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This article focuses on the approximate controllability of impulsive neutral stochastic integrodif-

ferential inclusions in Hilbert spaces. We used resolvent operators, fixed point approaches, and 
semigroup theory to achieve the article’s main results. First, we focus on the existence of approx-

imate controllability, and we develop the existence results with nonlocal conditions. At last, an 
application is provided to illustrate the concept.

1. Introduction

Controllability is a fundamental approach in mathematical control theory and is used in many scientific and technological fields. 
In the academic world, it is generally agreed that nonlinear deterministic systems can be controlled. Moreover, exact controllability 
enables us to steer the system to an arbitrary final state, while approximate controllability means that the system can be steered to 
an arbitrary small neighborhood of the final state using the set of admissible controls. The controllability of nonlinear systems was 
studied in [1]. In [2], the authors established the approximate controllability of a second-order semilinear stochastic system. The 
researchers of [3] discussed the approximate controllability of second-order non-autonomous integrodifferential inclusions through 
resolvent operators. Refer to the publications for more information [4–7].

Nowadays, different areas of applied science extensively utilize stochastic differential equations. A common development of a 
deterministic model of a differential equation is the structure of a stochastic differential equation, where appropriate parameters are 
modeled for applicable stochastic processes. This is a result of stochastic systems rather than deterministic systems being the primary 
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model for real-world problems. Therefore, the system of stochastic differential equations has attracted a lot of attention because 
it can be used to describe many dynamic systems in medicine, biology, and physical science. The researchers in [8] examined the 
existence of solutions for impulsive nonlocal stochastic functional integrodifferential systems. Likewise, the authors of [9] studied the 
approximate controllability of second-order neutral stochastic non-autonomous integrodifferential systems to be solved by resolvent 
operators. Very recently, the author of [10] discussed the approximate controllability of stochastic degenerate systems through the 
decomposition of Hilbert space. Consult the monographs [11,12] and publications [13–19] for more details. The controllability of 
linear and nonlinear deterministic systems has significantly improved in the last few years, and nonlocal initial conditions generally 
execute the applications much more than formal initial conditions (see publications [20–22]). Therefore, in this article, the nonlocal 
condition has been handled separately.

Additionally, the resolvent condition provides a more useful approach to solving integrodifferential equations. So, integrodif-

ferential equations are used in a wide range of scientific fields, including medicine, control theory, biology, and many others. The 
researcher in [23] examined the approximate controllability results for analytic resolvent integrodifferential systems. In [24], the 
authors utilized the resolvent operator method and an approximating approach to demonstrate the approximate controllability of 
impulsive neutral integrodifferential systems with nonlocal conditions. We suggest the monographs [25–28] and the publications 
[29–34] and the references therein.

Furthermore, impulsive differential systems explain the dynamics of the process wherein sudden variations and discontinuous 
jumps appear at particular moments, such as during earthquakes and natural disasters. The authors of [35] established the approx-

imate controllability of impulsive differential equations with nonlocal conditions. In the manuscript [36], the authors discussed the 
approximate controllability of neutral stochastic integrodifferential systems with impulsive effects. For more details, refer to [37–40].

The fixed point approach is particularly relevant and practical for the controllability of nonlinear systems. Most of the time, the 
fixed point technique works well for many control theory problems. So, motivated by the above works, we conclude to examine the 
approximate controllability of impulsive nonlocal neutral stochastic integrodifferential system through the resolvent operator. To 
solve our main results, we use Bohnenblust-Karlin’s fixed point approach.

In this article, we examined the approximate controllability of impulsive neutral stochastic integrodifferential inclusions of the 
form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑

(
𝑦(𝜏) + ∫ 𝜏

0 ℚ(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗

)
∈
[
𝐴𝑦(𝜏) + ∫ 𝜏

0 𝑔(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗+𝐵𝑢(𝜏)
]
𝑑𝜏

+ (𝜏, 𝑦(𝜏))𝑑𝑤(𝜏), 𝜏 ∈  = [0, 𝑐], 𝜏 ≠ 𝜏𝔯,

Δ𝑦|𝜏=𝜏𝔯
= 𝔯(𝑦(𝜏𝔯)), 𝔯 = 1,2,… , 𝑛̂,

𝑦(0) = 𝑦0,

(1)

where 𝐴 ∶ 𝐷(𝐴) ⊆ ℍ →ℍ makes an analytic semigroup { (𝜏)}𝜏≥0 of bounded linear operators and 𝑦(⋅) takes the values in a separable 
Hilbert space ℍ with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖; {ℚ(𝜏)}𝜏≥0 is a set of continuous linear operators on ℍ; 𝐵: → ℍ is a 
bounded linear operator; 𝑔(𝜏) is a closed linear operator on 𝐷(𝐴) for each 𝜏 ≥ 0; the control function 𝑢(⋅) in a Hilbert space L 2( , ); 
: × ℍ → 2ℍ∖{∅} is nonempty, closed, bounded and convex multivalued map; suppose {𝑤(𝜏); 𝜏 ≥ 0} is a given 𝕎-valued Wiener 
process with a finite trace nuclear operator 𝑄 ≥ 0; 0 = 𝜏0 < 𝜏1 < … < 𝜏𝑛̂ < 𝜏𝑛̂+1 = 𝑐, 𝔯 ∶ℍ →ℍ, 𝔯 = 1, 2, …, ̂𝑛, Δ𝑦(𝜏𝔯) denote the jump of 
𝑦 at 𝜏𝔯 indicate by Δ𝑦(𝜏𝔯) = 𝑦(𝜏+𝔯 ) − 𝑦(𝜏−𝔯 ). Here, (𝜏+𝔯 ) and (𝜏−𝔯 ) expressed the right and left limits of 𝑦(𝜏) at 𝜏 = 𝜏𝔯.

This article is split into consecutive sections: In Section 2, provide the preliminaries of this article. In Section 3, we examined 
the solution for system (1), which is based on the resolvent operator, fixed point approach, and semigroup theory. In Section 4, we 
introduce the approximate controllability results for nonlocal conditions. In Section 5, an example is presented to verify the concept 
and results.

2. Preliminaries

We now provide some fundamental theories, lemmas, and facts to discuss our manuscript’s principal results.

We denote (ℍ, ‖ ⋅‖ℍ) and (𝕎, ‖ ⋅‖𝕎 ) two real separable Hilbert spaces. We just use ‖ ⋅‖ for the norms and ⟨⋅, ⋅⟩ for the inner product 
in ℍ, 𝕎 to avoid confusion. Consider L (𝕎, ℍ) ∶𝕎 →ℍ stands for the space of bounded linear operator. Let (Ω, F , {F𝜏}𝜏≥0, P) be a 
complete filtered probability space fulfilling the standard conditions, the filtration {F𝜏}𝜏≥0 is a right continuous increasing family 
and F0 contains all P null sets. Suppose that {𝑤(𝜏) ∶ 𝜏 ≥ 0} is a cylindrical 𝕎-valued Wiener process including a finite trace nuclear 
covariance operator 𝑄 ≥ 0, such that 𝑇 𝑟(𝑄) < ∞. Moreover, we consider that there exists a complete orthonormal basis {𝑒𝜂}𝜂≥1 in 
𝕎, and a bounded sequence of 𝕜𝜂 > 0 such that 𝑄𝑒𝜂 = 𝕜𝜂𝑒𝜂 , 𝜂 ∈ℕ, and the sequence of independent Wiener process. We assume that 
F𝜏 = 𝜎{𝑤(𝜗) ∶ 0 ≤ 𝜗 ≤ 𝜏} is the 𝜎-algebra generated through 𝑤 and F𝑐 = F . For Θ̃ ∈L (𝕎, ℍ), represents

‖Θ̃‖2
𝑄
= 𝑇 𝑟(Θ̃𝑄Θ̃∗) =

∞∑
𝜂=1

‖√𝕜𝜂Θ̃𝑒𝜂‖2.
If ‖Θ̃‖2

𝑄
= 𝑇 𝑟(Θ̃𝑄Θ̃∗) < ∞, then Θ̃ is said to be a 𝑄-Hilbert Schmidt operator. Consider L𝑄(𝕎, ℍ) stands for the space of all 𝑄-

Hilbert Schmidt operators Θ̃ ∶𝕎 → ℍ. The completion L𝑄(𝕎, ℍ) of L (𝕎, ℍ) with respect to the topology induced through ‖ ⋅ ‖𝑄, 
where ‖Θ̃‖2

𝑄
= ⟨Θ̃, Θ̃⟩ is a Hilbert space including the above norm topology. The set of all square integrable, strongly measurable, 
2

ℍ-valued random variables stand for L 2(Ω, ℍ) is a Banach space equipped with the norm
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‖ ⋅ ‖L2
=
(

𝐸‖𝑦(⋅,𝑤)‖2ℍ) 1
2
.

In the above expectation, 𝐸 is represented through 𝐸𝑦 = ∫Ω 𝑦(𝑤)𝑑P .

Let ( , L 2(Ω, ℍ)) be a Banach space of all continuous functions from  into L 2(Ω, ℍ), satisfying sup0≤𝜏≤𝑐 𝐸‖𝑦(𝜏)‖2ℍ < ∞, L 2
0 (Ω, ℍ)

denotes the family of all F0-measurable, ℍ-valued random variables.

We refer to the linear operator 𝐴 and its resolvent family through 𝜌(𝐴). The concept is well known in [41], there exists a constant 
𝕐 > 1 and a real number 𝜈 such that ‖(𝜏)‖2 ≤ 𝕐 𝑒𝜈𝜏 , 𝜏 ≥ 0, 𝜈 ≥ 0. Consider the Banach space ( , ℍ) of the continuous functions form 
 → ℍ with the

‖𝑦‖ = sup
𝜏∈

‖𝑦(𝜏)‖,∀ 𝑦 ∈ ( ,ℍ).

The function 𝑦 from  to ℍ is contained in  = ( , ℍ) formed by all F𝜏 adapted measurable, then ℍ valued stochastic 
processes {𝑦(𝜏) ∶ 𝜏 ∈  } such that 𝑦(𝜏) is continuous at 𝜏 ≠ 𝜏𝔯 and left continuous at 𝜏 = 𝜏𝔯, with the right limit 𝑦(𝜏+𝔯 ) existing 
𝔯 = 1, 2, 3, …, ̂𝑛.  is definitely a Banach space, including the

‖𝑦‖ =
(
sup
𝜏∈

𝐸‖𝑦(𝜏)‖2) 1
2
,∀ 𝑦 ∈ .

This is obvious that (, ‖ ⋅ ‖ ) is a Banach space. According to our assumption, ‖(𝜏)‖ is uniformly bounded by 𝕐 and the 
analytic resolvent such that 0 ∈ 𝜌(𝐴). Consider B(ℍ) is a Banach space of bounded linear operator from ℍ to ℍ with operator norm. 
Now, we will describe the theory of resolvent operators as follows:

Definition 2.1. [42] A one parameter family {(𝜏)}𝜏≥0 in B(ℍ) is said to be a resolvent operator for the abstract integrodifferential 
Cauchy problem{

𝑑

𝑑𝜏

(
𝑦(𝜏) + ∫ 𝜏

0 ℚ(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗
)
= 𝐴𝑦(𝜏) + ∫ 𝜏

0 𝑔(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗, 𝜏 ∈  ,

𝑦(0) = 𝑦0 ∈ℍ.
(2)

If

(i) {(𝜏)} =I (the identity operator on ℍ),

(ii) for all 𝑦 ∈ℍ, (𝜏)𝑦 is continuous for 𝜏 ∈  ,

(iii) since 𝑦 ∈ 𝐷(𝐴), (⋅)𝑦 ∈ ([0, ∞), 𝐷(𝐴)) ∩ 1((0, ∞), ℍ), then

𝑑

𝑑𝜏

((𝜏)𝑦+

𝜏

∫
0

ℚ(𝜏 − 𝜗)(𝜗)𝑦𝑑𝜗
)
= 𝐴(𝜏)𝑦+

𝜏

∫
0

𝑔(𝜏 − 𝜗)(𝜗)𝑦𝑑𝜗, (3)

𝑑

𝑑𝜏

((𝜏)𝑦+

𝜏

∫
0

(𝜏 − 𝜗)ℚ(𝜗)𝑦𝑑𝜗
)
=(𝜏)𝐴𝑦+

𝜏

∫
0

(𝜏 − 𝜗)𝑔(𝜗)𝑦𝑑𝜗, 𝜏 ∈  . (4)

The following assumptions will be using throughout this article:

(𝐀𝟏) The operator 𝐴:𝐷(𝐴) ⊆ ℍ → ℍ is the infinitesimal generator of an analytic semigroup { (𝜏)}𝜏≥0 on ℍ and 𝜌(𝐴) ⊃ Σ𝛾 = {𝓁 ∈ ℂ ∶
𝓁 ≠ 0, ∣ arg(𝓁) ∣< 𝛾} and ‖𝑅(𝓁, 𝐴)‖ ≤ 𝕐0 ∣ 𝓁 ∣−1 for 𝕐0 > 1, 𝛾 ∈ (𝜋∕2, 𝜋) for each 𝓁 ∈ Σ𝛾 , where the resolvent of 𝐴 is 𝑅(𝓁, 𝐴).

(𝐀𝟐) The map ℚ ∶ [0, ∞) → B(ℍ) is strongly continuous. ℚ̂(𝓁)𝜃 is absolutely convergent for any 𝜃 ∈ℍ if Re(𝓁) > 0. There is an analytic 
extension of ℚ̂(𝓁) (still expressed by ℚ̂(𝓁)) to Σ𝛾 such that ‖ℚ̂(𝓁)𝜃‖ ≤ℚ1 ∣ 𝓁 ∣−1 ‖𝜃‖1 ∀ 𝓁 ∈ Σ𝛾 and 𝜃 ∈ 𝐷(𝐴).

(𝐀𝟑) The operator 𝑔(𝜏) ∶ 𝐷(𝑔(𝜏)) ⊆ ℍ → ℍ is linear and closed with 𝐷(𝐴) ⊆ 𝐷(𝑔(𝜏)) for each 𝜏 ≥ 0. For any 𝜃 ∈ 𝐷(𝐴), 𝑔(⋅)𝜃 is strongly 
measurable on (0, ∞). There is a function 𝑐(⋅) ∈ L 1

𝑙𝑜𝑐
(ℝ+) ∋ 𝑐(𝓁) can be obtained for Re(𝓁) > 0 and ‖𝑔(𝜏)𝜃‖ ≤ 𝑐(𝜏)‖𝜃‖1 for each 

𝜏 > 0 and 𝜃 ∈ 𝐷(𝐴). Additionally, 𝑔 ∶ Σ𝜋∕2 → B(𝐷(𝐴), ℍ) has an analytical extension (still expressed by 𝑔) to Σ𝛾 such that ‖𝑔(𝓁)𝜃‖ ≤ ‖𝑔(𝓁)‖‖𝜃‖1 for each 𝜃 ∈ 𝐷(𝐴), then ‖𝑔(𝓁)‖ → 0 as ∣ 𝓁 ∣→∞.

(𝐀𝟒) There is a subspace 𝕂̂ ⊆ 𝐷(𝐴) that is dense in 𝐷(𝐴) and constants ℭ̂𝑖 > 0, 𝑖 = 1, 2, such that 𝑔(𝓁)(𝕂̂) ⊆ 𝐷(𝐴), ℚ̂(𝓁)(𝕂̂) ⊆ 𝐷(𝐴), ‖𝐴𝑔(𝓁)𝜃‖ ≤ ℭ̂1‖𝜃‖ and ‖ℚ̂(𝓁)𝜃‖ ≤ ℭ̂2‖𝓁‖−𝜒‖𝜃‖1 for each 𝜃 ∈ 𝕂̂ and 𝓁 ∈ Σ𝛾 .

In the continuation, for each 𝑠̂ > 0 and 𝜛 ∈ (𝜋∕2, 𝛾),

Σ𝑠̂,𝜛 = {𝓁 ∈ℂ ∶ 𝓁 ≠ 0 ∶∣ 𝓁 ∣> 𝑠̂, ∣ arg(𝓁) ∣< 𝜛},

Γ𝑠̂,𝜛 , Γ𝑖
𝑠̂,𝜛

, 𝑖 = 1, 2, 3, are the paths Γ1
𝑠̂,𝜛

= {𝜏𝑒𝑖𝜛 ∶ 𝜏 ≥ 𝑠̂}, Γ2
𝑠̂,𝜛

= {𝑠̂𝑒𝑖£ ∶ −𝜛 ≥ £ ≥ 𝜛}, Γ3
𝑠̂,𝜛

= {𝜏𝑒−𝑖𝜛 ∶ 𝜏 ≥ 𝑠̂}, and Γ𝑠̂,𝜛 = ∪3
𝑖=1Γ

𝑖
𝑠̂,𝜛

oriented in positive sense.

Consider
3

ℵ(𝐺) = {𝓁 ∈ℂ ∶ 𝐺(𝓁) = (𝓁𝐼 + 𝓁ℚ̂(𝓁) −𝐴− 𝑔(𝓁))−1 ∈B(ℍ)}.
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Lemma 2.2. [42] The constant 𝑠̂1 > 0 such that Σ𝑠̂1 ,𝜛
⊂ ℵ(𝐺) and 𝐺 ∶ Σ𝑠̂1 ,𝜛

→ B(ℍ) is analytic, and there exists 𝕃1 > 0 such that ‖𝓁𝐺(𝓁)‖ ≤
𝕃1, 𝓁 ∈ Σ𝑠̂1 ,𝜛

.

If (⋅) is a resolvent operator of (2), then the Laplace transform of (4) provides that

̂(⋅)(𝓁𝐼 + 𝓁ℚ̂(𝓁) −𝐴− 𝑔(𝓁))𝜛 = 𝜛, for all 𝜛 ∈ 𝐷(𝐴).

We conclude that (⋅) is the only resolvent operator of (2) to applying the Lemma 2.2 and the inverse Laplace transforms. We let 
𝑠̂ > 𝑠̂1 in the remaining portion of the section. Now {(𝜏)}𝜏≥0 is represented as

(𝜏) =

{ 1
2𝑖𝜋 ∫Γ𝑠̂,𝜛

𝑒𝓁𝜏𝐺(𝓁)𝑑𝓁, 𝜏 > 0,

𝐼, 𝜏 = 0.

Lemma 2.3. [42] If (𝓁0, 𝐴) is compact for each 𝓁0 ∈ 𝐴, then (𝜏) is compact for all 𝜏 > 0.

Lemma 2.4. [42] The map  ∶ (0, ∞) → B(ℍ) has an analytic extension to Σ𝔷, 𝔷 =min{𝛾− 𝜋

2 , 𝜋2 −𝛾} and 𝕐 > 1 such that sup𝜏∈ 𝐸‖(𝜏)‖2 ≤
𝕐 .

Theorem 2.5. [28] Assume 𝐴 is an infinitesimal generator of a 𝐶0 semigroup  (𝜏). Provided that (𝓁, 𝐴) is compact for all 𝓁 ∈ 𝜌(𝐴) and 
 (𝜏) is continuous in the uniform operator topology for 𝜏 > 0, then the semigroup  (𝜏) is compact.

Lemma 2.6. [27] A set 𝕂̂ ⊂ ( , ℍ) is relatively compact in ( , ℍ) iff the set 𝕂̂|[𝜏𝔯 ,𝜏𝔯+1] is relatively compact in ([𝜏𝔯, 𝜏𝔯+1], ℍ) for each 
𝔯 = 0, 1, 2, … , ̂𝑛.

Further, we present a few fundamental results and explanations of multivalued maps. For additional information on multivalued 
maps, consult the monographs [43,44].

While 𝕂̂(𝑦) is convex (closed), then the multivalued map 𝕂̂ ∶ ℍ → 2ℍ⧵{∅} is convex (closed) valued for all 𝑦 ∈ ℍ. When 𝕂̂(𝑦) =⋃
𝑦∈C 𝕂̂(𝑦) is bounded in ℍ for all bounded set C of ℍ, then sup𝑦∈C {sup{‖𝑧‖ ∶ 𝑧 ∈ 𝕂̂(𝑦)}} < ∞, indicates that 𝕂̂ is bounded on 

bounded set.

Definition 2.7. [43] 𝕂̂ is known as u.s.c. (upper semicontinuous for expansion) on ℍ, if for each 𝑦0 ∈ℍ, the set 𝕂̂(𝑦0) is a nonempty 
closed subset of ℍ and if for each open set C of ℍ containing 𝕂̂(𝑦0), there exists an open neighborhood  of 𝑦0 such that 𝕂̂( )⊆C .

Definition 2.8. [43] 𝕂̂ is known as completely continuous if 𝕂̂(C ) is relatively compact for every bounded subset C of ℍ.

If the multivalued map 𝕂̂ is completely continuous with nonempty values, then 𝕂̂ is upper semicontinuous, iff 𝕂̂ has a closed 
graph, i.e., 𝑦𝑛 → 𝑦∗, 𝑧𝑛 → 𝑧∗, 𝑦𝑛 ∈ 𝕂̂𝑦𝑛 imply 𝑦∗ ∈ 𝕂̂𝑦∗. 𝕂̂ has a fixed point, provide that there is a 𝑦 ∈ℍ, such that 𝑦 ∈ 𝕂̂(𝑦).

In the following, 𝐵𝐶𝐶(ℍ) denotes the set of all nonempty, bounded, closed and convex subset of ℍ.

Definition 2.9. [43] A multivalued map 𝕂̂ ∶  → 𝐵𝐶𝐶(ℍ) is called measurable if for each 𝑦 ∈ℍ, the function 𝑣̃ ∶  →ℝ, defined by

𝑣̃(𝜏) = 𝑑(𝑦, 𝕂̂(𝜏)) = inf{‖𝑦− 𝑧‖ ∶ 𝑧 ∈ 𝕂̂(𝜏)} ∈ L 1( ,ℝ).

Definition 2.10. [43] The multivalued map  ∶  ×ℍ → 𝐵𝐶𝐶(ℍ) is said to be L 2-Caratheodory if
(i) 𝜏 → (𝜏, 𝑦) is measurable for each 𝑦 ∈ℍ,

(ii) 𝑦 → (𝜏, 𝑦) is u.s.c. almost all 𝜏 ∈  .

(iii) For each 𝑞 > 0, there exists 𝑞 ∈ L 1( , ℝ) such that

‖(𝜏, 𝑦)‖2 = sup
{
𝐸‖ℏ̂‖2 ∶ ℏ̂ ∈ (𝜏, 𝑦)

} ≤ 𝑞(𝜏),

for 𝜏 ∈  and all ‖𝑦‖2 ≤ 𝑞.

Definition 2.11. An F𝜏 -adapted stochastic process 𝑦 ∈  ( , L 2(Ω, F , P)) is said to be a mild solution of (1), if 𝑦(0) = 𝑦0, and the 
impulsive condition Δ𝑦|𝜏=𝜏𝔯

= 𝔯(𝑦(𝜏−𝔯 )), 𝔯 = 1, 2, …, ̂𝑛, then there exists ℏ̂ ∈ L 2( , L (𝕎, ℍ)) such that ℏ̂(𝜏) ∈ (𝜏, 𝑦(𝜏)) on 𝜏 ∈  and 
the integral equation

𝑦(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝑢(𝜗)𝑑𝜗+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)),
4

is satisfied.
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It is realistic to define the operators here,

Π𝑐
0 =

𝑐

∫
0

(𝑐 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜗)𝑑𝜗 ∶ℍ→ℍ,

(𝛼,Π𝑐
0) = (𝛼𝐼 +Π𝑐

0)
−1 ∶ℍ→ℍ.

In the above 𝐵∗ and ∗(𝜏) represents the adjoints of 𝐵 and (𝜏). Clearly, Π𝑐
0 is a bounded linear operator.

To examine the system of approximate controllability, we set the following assumption:

(𝐇𝟎) 𝛼(𝛼,Π𝑐
0)→ 0 as 𝛼 → 0+ the strong operator topology.

Observing in [5], (𝐇𝟎) holds iff the linear differential system{
𝑦′(𝜏) ∈ 𝐴𝑦(𝜏) + ∫ 𝜏

0 𝑔(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗, 𝜏 ∈  ,

𝑦(0) = 𝑦0,
(5)

is approximately controllable on  .

Lemma 2.12. [45] Assume that  is a compact real interval, the set of all nonempty, closed, bounded, and convex subsets based on ℍ is 
known as 𝐵𝐶𝐶(ℍ), and  is a multivalued map fulfilling  ∶ [0, 𝑐] ×ℍ → 𝐵𝐶𝐶(ℍ) is measurable to 𝜏 for each fixed 𝑦 ∈ℍ, u.s.c. to 𝑦 for each 
𝜏 ∈  , and for every 𝑦 ∈ ( , ℍ) the set

𝕊,𝑦 =
{
ℏ̂ ∈ L 2( ,L (𝕎,ℍ)) ∶ ℏ̂(𝜏) ∈ (𝜏, 𝑦(𝜏)), 𝜏 ∈ [0, 𝑐]

}
,

is nonempty. Consider Ξ as a linear continuous form L 2( , ℍ) → ( , ℍ), then the operator

Ξ◦𝕊 ∶ ( ,ℍ)→ 𝐵𝐶𝐶(( ,ℍ)), 𝑦 → (Ξ◦𝕊)(𝑦) = Ξ(𝕊,𝑦),

is a closed graph operator in ( , ℍ) × ( , ℍ).

Lemma 2.13. [46] Consider ℑ̂ as a nonempty subset of ℍ, which is bounded, closed and convex. Assume that 𝕂̂ ∶ ℑ̂→ 2ℍ ⧵ {∅} is upper 
semicontinuous with closed, convex values, and such that 𝕂̂(ℑ̂) ⊆ ℑ̂, and 𝕂̂(ℑ̂) are compact. Therefore, 𝕂̂ has a fixed point.

3. Controllability results

In this section, we formulate and establish the approximate controllability results for the problem (1). We have the following 
assumptions to illustrate the main theorem:

(𝐇𝟏) The operator (𝜏), 𝜏 > 0 is compact.

(𝐇𝟐) The multivalued map  ∶  ×ℍ → 𝐵𝐶𝐶(ℍ) is an L 2−Caratheodory function which fulfill the following assumption:

For each 𝜏 ∈  , the function (𝜏, ⋅) is u.s.c., and for each 𝑦 ∈ℍ, the function (⋅, 𝑦) is measurable and for all 𝑦 ∈ℍ, the set

𝕊,𝑦 =
{

ℏ̂ ∈ L 2( ,L (𝕎,ℍ)) ∶ ℏ̂(𝜏) ∈ (𝜏, 𝑦(𝜏)
)
, 𝜏 ∈ 

}
,

is nonempty.

(𝐇𝟑) For 𝑞 > 0 and 𝑦 ∈  with ‖𝑦‖2 ≤ 𝑞 and ℏ̂,𝑞(⋅) ∈ L 1( , ℝ+) such that

sup
{
𝐸‖ℏ̂‖2 ∶ ℏ̂(𝜏) ∈ (𝜏, 𝑦(𝜏))

} ≤ ℏ̂,𝑞(𝜏),

for a.e. 𝜏 ∈  .

(𝐇𝟒) The function 𝜗 → ℏ̂,𝑞(𝜗) ∈ L 1( , ℝ+) and there exists 𝜇 > 0 such that

lim
𝑞→∞

inf
∫ 𝜏
0 ℏ̂,𝑞(𝜗)𝑑𝜗

𝑞
= 𝜇 < ∞.

(𝐇𝟓) 𝔯 ∈ (ℍ, ℍ) and there exists continuous non decreasing functions 𝕐𝔯 mapping from [0, +∞) into (0, +∞) such that

𝐸‖𝔯(𝑦)‖2 ≤ 𝕐𝔯(‖𝑦‖2), 𝔯 = 1,2,…, 𝑛̂, 𝑦 ∈ℍ,

and

𝕐 (𝑞)
5

lim
𝑞→∞

inf 𝔯
𝑞

= 𝔡𝔯 < ∞, 𝔯 = 1,2,…, 𝑛̂.
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Lemma 3.1. For any 𝑦𝑐 ∈ L 2(F𝑐 , ℍ), there exists 𝜑 ∈ L 2
F

(Ω, L 2( , L (𝕎, ℍ))) such that

𝑦𝑐 = 𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝜗)𝑑𝑤(𝜗).

As we establish (1) is approximately controllable, if for all 𝛼 > 0, 𝑦𝑐 ∈ L 2(F𝑐 , ℍ) and for ℏ̂ ∈ 𝕊,𝑦, then there exists a continuous 
function 𝑦(⋅) such that

𝑦(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝑢(𝜗, 𝑦)𝑑𝜗

+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)), ℏ̂ ∈ 𝕊,𝑦, (6)

𝑢(𝜏, 𝑦) = 𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0)𝑝(𝑦(⋅)), (7)

where

𝑝(𝑦(⋅)) = 𝑦𝑐 −(𝑐)𝑦0 −

𝑐

∫
0

(𝑐 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) −
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)). (8)

Theorem 3.2. If the assumptions (𝐇𝟎)-(𝐇𝟓) are fulfilled, then the system (1) has a mild solution on  given that

4𝕐 2
(
1 + 4

𝛼2 𝕐 4𝕐 4
𝐵
𝑐2
)[

𝑇 𝑟(𝑄)𝜇 + 𝑛̂

𝑛̂∑
𝔯=1

𝔡𝔯

]
< 1, (9)

where 𝕐𝐵 = ‖𝐵‖.

Proof. The primary intention of this theorem is to determine the conditions for (6) and (7) being solvable for 𝛼 > 0. By proving this, 
applying control 𝑢(𝑦, 𝜏) and the operator Λ̂ ∶  → 2 , defined by

Λ̂(𝑦) =

{
𝕍 ∈  ∶ 𝕍 (𝜏) =(𝜏)𝑦0 + ∫ 𝜏

0 (𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) + ∫ 𝜏
0 (𝜏 − 𝜗)𝐵𝑢(𝜗, 𝑦)𝑑𝜗

+
∑

0<𝜏𝔯<𝜏 (𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)), 𝜏 ∈  ,
(10)

has a fixed point 𝑦, which is a mild solution of (1). We now find that Λ̂ fulfills the conditions of Lemma 2.13. In our convenient, we 
split the proof in to five steps.

Step 1: Λ̂ is convex for each 𝑦 ∈ . In case, providing that 𝕍1, 𝕍2 ∈ Λ̂(𝑦), there exists ℏ̂1, ̂ℏ2 ∈ 𝕊,𝑦 such that for each 𝜏 ∈  , we have

𝕍𝑖(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂𝑖(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0)

×
[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(̂̂𝚥)𝑑𝑤(𝚥) −(𝑐)𝑦0 −

𝑐

∫
0

(𝑐 − 𝚥)ℏ̂𝑖(𝚥)𝑑𝑤(𝚥)

−
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯))
]
𝑑𝜗+

∑
0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)), 𝑖 = 1,2.

Let 𝜓 ∈ [0, 1]. Then ∀ 𝜏 ∈  , we get

𝜓𝕍1(𝜏) + (1 −𝜓)𝕍2(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)[𝜓ℏ̂1(𝜗) + (1 −𝜓)ℏ̂2(𝜗)]𝑑𝑤(𝜗)

+

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0) ×

[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝚥)𝑑𝑤(𝚥)

−(𝑐)𝑦0 −

𝑐

∫
0

(𝑐 − 𝚥)[𝜓ℏ̂1(𝚥) + (1 −𝜓)ℏ̂2(𝚥)]𝑑𝑤(𝚥)

−
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯))
]
𝑑𝜗+

∑
0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)).
6

Since  has convex values, it is easy to observe that 𝕊,𝑦 is convex. So, 𝜓𝕍1 + (1 −𝜓)𝕍2 ∈ 𝕊,𝑦. Hence,
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𝜓𝕍1 + (1 −𝜓)𝕍2 ∈ Λ̂(𝑦).

Step 2: For 𝑞 > 0, consider 𝑞 = {𝑦 ∈  ∶ ‖𝑦(𝜏)‖2 ≤ 𝑞 ∀ 𝜏 ∈  }. Obviously, 𝑞 is a closed, bounded and convex set of . We state 
that there exists 𝑞 such that Λ̂(𝑞) ⊆ (𝑞). Unless this is false, then for each 𝑞 > 0, there exists 𝑦𝑞 ∈𝑞 , but Λ̂(𝑦𝑞) ∉ 𝑞 , that is

𝐸‖Λ̂(𝑦𝑞)‖2 = sup{‖𝕍 𝑞‖2 ∶ 𝕍 𝑞 ∈ Λ̂(𝑦𝑞)} > 𝑞,

and

𝕍 𝑞(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂𝑞(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝑢𝑞(𝜗, 𝑦)𝑑𝜗

+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)),

for some ℏ̂𝑞 ∈ 𝕊,𝑦𝑞 , applying (𝐇𝟎) − (𝐇𝟓), we get

𝑞 ≤ 𝐸‖Λ̂(𝑦𝑞)(𝜏)‖2
≤ 4𝐸‖(𝜏)𝑦0‖2 + 4𝐸‖ 𝜏

∫
0

(𝜏 − 𝜗)ℏ̂𝑞(𝜗)𝑑𝑤(𝜗)‖2 + 4𝐸‖ 𝜏

∫
0

(𝜏 − 𝜗)𝐵𝑢𝑞(𝜗, 𝑦)𝑑𝜗‖2
+ 4𝐸‖ ∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯))‖2
≤ 4𝕐 2𝐸‖𝑦0‖2 + 4𝕐 2𝑇 𝑟(𝑄)

𝜏

∫
0

ℏ̂,𝑞(𝜗)𝑑𝜗+ 16
𝛼2 𝕐

4𝕐 4
𝐵
𝑐2
[
2𝐸‖𝑦𝑐‖2 + 2𝐸‖ 𝑐

∫
0

𝜑(𝜗)𝑑𝑤(𝜗)‖2
+ 𝕐 2𝐸‖𝑦0‖2 + 𝕐 2𝑇 𝑟(𝑄)

𝑐

∫
0

ℏ̂,𝑞(𝜗)𝑑𝜗+ 𝑛̂𝕐 2
𝑛̂∑

𝔯=1
𝕐𝔯(𝑞)

]
+ 4𝑛̂𝕐 2

𝑛̂∑
𝔯=1

𝕐𝔯(𝑞).

Dividing 𝑞 on both sides and assuming limits as 𝑞 →∞, applying (𝐇𝟑) − (𝐇𝟓), we have

4𝕐 2
(
1 + 4

𝛼2 𝕐 4𝕐 4
𝐵𝑐2

)[
𝑇 𝑟(𝑄)𝜇 + 𝑛̂

𝑛̂∑
𝔯=1

𝔡𝔯

]
≥ 1.

This is contradiction to our assumptions (9). So, 𝑞 > 0 and for all ℏ̂ ∈ 𝕊,𝑦, Λ̂(𝑞) ⊆ 𝑞 .

Step 3: Λ̂ maps bounded sets into equicontinuous sets of . For each 𝑦 ∈𝑞 , 𝕍 ∈ Λ̂(𝑦), there exists ℏ̂ ∈ 𝕊,𝑦 such that

𝕍 (𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝑢(𝜗, 𝑦)𝑑𝜗+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)).

Let 𝜀 > 0 and 0 < 𝜏1 < 𝜏2 ≤ 𝑐, then

𝐸‖𝕍 (𝜏1) − 𝕍 (𝜏2)‖2 ≤ 9𝐸‖(𝜏1) −(𝜏2)‖2‖𝑦0‖2 + 9𝐸
‖‖‖‖‖

𝜏1−𝜀

∫
0

[(𝜏1 − 𝜗) −(𝜏2 − 𝜗)]ℏ̂(𝜗)𝑑𝑤(𝜗)
‖‖‖‖‖
2

+ 9𝐸
‖‖‖‖‖

𝜏1

∫
𝜏1−𝜀

[(𝜏1 − 𝜗) −(𝜏2 − 𝜗)]ℏ̂(𝜗)𝑑𝑤(𝜗)
‖‖‖‖‖
2

+ 9𝐸
‖‖‖‖‖

𝜏2

∫
𝜏1

(𝜏2 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗)
‖‖‖‖‖
2

+ 9𝐸
‖‖‖‖‖

𝜏1−𝜀

∫
0

[(𝜏1 − 𝚥) −(𝜏2 − 𝚥)]𝐵𝑢(𝚥, 𝑦)𝑑𝚥
‖‖‖‖‖
2

+ 9𝐸
‖‖‖‖‖

𝜏1

∫
𝜏1−𝜀

[(𝜏1 − 𝚥) −(𝜏2 − 𝚥)]𝐵𝑢(𝚥, 𝑦)𝑑𝚥
‖‖‖‖‖
2

+ 9𝐸
‖‖‖ 𝜏2

[(𝜏2 − 𝚥)]𝐵𝑢(𝚥, 𝑦)𝑑𝚥
‖‖‖2
7

‖‖∫𝜏1 ‖‖
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+ 9𝐸
‖‖‖‖‖

∑
0<𝜏𝔯<𝜏1

[(𝜏1 − 𝜏𝔯) −(𝜏2 − 𝜏𝔯)]𝔯(𝑦(𝜏𝔯))
‖‖‖‖‖
2

+ 9𝐸
‖‖‖‖‖

∑
𝜏1<𝜏𝔯<𝜏2

[(𝜏2 − 𝜏𝔯)]𝔯(𝑦(𝜏𝔯))
‖‖‖‖‖
2

≤ 9𝐸‖(𝜏1) −(𝜏2)‖2‖𝑦0‖2
+ 9𝑇 𝑟(𝑄)

𝜏1−𝜀

∫
0

𝐸‖[(𝜏1 − 𝜗) −(𝜏2 − 𝜗)]‖2ℏ̂,𝑞(𝜗)𝑑𝜗

+ 9𝑇 𝑟(𝑄)

𝜏1

∫
𝜏1−𝜀

𝐸‖[(𝜏1 − 𝜗) −(𝜏2 − 𝜗)]‖2ℏ̂,𝑞(𝜗)𝑑𝜗

+ 9𝑇 𝑟(𝑄)𝕐 2

𝜏2

∫
𝜏1

ℏ̂,𝑞(𝜗)𝑑𝜗

+ 9𝕐 2
𝐵
(𝜏1 − 𝜖)

𝜏1−𝜀

∫
0

𝐸‖(𝜏1 − 𝚥) −(𝜏2 − 𝚥)‖2‖𝑢(𝚥, 𝑦)‖2𝑑𝚥

+ 9𝕐 2
𝐵(𝜖)

𝜏1

∫
𝜏1−𝜀

𝐸‖(𝜏1 − 𝚥) −(𝜏2 − 𝚥)‖2‖𝑢(𝚥, 𝑦)‖2𝑑𝚥

+ 9𝕐 2𝕐 2
𝐵
(𝜏1 − 𝜏2)

𝜏2

∫
𝜏1

𝐸‖𝑢(𝚥, 𝑦)‖2𝑑𝚥

+ 9
∑

0<𝜏𝔯<𝜏1

𝐸‖[(𝜏1 − 𝜏𝔯) −(𝜏2 − 𝜏𝔯)]𝔯(𝑦(𝜏𝔯))‖2
+ 9𝕐 2

∑
𝜏1<𝜏𝔯<𝜏2

𝕐𝔯(𝑞).

Since (𝜏1 − 𝜏2) → 0 and 𝜀 are sufficiently small, the R.H.S. of the previous inequality approaches zero independently of 𝑦 ∈ 𝑞 , 
then, represents the compactness of (𝜏) requires the continuity in the uniform operator topology. As a result, Λ̂(𝑦𝑞) expresses 𝑞

into an equicontinuous set.

Step 4: The set Ψ(𝜏) =
{
𝕍 (𝜏) ∶ 𝕍 ∈ Λ̂(𝑞)

}
is relatively compact in ℍ.

Consider 𝜏 ∈ (0, 𝑐] is fixed and 𝜀 a real number fulfilling 0 < 𝜀 < 𝜏 . For 𝑦 ∈𝑞 , we specify

𝕍𝜀(𝜏) =(𝜏)𝑦0 +

𝜏−𝜀

∫
0

(𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) +

𝜏−𝜀

∫
0

(𝜏 − 𝚥)𝐵𝑢(𝚥, 𝑦)𝑑𝚥+
∑

0<𝜏𝔯<𝜏−𝜀

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)).

Since (𝜏) is a compact operator, the set Ψ𝜀(𝜏) =
{
𝕍𝜀(𝜏) ∶ 𝕍𝜀 ∈ Λ̂(𝑞)

}
is relatively compact in ℍ for all 𝜀, 0 < 𝜀 < 𝜏 . Further, for every 

0 < 𝜀 < 𝜏 , we get

𝐸‖𝕍 (𝜏) − 𝕍𝜀(𝜏)‖2 ≤ 2𝕐 2

𝜏

∫
𝜏−𝜀

ℏ̂,𝑞(𝜗)𝑑𝑤(𝜗) + 2𝕐 2𝕐 2
𝐵
𝜖

𝜏

∫
𝜏−𝜀

𝐸‖𝑢(𝚥, 𝑦)‖2𝑑𝚥.

Therefore,

𝐸‖𝕍 (𝜏) − 𝕍𝜀(𝜏)‖2 → 0 as 𝜀 → 0+.

Then, there exists relatively compact sets arbitrarily close to the set Ψ(𝜏) =
{
𝕍 (𝜏) ∶ 𝕍 ∈ Λ̂(𝑞)

}
, and the set Ψ̃(𝜏) is relatively compact 

in ℍ for all 𝜏 ∈  . As a result, 𝜏 = 0, it is compact. Hence, Λ̂(𝜏) is relatively compact in ℍ for all 𝜏 ∈  .

Step 5: Λ̂ has a closed graph. Consider 𝑦𝑛 → 𝑦∗ as 𝑛 →∞, 𝕍𝑛 ∈ Λ̂(𝑦𝑛) and 𝕍𝑛 → 𝕍∗ as 𝑛 →∞. As we explain 𝕍∗ ∈ Λ̂(𝑦∗). Since 𝕍𝑛 ∈ Λ̂(𝑦𝑛)
there exists ℏ̂𝑛 ∈ 𝕊,𝑦𝑛

such that

𝕍𝑛(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂𝑛(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0)

×
[
𝐸𝑦𝑐 +

𝑐

𝜑(𝚥)𝑑𝑤(𝚥) −(𝑐)𝑦0 −

𝑐

(𝑐 − 𝚥)ℏ̂𝑛(𝚥)𝑑𝑤(𝚥)
8

∫
0

∫
0
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−
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦𝑛(𝜏𝔯))
]
𝑑𝜗+

∑
0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦𝑛(𝜏𝔯)), 𝜏 ∈  .

To illustrate that there exists ℏ̂∗ ∈ 𝕊,𝑦∗
such that

𝕍∗(𝜏) =(𝜏)𝑦0 +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂∗(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0)

×
[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝚥)𝑑𝑤(𝚥) −(𝑐)𝑦0 −

𝑐

∫
0

(𝑐 − 𝚥)ℏ̂∗(𝚥)𝑑𝑤(𝚥)

−
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦∗(𝜏𝔯))]𝑑𝜗+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦∗(𝜏𝔯)), 𝜏 ∈  .

Now, for each 𝜏 ∈  , and clearly, we have

‖‖‖‖‖
(
𝕍𝑛 −(𝜏)𝑦0 −

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0) ×

[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝚥)𝑑𝑤(𝚥)

−(𝑐)𝑦0 −
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦𝑛(𝜏𝔯))
]
𝑑𝜗−

∑
0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦𝑛(𝜏𝔯))
)

−
(
𝕍∗ −(𝜏)𝑦0 −

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0) ×

[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝚥)𝑑𝑤(𝚥)

−(𝑐)𝑦0 −
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦∗(𝜏𝔯))]𝑑𝜗−
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦∗(𝜏𝔯))
)‖‖‖‖‖

2


→ 0 as 𝑛 →∞.

Consider the linear continuous operator ℧ ∶ L 2([0, 𝑐], ℍ) → ( , ℍ),

(℧ℏ̂)(𝜏) =

𝜏

∫
0

(𝜏 − 𝜗)
[
ℏ̂(𝜗) −𝐵𝐵∗∗(𝑐 − 𝜏) ×

( 𝑐

∫
0

(𝑐 − 𝚥)ℏ̂(𝚥)𝑑𝚥

)]
𝑑𝜗.

The operator ℧ is continuous and linear. For ℧ ◦ 𝕊 is a closed graph operator deriving once again from Lemma 2.13. Furthermore,

(
𝕍𝑛(𝜏) −(𝜏)𝑦0 −

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0) ×

[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝚥)𝑑𝑤(𝚥)

−(𝑐)𝑦0 −
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦𝑛(𝜏𝔯))
]
𝑑𝜗−

∑
0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦𝑛(𝜏𝔯))
)
∈℧(𝕊,𝑦𝑛

).

Then, 𝑦𝑛 → 𝑦∗ as 𝑛 →∞, Lemma 2.13 again mentioned that

(
𝕍∗(𝜏) −(𝜏)𝑦0 −

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0) ×

[
𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝚥)𝑑𝑤(𝚥)

−(𝑐)𝑦0 −
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦∗(𝜏𝔯))]𝑑𝜗−
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦∗(𝜏𝔯))
)
∈℧(𝕊,𝑦∗

).

Therefore, Λ̂ has a closed graph.

As a consequence of Steps 𝟏− 𝟓 together with the Arzela-Ascoli theorem, we conclude that Λ̂ is a compact multivalued map, u.s.c. 
with convex closed values. As a consequence of Lemma 2.13, we can deduce that Λ̂ has a fixed point 𝑦 which is a mild solution of 
system (1).

Definition 3.3. The system (1) is said to be approximately controllable on  , if R(𝑐, 𝑦0) =ℍ, then

R(𝑐, 𝑦0) = {𝑦𝑐(𝑦0;𝑢) ∶ 𝑢(⋅) ∈ L 2( ,)},

is known as the reachable set if (1) at terminal time 𝑐 and its closure in ℍ is denoted by R(𝑐, 𝑦0); assume that 𝑦𝑐(𝑦0, 𝑢) is the state 
value of (1) at terminal time 𝑐 corresponding to the control 𝑢 and the initial value 𝑦0 ∈ℍ.

In general, 𝑦0 ∈ ℍ is the result of a given initial point. The approximate controllability of the linear system (5) in the following 
9

theorem will be demonstrated to imply the approximate controllability of the nonlinear differential system (1) in specific cases.
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Theorem 3.4. Consider the assumptions (𝐇𝟎)-(𝐇𝟓) are fulfilled, and the function ℏ̂ is uniformly bounded. Moreover,  (𝜏) is compact, then 
the nonlinear stochastic differential system (1) is approximately controllable on  .

Proof. Consider 𝑦𝛼(⋅) is a fixed point of Λ̂ in 𝑞 . By using stochastic Fubini theorem, clearly we observe that

𝑦𝛼(𝑐) =𝑦𝑐 − 𝛼(𝛼𝐼 +Π𝑐
0)

−1[𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝜗)𝑑𝑤(𝜗)
]
− 𝛼(𝛼𝐼 +Π𝑐

0)
−1(𝑐)𝑦0 − 𝛼(𝛼𝐼 +Π𝑐

0)
−1

×

𝑐

∫
0

(𝑐 − 𝜗)ℏ̂(𝜗, 𝑦𝛼(𝜗))𝑑𝑤(𝜗) − 𝛼(𝛼𝐼 +Π𝑐
0)

−1
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦𝛼(𝜏𝔯)). (11)

Under the assumption ℏ̂ is uniformly bounded, then there exists 𝕄 > 0 such that

‖ℏ̂(𝜗, 𝑦𝛼(𝜗))‖2 ≤𝕄,

in  ×Ω.

Then there is a subsequence represented by {ℏ̂(𝜗, ̂𝑦𝛼(𝜗))} and {(𝑦𝛼(𝑣))} are weakly convergent to say {ℏ̂(𝜗)} and {(𝑣)} in ℍ ×L 2
0

and ℍ ×ℍ. Now, the compactness of  (𝜏) implies that

(𝑐 − 𝜗)ℏ̂(𝜗, 𝑦𝛼(𝜗))→(𝑐 − 𝜗)ℏ̂(𝜗) and (𝑐 − 𝜏𝔯)𝔯(𝑦𝛼(𝜏𝔯))→(𝑐 − 𝜏𝔯)𝔯(𝑣).
𝐸‖𝑦𝛼(𝑐) − 𝑦𝑐‖2 ≤5𝐸‖𝛼(𝛼𝐼 +Π𝑐

0)
−1𝑦𝑐‖2

+ 5𝐸
(‖𝛼(𝛼𝐼 +Π𝑐

0)
−1𝜑(𝜗)𝑑𝑤(𝜗)‖)2

+ 5𝐸
(‖𝛼(𝛼𝐼 +Π𝑐

0)
−1(𝑐)𝑦0𝑑𝜗‖)2

+ 5𝐸
( 𝑐

∫
0

‖𝛼(𝛼𝐼 +Π𝑐
0)

−1(𝑐 − 𝜗)
[
ℏ̂(𝜗, 𝑦𝛼(𝜗)) − ℏ̂(𝜗)

]
𝑑𝜗‖)2

+ 5𝐸
(‖𝛼(𝛼𝐼 +Π𝑐

0)
−1

∑
0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦𝛼(𝜏𝔯))‖)2
→ 0 as 𝛼 → 0+.

By referring the hypothesis (𝐇𝟎) and for all 0 ≤ 𝜗 ≤ 𝑐, the operator 𝛼(𝛼𝐼 +Π𝑐
0)

−1 strongly as 𝛼 → 0+, and furthermore, ‖𝛼(𝛼𝐼 +Π𝑐
0)

−1‖ ≤
1. Thus, by the Lebesgue-dominated convergence theorem, we obtain that 𝐸‖𝑦𝛼(𝑐) −𝑦𝑐‖2 → 0 as 𝛼 → 0+. This is shown that the system

(1) is approximate controllability.

4. Control systems with nonlocal conditions

The study of a system with nonlocal conditions is driven by physical problems. For example, inverse heat conduction situations 
are employed to determine unknown physical parameters [47]. To abstract Cauchy problems with the nonlocal condition was initially 
introduced by [48–50], their outcomes regard the existence and uniqueness of mild solutions. The researchers of [51] point out that 
describing physical processes is more useful for solving the nonlocal initial value problem. In the article [52], the authors established 
the existence of the mild solution for neutral stochastic integrodifferential systems with impulsive effects and nonlocal conditions. 
For further details, refer to [53–57].

We examine the approximate controllability of impulsive neutral stochastic integrodifferential systems with nonlocal conditions 
through resolvent operators of the form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑

(
𝑦(𝜏) + ∫ 𝜏

0 ℚ(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗

)
∈
[
𝐴𝑦(𝜏) + ∫ 𝜏

0 𝑔(𝜏 − 𝜗)𝑦(𝜗)𝑑𝜗+𝐵𝑢(𝜏)
]
𝑑𝜏

+(𝜏, 𝑦(𝜏))𝑑𝑤(𝜏),  = [0, 𝑐], 𝜏 ≠ 𝜏𝔯,

Δ𝑦|𝜏=𝜏𝔯
= 𝔯(𝑦(𝜏𝔯)), 𝔯 = 1,2,… , 𝑛̂,

𝑦(0) = 𝑦0 − 𝜁 (𝑦).

(12)

The system (12) satisfies the following assumption:

(𝐇𝟔) 𝜁 ∶ ( , ℍ) →ℍ is continuous and there exists a constant 𝕃 > 0 such that
10

𝐸‖𝜁 (𝑦)‖2 ≤ 𝕃, 𝑦 ∈ ( ,ℍ).
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The nonlocal term 𝜁 has a better effect on the results and is also accurate for physical measurements than the classical condition 
𝑦(0) = 𝑦0 alone. Therefore, 𝜁 (𝑦) can be represented as

𝜁 (𝑦) =
𝜂̃∑

𝑗=1
𝑙𝑗𝑦(𝜏𝑗 ),

where 𝑙𝑗 (𝑗 = 1, 2, …, ̃𝜂) are given constants and 0 < 𝜏1 < 𝜏2 < … < 𝜏𝜂̃ ≤ 𝑐.

Definition 4.1. An F𝜏 -adapted stochastic process 𝑦 ∈  ( , L 2(Ω, F , P)) is said to be a mild solution of (1), if 𝑦(0) = 𝑦0 − 𝜁 (𝑦), and 
the impulsive condition Δ𝑦|𝜏=𝜏𝔯

= 𝔯(𝑦(𝜏−𝔯 )), 𝔯 = 1, 2, …, ̂𝑛, then there exists ℏ̂ ∈ L 2( , L (𝕎, ℍ)) such that ℏ̂(𝜏) ∈ (𝜏, 𝑦(𝜏)) on 𝜏 ∈ 
and the integral equation

𝑦(𝜏) =(𝜏)[𝑦0 − 𝜁 (𝑦)] +

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝑢(𝜗)𝑑𝜗+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)),

is satisfied.

Theorem 4.2. Assume the assumptions of Theorem 3.2 are fulfilled. Moreover, if assumption (𝐇𝟔) fulfilled, then the system (12) is approxi-

mately controllable on  given that

4𝕐 2
(
1 + 4

𝛼2 𝕐 4𝕐 4
𝐵𝑐2

)[
𝑇 𝑟(𝑄)𝜇 + 𝑛̂

𝑛̂∑
𝔯=1

𝔡𝔯

]
< 1,

where 𝕐𝐵 = ‖𝐵‖.

Proof. For each 𝛼 > 0, we define the operator Λ̂𝛼 at ℍ through

(Λ̂𝛼𝑦) = 𝑥,

where

𝑥(𝜏) =(𝜏)
[
𝑦0 − ℎ(𝑦)

]
+

𝜏

∫
0

(𝜏 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) +

𝜏

∫
0

(𝜏 − 𝜗)𝐵𝜉(𝜗, 𝑦)𝑑𝜗+
∑

0<𝜏𝔯<𝜏

(𝜏 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)), ℏ̂ ∈ 𝕊,𝑦,

𝜉(𝜏, 𝑦) = 𝐵∗∗(𝑐 − 𝜏)(𝛼,Π𝑐
0)𝑝(𝑦(⋅)),

𝑝(𝑦(⋅)) = 𝐸𝑦𝑐 +

𝑐

∫
0

𝜑(𝜗)𝑑𝑤(𝜗) −(𝑐)
[
𝑦0 − ℎ(𝑦)

]
−

𝑐

∫
0

(𝑐 − 𝜗)ℏ̂(𝜗)𝑑𝑤(𝜗) −
∑

0<𝜏𝔯<𝑐

(𝑐 − 𝜏𝔯)𝔯(𝑦(𝜏𝔯)).

This is easily proved that the operator Λ̂𝛼 has a fixed point if for all 𝛼 > 0 using the method from Theorem 3.2. The control system

(12) is verified to be approximately controllable. This theorem’s proof is already proved in Theorems 3.2 and 3.4, hence, it is not 
included here.

5. Example

We consider the nonlocal stochastic integrodifferential system with control of the form:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑

[
𝑦(𝜏, 𝜅) + ∫ 𝜏

0 (𝜏 − 𝜗)𝜄𝑒−𝜆1(𝜏−𝜗)𝑦(𝜗,𝜅)𝑑𝜗

]
∈
[

𝜕2𝑦(𝜏,𝜅)
𝜕𝜅2

+ ∫ 𝜏
0 𝑒−𝜆2(𝜏−𝜗) 𝜕2𝑦(𝜗,𝜅)

𝜕𝜅2
𝑑𝜗

+℘(𝜏, 𝜅)
]
𝑑𝜏 + ℏ̂(𝜏, 𝜅)𝑑𝑤(𝜏), 𝜏 ∈ [0, 𝑐], 𝜅 ∈ [0, 𝜋], 𝜏 ≠ 𝜏𝔯,

𝑦(𝜏,0) = 𝑦(𝜏, 𝜋) = 0, 𝜏 ∈ [0, 𝑐],[
𝑦(𝜏+𝔯 , 𝜅) − 𝑦(𝜏−𝔯 , 𝜅)

]
= 𝔯(𝑦(𝜏𝔯)), 𝔯 = 1,2,… , 𝑛̂,

𝑦(0, 𝜅) = 𝑦0(𝜅) +
∑𝜂̃

𝑖=1 l𝑖𝑦(𝜏𝑖), 0 ≤ 𝜅 ≤ 𝜋,

(13)

where 𝑤(𝜏) denotes a standard cylindrical process in ℍ =𝕎 = L 2([0, 𝜋], ℝ) defined on a stochastic space (Ω, F , P), 0 < 𝜏1 < 𝜏2 < … <

𝜏𝜂̃ < 𝑐, 𝑙𝑖(𝑖 = 1, 2, … , ̃𝜂) are real constants. To define the operator 𝐴 ∶ 𝐷(𝐴) ⊆ ℍ → ℍ, we construct 𝐴𝑦= 𝑦′′ including 𝐷(𝐴) =
{
𝑦 ∈ ℍ ∶

𝑦, 𝑦′are absolutely continuous, 𝑦′′ ∈ℍ, 𝑦(𝜋) = 0 = 𝑦(0)
}

.

Clearly, the semigroup { (𝜏), 𝜏 ≥ 0} generated by 𝐴 is analytic, compact, and self adjoint in ℍ. Further, the operator 𝐴 is given 
by

∞∑
2

11

𝐴𝑦 = −
𝑗=1

𝑗 ⟨𝑦, 𝑒𝑗⟩𝑒𝑗 , 𝑦 ∈ 𝐷(𝐴),
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and { (𝜏)} is represented by

 (𝜏)𝑦 =
∞∑

𝑣=1
𝑒−𝑗2𝜏⟨𝑦, 𝑒𝑗⟩𝑒𝑗 , 𝑦 ∈ℍ,

where 𝑒𝑗 (𝜅) =
( 2

𝜋

) 1
2 sin(𝑗𝜅), 𝑗 ∈ ℕ. It is obvious that the set {𝑒𝑗 ∶ 𝑗 ∈ ℕ} is an orthonormal basis for ℍ. Moreover, (−𝐴)

1
2 is providing 

through

(−𝐴)
1
2 𝑦 =

∞∑
𝑗=1

𝑗⟨𝑦, 𝑒𝑗⟩𝑒𝑗 , 𝑦 ∈ 𝐷(−𝐴)
1
2 ,

where 𝐷(−𝐴)
1
2 ={𝑦 ∈ 𝑦 ∶∑∞

𝑗=1 𝑗⟨𝑦, 𝑒𝑗⟩𝑒𝑗 ∈ℍ}. Consider 𝐵 =  and  = 𝐷(−𝐴)
1
2 with ‖ ⋅ ‖ 1

2
= ‖(−𝐴)

1
2 ‖.

Directly, stands for the functions

𝑦(𝜏)(𝜅) = 𝑦(𝜏, 𝜅),

ℏ̂(𝜏,𝜘)(𝜅) = ℏ̂(𝜏, 𝜅),

𝐵𝑢(𝜏,𝜘)(𝜅) =℘(𝜏, 𝜅).

As well, we specify 𝑔(𝜏) ∶ 𝐷(𝐴) ⊂ ℍ →ℍ and ℚ(𝜏) ∶ℍ →ℍ by

𝑔(𝜏)𝑦 = 𝑒−𝜆2𝜏𝑦 for 𝑦 ∈ 𝐷(𝐴),

ℚ(𝜏)𝑦 = 𝜏𝜄𝑒−𝜆1𝜏𝑦 for 𝑦 ∈ℍ.

The system (13) can be abstracted from (1). Using the notations and conditions mentioned above. It is easy to find out that con-

ditions (𝐀𝟏) − (𝐀𝟒) hold as ℚ̂(𝓁) = Γ(𝜄+1)
(𝓁+𝜆1)𝜄+1

𝐼 , 𝑔(𝓁) = 1
𝓁+𝜆2

𝐴 and 𝕂̂ = ∞
0 [(0, 𝜋)], if ∞

0 [(0, 𝜋)] stands for the set of infinitely differentiable 
functions disappear at 𝜅 = 0 and 𝜅 = 𝜋. The resolvent operator (⋅) ∶ [0, ∞) → B(ℍ) for the linear system of (13) is described by

(𝜏) =

{ 1
2𝑖𝜋 ∫Γ𝑠̂,𝜛

𝑒𝓁𝜏𝐺(𝓁)𝑑𝓁, 𝜏 > 0,

I , 𝜏 = 0.
(14)

Obviously, the functions I𝔯, 𝔯 = 1, 2, 3 are uniformly bounded and fulfill the hypothesis (𝐇𝟓). We achieve that (𝜏) is the resolvent 
operator and is compact for all 𝜏 ≥ 0.

Consider that functions fulfill the required hypotheses. We can convert (13) into an abstract form (1) by selecting the functions 
and evolution operator 𝐴(𝜏) from the list earlier and using 𝐵 =  . Theorem 3.4 states that all assumptions are fulfilled, and the 
system (13) is approximately controllable.

6. Conclusion

In this article, we examined the approximate controllability of nonlocal neutral stochastic integrodifferential inclusions with im-

pulses via resolvent operators in Hilbert spaces. Our articles main results based on resolvent operators, stochastic integrodifferential 
evolution inclusions, nonlocal conditions, and the fixed point technique of Bohnenblust-Karlin’s theorem. At last, we have provided 
an example of the presented theory.

In the future, we will focus on our study on approximate controllability of impulsive neutral stochastic integrodifferential systems 
with finite delay and nonlocal conditions via resolvent operators.
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