021 the G2F Initiative evaluated
hybrids produced by the cross of DH derived from the WI-SS-MAGIC
population to the inbred testers PHK76, PHP02, and PHZ51. Testing
was done using a modified randomized complete block design24, 44.
Additionally, in these two years, alongside the main experiment,
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smaller-scale experiments were conducted in some locations in a
randomized complete block design24. Supplementary Table 1 provides
a complete list of the testers used.

Phenotypic and genotypic information
Phenotypic data include measurements of grain yield (ton/ha, total
plot yield at 15.5% grain moisture), anthesis (days, number of days
after planting that 50% of the plants in the plot began shedding
pollen), silking (days, number of days after planting that 50% of the
plants in the plot had visible silks), and anthesis-silking interval (ASI,
difference in days between silking and anthesis). Using weather data
(described below), we also expressed these flowering traits in GDD
(°C-day), which is also included in the final phenotype data set.
Quality control filtering included the removal of phenotypic
records with at least onemissing data in any of planting, harvesting,
anthesis, or silking dates. We also removed yield outliers within
year-location, defined as yield records greater than the 75th per-
centile plus 2.5 times the inter-quartile range or smaller than the 25th

percentile minus 2.5 times the inter-quartile range. Likewise, we
removed records with ASI greater than 15 days.

DNA genotypes were derived from a common set of 437,214 SNPs
available from the Practical Haplotype Graph (PHG) platform45. We
filtered SNPs using bcftools46 (v1.13) by retaining bi-allelic SNPs with
minor allele frequency greater than 3% and those with less than 10% of
missing values. Using VCFtools47 (v0.1.15) we coded SNP genotypes in
numeric format (0,1,2) by counting the number of copies of a locus-
specific reference allele. Missing values were imputed using the
observed mean of marker genotypes at a given locus. Finally, we
linkage disequilibrium-pruned SNPs using an algorithm that identifies
sets of SNPs with R2>0:85 and distance ≤ 1 Mbp within chromosome,
and that retains the most representative SNP for each set.

Environmental covariates
Environmental covariates were derived using the Agricultural Pro-
duction Systems sIMulator (APSIM Next Gen 2021.11.3.6921) crop
model27 with the ‘APSIMx’ R-package48 (v2.3.1).

Most of the parameters of the crop model were set to the
default values of APSIM’s generic maize template. However, we
tuned three key parameters to each year-location: (i) Plant density
(#plants/m2) at sowing was set to the average reported plant
population in each year-location. (ii) Planting date was fixed to the
year-location planting date with a window of two days. (ii) We tuned
the thermal time (in GDD) from emergence to end of juvenile stage
(right before floral initiation) for each year-location using a grid-
search approach. Specifically, we run the crop model for each year-
location over a grid of values of GDD and selected the GDD value
that gave a simulated flowering date equal to the average observed
silking date of the year-location. Additionally, (iv) for all year-loca-
tions, the initial water was set to 50% of plant available soil water
throughout the full soil profile and (v) the amount of Nitrate
Nitrogen at sowing was set to 200 kg of NO3/ha.

We run simulations starting 90 days before planting date at each
year-location. Daily weather data was downloaded from the National
Aeronautics and Space Administration – Prediction of Worldwide
Energy Resources (NASA POWER) project between 90 days before
sowing and 90 days after harvesting, and soil data was obtained from
the Soil Survey Geographic Database32 (SSURGO).

From the simulations, we saved daily values for 21 EC types (see
Supplementary Table 2). APSIMprovides soil-related covariates by soil
layers (10 layers, each 200mm thick). We aggregated these covariates
across layers weighting for the crop accessibility to the layers. Finally,
we averaged daily EC values within each phenological stage (Supple-
mentary Table 3), thus producing 189 ECs (corresponding to the
combination of 21 EC-types and 9 phenological stages).

Region-stratified and combined analysis
We classified the testing locations into northern and southern regions
according to the USDA’s plant hardiness zones49, by defining northern
locations as those with hardiness 6b or below, and southern locations
as those with hardiness 7a or above. This corresponds roughly to
geographically dividing at the 37°N latitude. For all the analyses, we
report results obtained with combined data set as well as region-
stratified analyses.

Principal component analysis
To uncover the structure of hybrids and environments in G2F data, we
performed separate principal component (PC) analyses of the hybrids
and ECs. Genomic PCs were derived from the eigenvalue decomposi-
tion of the SNP-derived genomic relationship matrix26, implemented
with the eigen() function of the ‘base’ R-package50 (v4.3.1). This matrix
was obtained as

G =
XX0

trace XX0� � ð1Þ

where X is a matrix of centered SNP genotypes (hybrids in rows, SNPs
in columns). Likewise, using ECs, we computed an environmental
relationship matrix

Ω=
WW0

trace WW0� � ð2Þ

whereW is amatrix of centered and scaled ECs (year-locations in rows,
ECs in columns). Following Novembre et al.28, we rotated the top two
EC-derived PCs by finding an angle that maximizes the sum of the
correlation of the rotated PC1with the longitude and the correlation of
the rotated PC2 with the latitude of the locations.

Analysis of variance of environmental covariates
We used the aov() function of R’s ‘base’ package50 (v4.3.1) for the
analysis of variance for each of the ECs. First, we performed ANOVA
using ECs from all year-locations (south and north combined). From
this analysis, we report theproportionof varianceof each ECexplained
by region, location, and year-location. Subsequently, we performed
ANOVA stratified by region. From these analyses, we report the pro-
portion of variance explained by location and year-location
interactions.

Association of environmental covariates with phenotypes
To test the association of each EC with yield and flowering traits, we
used a single-stage mixed-effects model using individual plot data
taking care of the field replication, this model is of the form

yijkl =μ+Gi + Y j + Lk + YLjk +GLik + ECjkβ+ εijkl ð3Þ

Above, yijkl is a phenotypic record of the lth replicate, of the ith

hybrid, in the jth year, in the kth location; μ is an intercept; Gi, Y j, Lk ,
and YLjk are the random effects of the hybrid, year, location, and year-
location combination, respectively; GLik is a hybrid-by-location
interaction (also treated as random), ECjkβ is a (fixed-effect)
regression on a given EC (separate analyses were performed for
each EC), and εijkl is the random error term. In this model, the effects
of the levels of each of the random effects were assumed to
be independently and identically distributed (iid) Gaussian,
that is Gi ∼

iid Nð0,σ2
hybÞ,Y j ∼

iid Nð0,σ2
yearÞ, Lk ∼iid Nð0,σ2

locÞ, and
YLjk ∼iid Nð0,σ2

year × locÞ, andGLik ∼iid Nð0,σ2
hyb× locÞ. The error termwas also

assumed to be iid Gaussian, εijkl ∼
iid Nð0,σ2

ε Þ.
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We fitted the above model using the ‘lme4’ R-package51 (v1.1.34)
and used the fitted models to determine the association of each EC
with phenotypes using a likelihood ratio test between model in Eq. (3)
and a nullmodel that had the same random effects but did not include
the regression on the EC. This test was implemented using the anova()
function from the ‘base’ R-package50 (v4.3.1). From these analyses we
report association P-values for each EC and phenotype.

We also considered including a hybrid-by-year interaction in
Eq. (3); however, we could not fit these models with ‘lme4’ and when
we fitted model in Eq. (3) with the ‘BGLR’ R-package52 (v1.1.0), the
hybrid-by-year interaction captured a very small proportion of var-
iance (<2%). Therefore, in our analysis we only included the hybrid-by-
location term as this can be, from the prediction perspective, themost
relevant systematic and predictable interaction.

Likewise, Eq. (3) does not include random effects for the blocks
and replicates within year-location. We opted not to include those
effects because block information was sparse and because, in pre-
liminary analyses using ‘lme4’, we found that the replicate (within year-
location) explained less than 1% of the variance of the phenotypes with
only the exception of grain yield in thenorth, where that randomeffect
explained 4% of the variance of the trait.

We performed the above-described analysis using data combined
across regions as well as within region. To control for multiple testing,
we used theBonferronimethod29.WeperformedPCanalysis of the ECs
matrix to estimate the number of independent tests53 and imple-
mented in the ‘poolr’ R-package54 (v1.1.1). The estimated number of
independent tests was 41; therefore, our threshold for significance at
5% for these analyses was 0.05/41 = 0.00122.

Evaluation of drought and heat stress during
reproductive stages
We used the environmental data to compute an index for the water
supply-demand ratio30 (SDR). The crop water supply (mm) was the
weighted sum of the water available within each soil layer that is
reached by the crop at any given time. The weights were based on the
fraction of thewater that the cropmodel estimates canbeextractedby
the crop (which depends on root growth and soil properties). The
water demand corresponds to the amount of water (mm) the crop
would have transpired without soil water constraints. This was com-
puted from the potential evapotranspiration (Eo) adjusted by the
proportion of green canopy cover times a crop factor equal to 2. We
then produced an overall SDR value per year-location by averaging the
daily SDR observed within the period comprised between the flag leaf
appearance and endof grainfilling stages (see SupplementaryTable 3).
Likewise, for the same reproductive stages, we counted the number of
days with a maximum temperature over 30 °C, and we labeled the
resulting index as HI30.

First, we tested the linear association of these indices using the
model in Eq. (3). Subsequently, we used the above indices to identify
year-location combinations under drought and heat stress and esti-
mated the impact of that stress on phenotypes using a mixed-effects
model as in Eq. (3) with the regression on the ECs replaced with an
indicator variable for presence/absence of heat or drought stress. We
used a likelihood ratio test between this model and a null model
without the indicator variable. This test was implemented using the
lrtest() function from the ‘lmtest’ R-package55 (v0.9.40).

Genomic prediction models
We analyzed yield and flowering traits using two single-stage models.
The first (baseline) model was a standard random effects model at the
plot-level such as the one in Eq. (3) without the fixed effect of the EC,
that is,

yijkl =μ+Gi + Y j + Lk + YLjk +GLik + εijkl : ð4Þ

From these analyses, we report the proportion of variance
explained by hybrid, year, location, year-location, and hybrid-by-
location interactions.

This model in Eq. (4) does not include any SNP or EC information.
Therefore, our secondmodel replaced the hybrid, year, location, year-
location, and hybrid-by-location effects with a regression on SNPs and
ECs. To implement this approach, we used the reaction normmodel of
Jarquín et al.13 which takes the following form

yijkl =μ+ gi + Ejk + gEijk + εijkl ð5Þ

where, as before, yijkl is the phenotypic recordof the lth replicate of the
ith hybrid in year-location jk; and gi, Ejk , and gEijk are random effects
representing regressions on SNPs, ECs, and SNP-by-EC interactions,
respectively. For these randomeffects, we assumedg∼MVNð0,σ2

snpGÞ,
E∼MVN 0,σ2

ecΩ
� �

, and gE∼MVNð0,σ2
snp× ecKÞ, where G is the SNP-

derived genomic relationship matrix26 (Eq. 1), Ω is the (linear)
environmental relationship matrix derived from the ECs (Eq. 2), and

K= Z1GZ
0
1

� � � Z2ΩZ0
2

� � ð6Þ

is a (co)variance structured derived by taking the Hadamard product
(‘�’) of the genomic relationships and environmental relationships.
HereZ1 andZ2 are incidencematrices linkingphenotypeswith hybrids,
and year-location combinations, respectively.

The genetic materials tested in G2F trials have a relatively strong
population structure. Likewise, there is also a spatial structure on
environmental conditions largely associated with latitude. Therefore,
to assess whether differences in the predictive performances of
models in Eqs. (4) and (5) could be explained by genetic or spatial
(environmental) structure, we considered a third model which
expanded the random effectsmodel (Eq. 4) by adding the fixed effects
of top SNP- and EC-derived PCs.We included the top-10 PCs fromSNPs
and top-5 PCs from ECs (denoted as Vij and Ujks, respectively), each
explaining ~ 50% of the SNPs and ECs, respectively:

yijkl =μ+Gi + Y j + Lk + YLjk +GLik + Σ
10

r = 1
Vijbr + Σ

5

s = 1
Ujksds + εijkl : ð7Þ

We implemented models in Eqs. (4), (5), and (7) using the ‘BGLR’
R-package52 (v1.1.0). In this data set sample size is larger than the
number of predictors; therefore, for models in Eqs. (4), (5), and (7) we
recommend using the BLRXy() function from the ‘BGLR’ R-package
which works using sufficient statistics optimizing computations for
problems with n≫p56. The computational bottleneck for models in
Eq. (5) is the factorization (e.g., eigenvalue decomposition) of the
Hadamard product matrix K in Eq. (6). For this task, instead of fac-
torizing K using the R’s eigen() function, we developed an algorithm
that derives a basis forK from the eigenvectors ofG andΩ (this tool is
also included with this manuscript).

Phenotypic and genetic correlation between traits
Although most of our analyses were based on single-trait models, we
also performed two-trait analyses from where we report phenotypic
and genetic correlations between grain yield and flowering traits.

The phenotypic correlations between traits were computed
across-, within-, and between-year-locations. Across year-locations,
phenotypic correlations were computed using Pearson’s correlation
coefficients (r) between traits within each region (i.e., across all trials).
These correlations are largely influenced by differences in the year-
location means. Therefore, we also report estimates of phenotypic
correlations within- and between-year-locations. To estimate the
within-year-location phenotypic correlation between traits, we com-
puted Pearson’s correlation between traits within each year-location
and then computed a weighted average, with weights given by the

Article https://doi.org/10.1038/s41467-023-42687-4

Nature Communications |         (2023) 14:6904 11



standard error (SE) of the correlation,

SEðriÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2i
ni � 2

s
ð8Þ

where ni is the number of records in the ith year-location. Finally, to
estimate the between-year-locations phenotypic correlation between
traits, we estimated the year-locationmeans for each trait usingmodel
in Eq. (4) and then computed Pearson’s correlation between the year-
location means of each pair of traits.

For genetic and environmental correlations, we used the Multi-
trait() function of the ‘BGLR’ R-package52 (v1.1.0) to fit a two-trait ver-
sion of model in Eq. (5). From this model, we report estimates of the
genetic correlations between traits as well as environmental correla-
tions. Model in Eq. (5) has two environmental terms, the regression on
EC and the error terms. The EC capture differences between year-
locations and the error term captures within-year-location environ-
mental effects. Therefore, we report separate estimates of the envir-
onmental correlations for each of these terms.

Evaluation of prediction performance
To evaluate the prediction ability of our models and data, we per-
formed two cross-validation (CV) analyses. Following Burgueño et al.31,
in a first CV scenario (10F-CV), we randomly assigned hybrids to 10
non-overlapping folds. We predicted all the records of hybrids in the
kth fold using a model trained with all records from hybrids in the
remaining folds. In this scenario, we are mimicking the problem of
predicting the performance of new hybrids that have not undergone
any field evaluation.

The second approach is a leave-one-year-out CV (LYO-CV)
approach. Thus, in this setting, we predicted all data for a given year
using all the data from the remaining years for model training. These
analyses resemble the prediction problem faced when predicting the
performance of cultivars in future years with current data.

We evaluated the prediction ability as the Pearson’s correla-
tion between observed plot-level phenotypes and predictions
from models in Eqs. (4), (5), and (7). A significant portion of the
variance in grain yield and flowering traits can be attributed to
year-location effects. As a result, models that can capture year-
location means may achieve higher prediction correlations, even if
they do not perform well at ranking hybrids within year-location
combinations. However, from a plant breeding perspective, the
ability to rank hybrids within environments is more important.
Therefore, we primarily compared models based on their average
within-year-location correlation between predicted and observed
phenotypes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the phenotypic, agronomic, and metadata considered in this study
are released every year and are available under Public Domain Ded-
ication on the G2F website [https://www.genomes2fields.org/
resources]. Genotypic data was obtained from CyVerse Data Store
[https://doi.org/10.25739/tq5e-ak26]57. Soil data was sourced from the
Soil Survey Geographic Database [https://sdmdataaccess.nrcs.usda.
gov]32. Weather data was downloaded from the NASA Langley
Research Center (LaRC) POWER Project [https://power.larc.nasa.gov].
The aggregated curated data set (including the SNP genotypes, phe-
notypes, and ECs) is available in the Figshare repository [https://doi.
org/10.6084/m9.figshare.22776806]58. Source data are provided with
this paper.

Code availability
The scripts used to implement all the analyses described in this study
are provided in the GitHub repository [https://github.com/QuantGen/
MAIZE-HUB].
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