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Achieving quantitative reproducibility in label-free
multisite DIA experiments through multirun
alignment
Shubham Gupta 1,2, Justin C. Sing1,2 & Hannes L. Röst 1,2,3✉

DIA is a mainstream method for quantitative proteomics, but consistent quantification across

multiple LC-MS/MS instruments remains a bottleneck in parallelizing data acquisition. One

reason for this inconsistency and missing quantification is the retention time shift which

current software does not adequately address for runs from multiple sites. We present

multirun chromatogram alignment strategies to map peaks across columns, including the

traditional reference-based Star method, and two novel approaches: MST and Progressive

alignment. These reference-free strategies produce a quantitatively accurate data-matrix,

even from heterogeneous multi-column studies. Progressive alignment also generates

merged chromatograms from all runs which has not been previously achieved for LC-MS/MS

data. First, we demonstrate the effectiveness of multirun alignment strategies on a gold-

standard annotated dataset, resulting in a threefold reduction in quantitation error-rate

compared to non-aligned DIA results. Subsequently, on a multi-species dataset that DIAlignR

effectively controls the quantitative error rate, improves precision in protein measurements,

and exhibits conservative peak alignment. We next show that the MST alignment reduces

cross-site CV by 50% for highly abundant proteins when applied to a dataset from 11

different LC-MS/MS setups. Finally, the reanalysis of 949 plasma runs with multirun align-

ment revealed a more than 50% increase in insulin resistance (IR) and respiratory viral

infection (RVI) proteins, identifying 11 and 13 proteins respectively, compared to prior analysis

without it. The three strategies are implemented in our DIAlignR workflow (>2.3) and can be

combined with linear, non-linear, or hybrid pairwise alignment.
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Data independent acquisition (DIA) is a popular method to
probe the proteome landscape of a biological sample in
liquid chromatography coupled to tandem mass-

spectrometry (LC-MS/MS). It is shown to have superior repro-
ducibility and better quantitative performance compared to other
methods, such as shotgun proteomics due to its fixed MS/MS
acquisition scheme and MS2 based quantification1. In clinical
studies, it is often necessary to analyze a large number of samples
to identify trends or to achieve enough statistical power in
genetically diverse populations2,3. In such large-scale studies, it is
often practically infeasible to acquire all runs under homogeneous
conditions at the same time on a single instrument. Thus, being
able to compare data across larger time frames of LC-MS/MS
acquisition or across multiple instruments is becoming increas-
ingly important for MS-based proteomics.

For such large-scale DIA studies, major sources of non-
biological variation are sample preparation, retention time (RT)
shifts, ionization and mass-spectrometer related artifacts. The
latter two could be corrected, at a substantial overhead cost with
spiked-in standards4 and technical replicates5. To correct for
systemic RT variation current methods either use spiked-in iRT
standards6,7 or high-scoring common identifications8,9 which
generates a global fit. The alignment accuracy of these methods is
poor at the scale of peak-width10, thus making peak-selection
challenging in MS2 chromatograms which have dense peak-
crowding around the peak of interest. Moreover, global methods
intrinsically assume a constant peak-elution order across runs.
However, this assumption falls apart in multi-column datasets
due to analyte-specific local shifts that are more pronounced in
complex matrices such as whole-cell lysate or plasma10–12. Hence,
mapping peaks across multiple LC columns in DIA and targeted
proteomics is still challenging leading to large-scale proteomics
studies to often forgo cross-sample retention time alignment
altogether5,11,13.

While peak scoring in DIA data uses sophisticated machine
learning algorithms (LDA, XGBoost14, DIA-NN15, etc.) to con-
trol error-rate in peak-selection, these algorithms often assess the
quality of a peak in isolation, without incorporating the local
context of nearby signals in the same chromatogram (or in other
LC-MS/MS runs) into account. Hence, if there are multiple sui-
table candidates in the extracted-ion chromatograms (XICs),
these algorithms do not guarantee that the same analyte is con-
sistently quantified across multiple LC-MS/MS injections. We
hypothesize that with proper signal-mapping, these incon-
sistencies can be corrected, thus, reducing the error-rate further.

DIA experiments acquire the fragment-spectra of ionized
species across all experiments, producing highly reproducible
chromatograms that are distorted only due to experimental var-
iation, sample composition and column history. We have pre-
viously described a pairwise alignment algorithm that uses these
MS/MS chromatograms for alignment and is capable of removing
non-linear chromatographic distortions in DIA proteomics
data10,16. The alignment algorithm maps XICs (signals) using
dynamic programming at the same time constraining the align-
ment with a global fit. Thus, this hybrid alignment is able to map
the XICs across all runs irrespective of the instrument or site
(Supplementary Note 1).

Here, we incorporate this hybrid pairwise alignment, termed as
signal alignment, into a complete quantitative “DIAlignR work-
flow” which can perform multirun alignment and produces a
quantitative data-matrix for downstream statistical analysis
(Fig. S1). The workflow uses three strategies: Star, Minimum
spanning tree (MST) and Progressive for multi-run alignment. In
order to produce a better quantitative data-matrix, retention time
mapping in conjunction with peak-scoring is employed for
selecting correct peaks. In case of a missing peak, DIAlignR

workflow recaptures a peak by integrating the signal within the
aligned time boundaries. To benchmark, we compare peak-
selection by this integrated workflow on manually annotated
peaks against peaks selected from machine-learning based scoring
only8,16.

Previous comparison with manual annotations was performed
on a homogenous chromatographic data which does not capture
variations that may arise in large-scale studies. Therefore, we next
use multisite benchmarking data where technical replicates of a
HEK293 cell lysate were shipped to 11 different sites, and each
site acquired 21 replicate-runs forming a total of 229 proteome
measurements13. This experiment allows us to study our algo-
rithm under heterogeneous conditions on a multi-laboratory
setup with different instruments and operators but with a known
ground truth. On this challenging dataset, we compare the per-
formance of DIAlignR with the current state-of-the-art method,
TRIC, which uses global pairwise alignment of peak-groups using
MST8. In addition, to assess performance in cases where proteins
exhibit varying proportions between different conditions, we
analyzed a multi-species dataset17 consisting of Yeast, Human
plasma, and E. coli. Besides that, we also evaluate the three
multirun strategies for site-specific and cross-site alignment.

Finally, we wanted to study whether our improvements in
quantitation translate into better biological insight. We first assess
the performance on a small-scale dataset8 of bacterial growth in
human plasma. Subsequently, we re-interrogate 949 plasma runs
acquired under heterogeneous conditions from a longitudinal
prediabetic cohort. Beside the inherent biological variability of
plasma samples, the data-acquisition process was complicated by
switching the LC column and instrument maintenance during the
acquisition11. Analyzing the dataset with DIAlignR not only
increases the number of significant proteins by more than 50%
compared to the unaligned data-matrix, but also discovers new
proteins associated with insulin resistance (IR) and respiratory
viral infection (RVI) response. Many of the known biomarkers
found in our analysis were not reported in the original paper,
partially due to the inability to fully align cross-column runs.

Results
Validation through manually annotated peaks. There are three
approaches implemented in DIAlignR to extend the pairwise
alignment methods (Figs. 1a and S2–5):

Star alignment—for each peptide a seed run is selected to
which pairwise alignment is performed for all runs, thus mapping
the reference identification directly to other runs (Fig. S6a).

MST alignment—in this approach, the pairwise alignment is
performed along a guide tree, hence, propagating the mapping
from reference run to other runs.

Progressive alignment—in this approach, two runs are merged
guided by a hierarchical tree (Fig. S6b). The process is followed
until all runs are merged (Fig. S7), generating a master-run at the
root. Thereafter, a reference peak is picked at the root, whose
identification is mapped to downstream nodes while traversing
back to the leaves.

In order to produce a peptide-intensity table, the alignment is
followed by peak-selection with the aim to reduce both incorrect
and missing quantitative events (Fig. 1b, c). Briefly, for the
peptide quantification we select a peak with the lowest p value
within a window about the aligned time. The algorithmic details
of multirun methods and peak-selection are in Supplementary
Note 2 and 3. Next, for some signals that are not picked by the
initial peak-picker or excluded by subsequent scoring, we create
new peaks by mapping the retention time boundaries; this is
termed as signal integration (Fig. 1c). The signal between peak-
boundaries is quantified using the OpenMS peak-integrator to
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keep parity with the upstream analysis. Besides quantifying
missing peptides between runs, signal integration is also carried
out within a run for multiple charge-states of a peptide where
peak boundaries are transposed from the high-scoring charge-
state to low-scoring one.

In addition to the multirun approaches, we are also interested
in their combination with previously described pairwise
alignment10. Three methods are discussed: (1) global which uses
high-confident MS2 features to calculate either a linear or lowess

fit, (2) local that uses MS2 XICs for each peptide, calculates a
similarity matrix and finds the alignment path using dynamic
programming, and (3) hybrid approach that constrains the
similarity matrix with global fit before performing dynamic
programming, thus combining best of both local and global
methods. To validate and benchmark the peak-selection from
pairwise and multirun alignment algorithms, we use a gold-
standard data consisting of 16 lysate runs of S. Pyogenes grown in
two conditions, without and with plasma (Supplementary

Fig. 1 Benchmarking multirun alignment on a manually annotated dataset. a A schematic view of three multirun alignment strategies Star alignment,
MST alignment and Progressive alignment. Yellow dots are LC-MS/MS runs, green dots indicate master runs created by merging two runs. Red circle
indicates the seed run used for peak-mapping for a peptide. b An example peptide-intensity table produced from experiment-wide FDR control. Shaded
cells indicate quantitation from incorrect-peaks, whereas blank cells indicate missing quantitation. c A high-quality feature is mapped from one run to
another based on alignment. The generated feature would not have an associated p value. d The error-rate is calculated after comparing XGBoost and
DIAlignR output with manual annotation. XGBoost q value cutoff is set to 1%. For DIAlignR, three pairwise alignment local, global and hybrid, and three
multirun alignment strategies are explored. e Example chromatograms for a peptide from two runs. Black curve is library MS1 intensity, colored lines are
MS/MS intensities. MS1 intensity is scaled by a factor of 0.4 for visualization. There are two confident peaks (p value < 0.01) found in each run. Peak
selection, which relies on d-score, is inconsistent across both runs. d-score is in boldface for peaks selected by XGBoost. f Effect of alignment in
complementing the machine learning scoring is demonstrated. More quantification events are reported at a constant error-rate with signal alignment.
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Table 1). These cell lysates were acquired on a single column
within 2 days7. There are manual annotations available for 437
randomly picked peptides which are used to calculate error-rate
(see “Methods” and Supplementary Note 5). On this gold-
standard data, our DIAlignR workflow reduces the number of
incorrect peaks by more than 60% (from 56 to 19 incorrect)
compared to without alignment (Fig. 1d). Out of three pairwise
methods, the hybrid alignment performs the best, which is
consistent with our previous study10. Hence, we have employed
the hybrid pairwise alignment for the subsequent analyses. On the
other hand, the resulting error-rate from the three multirun
strategies is found to be equivalent with the hybrid approach. An
example of inconsistent peak-selection is depicted in Fig. 1e,
where the chromatograms for a peptide are extracted from two of
the runs. The XICs have multiple potential peaks from which
PyProphet, a peak-scorer, is unable to select consistently across
runs due to slight RT deviations and resulting ΔiRT scores14.
DIAlignR removes such inconsistencies and selects the correct
peak. In addition to benchmarking against unaligned data-matrix,
we have also used the manual annotations to optimize the
parameters for MST and Progressive alignment including guide
tree construction and merging of runs (Supplementary Note 4
and Figs. S8–13).

Increasing the stringency of the quantitative error-rate control
can increase the accuracy but comes at the loss of quantification
events. Here, we argue that cross-run alignment can improve the
data-matrix accuracy without a subsequent loss in the number of
quantified events while providing constant error rates (Fig. S6d).
At 1% error-rate, only 72% of the data-matrix had peptide
quantification events without any alignment. With the DIAlignR
workflow, we increase the completeness by 10 to 79% without
increasing the error-rate (Fig. 1f). As illustrated, the gain is
consistent at lower and higher error-rates. Incorporating the
peaks received from signal-integration further increased the
completeness of the matrix by 2.5 percentage points to 81.5% at
the same error-rate (Fig. S6c and Supplementary Note 5.2). Most
peak pickers fail when the signal is very close to noise, hence miss
such low intensity features8,9,18, whereas in other cases poor
scores are assigned to correct peaks (Figs. S14–16). Signal
integration based on RT mapping aims to correct such instances.
We further investigated increasing the matrix completeness,
achieving 98% completeness when slightly relaxing our criteria
for quantitation error-rate to 5% while keeping the overall
peptide-level FDR at 1%, thus avoiding imputation almost
completely (Figs. S14a and S17).

Benchmarking on multi-species data. Next, we analyzed a multi-
species benchmarking dataset comprising Yeast, Human plasma,
and E. coli. We assessed the performance of DIAlignR in cases
where certain proteins are at different proportions in one condition
compared to another. This evaluation allowed us to assess DIA-
lignR’s control of the quantitative error rate and investigate the
effect of peak selection on a larger set of molecules. By comparing
the aligned results to the unaligned results, we observed a reduction
in the coefficient of variation (CV) of protein intensities for E. coli,
Human, and Yeast. The aligned data exhibited reduced CV, indi-
cating enhanced precision and decreased variability in the protein
measurements, with CV decreases of ~3.57% for E. coli, 1.69% for
Human, and 1.63% for Yeast.

Furthermore, at a 5% quantitative FDR, DIAlignR improved
the precision of expected species ratios by reducing the variance
of log ratios by 17% for E. coli, 6% for Human, and 8% for Yeast
(Fig. 2a). Moreover, DIAlignR reassigns 3.41% of precursors
based on aligned features. It also removes 0.04% of peaks when a
suitable aligned feature is not found, while introducing 0.94% of

new peaks that were not originally identified by the peak-picking
algorithm (see Fig. 2b). Figure 2c illustrates an example where
DIAlignR avoids aggressively adding peaks in the absence of
suitable peak. In Run 001, which comprises 30% yeast species in
the sample mix, a peak is present for the yeast peptide
AVILTGETHK. However, no peak is observed for the 3% yeast
composition samples in Run 006. By comparing unaligned and
aligned results at different quantitation FDR cutoffs, we observed
that DIAlignR aligns peaks conservatively, approaching the
expected log ratio with tighter variances, particularly at higher
quantitation FDR thresholds (Fig. 2d).

Benchmarking on multisite technical data. To evaluate the
alignment strategy across a heterogeneous dataset we have ana-
lyzed the data from Collins et al. measured on eleven different MS
instruments at different geographic locations13. Without align-
ment, we quantify 52,529 peptide-ions from 4703 proteins at
constant FDR of 1% for both peptide and protein, similar to the
analysis presented in the original study (Supplementary Note 6.3,
Supplementary Table 2 and Fig. S18). As the same samples were
measured, we employ the coefficient of variation (CV) of analyte
intensity across all runs to measure the alignment quality. The
intensities are normalized with the coefficients from the original
study to avoid its effect on CV.

First, we compare DIAlignR workflow to the TRIC software8

using a minimum spanning tree (MST) approach for mapping
retention time across runs for both methods. The quantitative
data-matrix from TRIC has a higher CV for the same recall when
compared to DIAlignR, irrespective of signal integrated peaks
(Fig. 3a). This is because the global fit, used by TRIC, alone fails
to map peaks across multiple columns, as demonstrated in ref. 10.
The hybrid alignment algorithm does not suffer from the local
retention time shifts and can map peaks successfully across
columns, thus DIAlignR produces 10% more quantification
events which translates as 3224 more quantified ions per run at
constant 24% CV (Fig. 3b). Since many true peaks were removed
by TRIC due to incorrect cross-column alignment, the produced
data-matrix never reaches more than 70% completeness.
DIAlignR workflow instead removes spurious peaks, at the same
time improved RT mapping allows more quantitative events to be
pulled in. This gives an opportunity to re-analyze some of the
large-scale multi-column studies5,11,13. Our results are robust
across a large range of commonly used error-rate cut-offs
between 0.01 to 10%, where DIAlignR has superior performance
for data-matrix completeness compared to TRIC. Analysis with
signal integration across runs produces results similar to signal
integration across charges (Fig. S19a, b), especially above 5%
quantitative error-rate.

Subsequently, we were interested-in whether the additional
peaks picked by our algorithm deteriorate CV. Surprisingly, we
find not only that CV stayed consistent even when increasing
matrix completeness, but also improved in certain cases,
especially for high abundant ions. One of these cases is shown
in Fig. 3c, where the chromatograms of a peptide are shown from
two different sites. The peak classifier picks different peaks in
both runs based on an aggregate discriminant score (Fig. S19c).
For this data, the classifier calculates a higher weight for the
transition-intensity correlation instead of ΔiRT. In conjunction
with classifier scores, DIAlignR workflow also uses RT mapping,
thus selects correct peaks successfully in both runs. This
phenomenon also translates to the protein level, as there is about
15% drop in CV for the 5% most intense proteins out of 4604
quantified (Fig. 3d). Although modest, quantitative reproduci-
bility also improves for low abundant proteins. DIAlignR picks
correct peaks consistently from a pool of potential good
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candidates for intense proteins, whereas new peaks are generated
for less abundant ones (Fig. S20).

Comparison of multirun alignment strategies. Next, we were
curious if any difference could be discerned between Star, MST, and
Progressive alignment on this heterogeneous dataset. For both site-
specific and cross-site alignments, all three methods reduce CV
compared to no alignment (Table 1). Nonetheless, the MST
approach produces the lowest CV for both cross-site and site-
specific alignment. The hybrid pairwise method uses global fit to
constrain the alignment path; a global fit is usually a non-linear RT
mapping generated from confident common peaks in a run-pair.
We notice that the global fits from the Star approach have unusually
higher residual standard error (RSE) than other multirun methods
(Fig. 4a), on top of that, it also requires many more global fits
(Supplementary Table 4). MST and Progressive alignments, in
contrast, employ fewer global fits, and by design only neighboring
runs are selected to build the tree. Therefore, the generated global
fits have comparatively lower RSE irrespective of site as depicted in
Fig. 4b. Moreover, Star alignment is susceptible to a poor global fit
as some pairs may not have enough high-scoring common features.
This situation is avoided in Progressive and MST alignment where
such scenarios are factored-in for tree-construction.

Although the reference-free Progressive method provides site-
specific CV equivalent to MST, surprisingly, it performs poorer
than the Star method for cross-site alignment. This is attributed
to the methodology behind Progressive alignment where runs are
merged assuming homogeneity in chromatography. As the tree is
traversed the RSE of corresponding global fits increase due to the
amalgamation of distant runs. However, in the case of cross-site
template merging, the produced global fit is more distant than
what would be expected from the alignment of leaf-runs, as
happens in Star alignment (Fig. 4c). Thus, the successive merging
of individual geographic sites’ templates struggles to assimilate
the chromatographic heterogeneity between sites, whereas such
occurrences are uncommon in site-specific merging (Fig. S21a).

Merging chromatographic traces has been shown for GC-MS
data; however to our knowledge, it has not been attempted for
much more complex HPLC data, let alone SWATH/DIA-MS.
The progressive alignment strategy generates a master chromato-
gram which is a weighted average of all parent XICs. In Fig. 4d,
we demonstrate an example of such chromatogram-averaging.
Due to averaging, noise is reduced and signal is enhanced and
thus the merged XICs appear smoother than individual traces.
Besides visualization, the recurring signals are also captured in the
template XICs.

Fig. 2 Evaluating quantitative error rate control on multi-species dataset. a Log-transformed ratios (log2(A/B)) of proteins over log-transformed
intensities of Sample B for unaligned results (green) and aligned results (orange). Dashed black lines indicate the expected log2(A/B) ratios. b Number of
quantitative peaks at 5% quantitation cutoff, separated into quantitation event changes incurred by alignment, and further broken into species specific
proteins. c An example of two extracted ion chromatograms (XIC) for a yeast peptide. The top XIC is for a run of sample A containing 30% of yeast in the
sample composition, and the bottom XIC is for a run of sample B containing 3% of yeast in the sample composition. Peak boundaries in orange represent
the unaligned peak boundaries at 5% quantitation cutoff, and the blue dashed peak boundary represents the aligned peak boundary. d Deviation of the
mean log2(A/B) ratios to the true expected mean ratios per species. The red dashed line represents the deviation of zero to the true mean. Labels for yeast,
human and E. coli correspond to the pairs of unaligned and aligned lines.
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Bacterial growth in plasma with DIAlignR. We, next, analyzed
the effect of plasma on the growth of S. Pyogenes both without
and with alignment (Supplementary Note 7). The differential
proteomics analysis resulted in 67 statistically significant proteins
out of 1001, increasing the number of differential proteins from
60 without alignment. The additional proteins we identify are
not due to the increased q value cut-off (Supplementary Table 6),
instead are ensued from improved peak selection by alignment
that increased statistical confidence during the differential ana-
lysis (Supplementary Table 7). One of the newly identified pro-
teins is hasB (Figs. S22–27) which is a known virulence factor
and is present on the same operon as another significant hit,
hasA. The progressive alignment also generates a single chro-
matogram per condition, enabling a single chromatographic
visualization from multiple runs (Supplementary Note 7.4). The

example chromatograms of hasB protein are displayed in
Fig. S21b.

Reanalyzing prediabetic cohort with DIAlignR. Encouraged by
the technical analysis, we next explored how the improvement by
DIAlignR translates into clinical insights by re-analyzing 949
plasma runs from a cohort of 107 prediabetic participants11,19.
Briefly, samples were collected quarterly when participants self-
reported as healthy for up to 8 years (Supplementary Note 8).
Additional visits occurred during the periods of respiratory viral
infection. All 949 runs were aligned and processed as described in
“Methods”.

Firstly, we analyze healthy baseline samples (n= 416) to
identify proteins that differ among insulin-sensitive (IS) to

Peptide PMFIVNTNVPR/3

Site1 #9

d-score: 5.19

d-score: 5.17

ca

b

Site10 #21
d-score: 6.4

d-score: 4.6

d

Remaining 
90% proteins

Fig. 3 Comparison of signal alignment by DIAlignR on multisite data. To measure completeness 54,492 analytes are considered which are quantified in
at least half of the runs. a Effect of matrix completeness on CV is presented for TRIC and DIAlignR without and with signal integration across charges
(considered for q value > 0.001). Dot-dash line represents 0.01 and 0.05 cut-offs with CV being 24 and 27%. b Effect of PyProphet q value cut-off on
matrix completeness. c Example chromatograms for a peptide from two sites with colored lines representing MS/MS signal. Peak selection, which relies on
d-score, is inconsistent across both runs. d-score is in boldface for peaks selected by pyProphet. d CV of high intensity proteins (n= 4604) is depicted
without and with signal alignment.

Table 1 Comparison of multirun methods at 1% q value for 34,202 precursors.

Multirun method CV % Global fit RSE (sec)

Cross-site (229 runs) Site-specific (11 sites) Cross-site only Site-specific only

None 24.0 ± 11.8 14.5 ± 12.1
Star 23.5 ± 11.2 13.9 ± 12.2 68 ± 23.2 15.3 ± 9.3
Progressive 23.6 ± 10.7 13.8 ± 11.1 67 ± 27.7 12.4 ± 4.7
MST 23.4 ± 10.3 13.8 ± 11.0 54 ± 26.8 11.7 ± 3.9

Minimum CV and RSE are in boldface.
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insulin-resistant (IR) subjects. Linear mixed-effect model is
employed for differential proteome analysis with batch, partici-
pant ID and acquisition order as random effects. With aligned
data, we identify 11 associated proteins (Fig. 5a); adding four
proteins HP, HPR, IGKC and IGHG2 to the initial results without
alignment, translates to 57% increment in the number of
associated proteins. DIAlignR picks the correct peak for these
proteins which lead to increased quantification events and tighter
variance estimates, resulting in stronger p values (Supplementary
Tables 8 and 9). However, this is not the case for all proteins; the
p value increased for ADIPOQ with quantification of more
events, whereas for LPA a different peptide is picked for analysis
from the aligned data-matrix (Fig. 5b). To visualize the
differential protein abundance, we removed batch, acquisition-
order, and participant-specific effects from each sample. The
resulting distribution is presented in Fig. S28a.

Besides recapturing known biomarkers for insulin resistance,
we have been able to discover three novel proteins, to the best of
our knowledge, associated with insulin resistance: IGHD, IGKC
and PZP. While the remaining eight proteins are known in the
literature, surprisingly many of these were not reported in the
original analysis (Supplementary Note 8.5). Below we summarize
the role of biomarkers for which literary evidence is available.

Biological significance of differential proteins. Out of the four new
identifications by DIAlignR, three proteins (HPR, HP, and
IGHG2) are known to be associated with IR. Haptoglobin-related

protein (HPR) forms a subclass of apoL-I containing HDLs
whose levels are negatively correlated with insulin resistance in
humans20. In contrast, Haptoglobin (HP) was not known to be
associated with IR in humans, but is highly consistent with ani-
mal studies where HP-null mice showed protection against
insulin resistance21. Our results contain two new immune system
related proteins (IGKC and IGHD) which are consistent with
other two known immunological proteins (IGHG2 and IGLV6-
57) associated with insulin sensitivity. The IGHG2 gene encodes
the C-region of gamma-2 heavy chain that defines IgG2 isotype
whose pathogenic role was previously reported to be connected to
insulin resistance in a cross-sectional study of 262 participants22.
IGLV6-57 encodes the variable domain of immunoglobulin light
chains and has been associated with diabetes mellitus
previously23. Out of the three novel proteins, immunoglobulin
kappa constant gene (IGKC) was reported to be overexpressed in
low-responders with high HOMA-IR during a diet intervention
study for obese boys24. The pregnancy zone protein (PZP) has
not directly been associated with IR, although recently increased
discharge of PZP from the liver was found to be associated with
activation of brown adipocytes in mouse models25.

Other significant proteins are well-known to be associated with
IR. Similar to our prediabetic cohort, another longitudinal study
(n= 90) reported Lipoprotein-a (LPA) to be reduced in the
period preceding new-onset diabetes and to be inversely
associated with the HOMA index26. Adiponectin (AdipoQ) is
known to increase insulin’s ability to stimulate glucose uptake by

a

c d
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Time

In
te

ns
ity

Repl2_R03, w=5.2

Repl1_R03, w=3.3

Repl1_R02, w=0.9

0% plasma avg

    Global fit between site-templates
    Global fit between runs of sites 

Fig. 4 Comparison of Star, MST and Progressive alignments. a RSEs of global fits used in the Star, Progressive, and MST alignment of 229 runs. b RSEs of
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depicted here. The correct peaks are overlapping the dashed boundary from the merged chromatogram.
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increasing total GLUT4 expression (Fig. 5a). Apolipoprotein A-I
proteins are constituents of high-density lipoprotein (HDL) that
are found to be associated with obesity and metabolic syndrome
in humans27. Overexpression of ApoD in transgenic mice was
shown to increase insulin sensitivity by reduction in fat
accumulation and enhanced energy expenditure27,28, similarly
we also see higher ApoD intensity in IS individuals (Fig. 5a).
Multiple studies involving animal models and human serum
measurement have reported that the decreased level of CNDP1 is
associated with insulin resistance29,30.

Beyond the healthy baseline, we next investigated the proteome
change after respiratory viral infection (RVI). We identify 13
proteins (Fig. 5c) that change during the infection using
DIAlignR—compared to eight proteins using the unaligned data
(Supplementary Tables 10 and 11). As expected, most of them are
involved in the viral response pathways. Three proteins
SERPINA5, C9, and CPB2 are involved in the complement and
coagulation cascades (KEGG id= hsa04610)31. The six proteins
LRG1, SAA1, LBP, CPN2, C9, and CPB2 are represented in the
innate immune response pathway (id= R-HSA-168249). During
infection, the level of SAA1 increases, which activates and recruits
neutrophils to lungs32. In this phase, SAA1 also displaces plasma
ApoA-I proteins to become a major apolipoprotein of HDL33.
Consistent with this argument, we do observe lower concentra-
tion of APOC3 and APOA4 in Fig. 5c. GPLD1 is a known
physical interacting partner of APOA4, which is also found to be
downregulated in the early days of infection34. CNDP1
(Carnosine80 Dipeptidase 1) encodes a metalloprotease protein
which degrades carnosine that is known to modulate neutrophils
with respect to respiratory burst for pathogen killing35. Lower

CNDP1 levels have also been observed in serum of children
infected with respiratory syncytial virus36. Both LUM and
IL1RAP encoded proteins play an important role in the
regulation of innate immunity37. However, to our knowledge,
their circulating level in plasma has not yet been associated with
viral infection.

Next, we wanted to see if the improved quantitation can also
help in identifying proteome dynamics during RVI. We detect
two temporal clusters that are different from the unaligned data
(Figs. 5d and S28c). Genes found in cluster 1 are associated to the
same pathway identified from pre-aligned data, however, the
temporal pattern of these proteins slightly differ. Cluster 2 from
the unaligned data could not be associated with any pathway.
Interestingly, this cluster from the aligned matrix has eight genes
that participate in VDJ recombination38. Possibly, these proteins
belong to antibodies secreted from plasma cells, however the
reason for the observed abundance-pattern during the infection is
unclear and requires further investigation. The core genes for
each cluster are mentioned in Supplementary Tables 12 and13.

In conclusion, the results derived from SWATH-MS data and
analyzed with our novel signal alignment pipeline not only are
consistent with the literature on insulin resistance and viral
infection response, but additionally, are able to uncover new
potential biomarkers and correlating proteins for IR and RVI
response, respectively.

Discussion
Tools such as TRIC8 often falter with multisite data, and others
like Skyline demand manual alignment39. Addressing a notable
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Fig. 5 Analysis with aligning 949 plasma runs. a Volcano plot depicting significant proteins from the differential analysis as red dots, and their values from
pre-aligned analysis are depicted as yellow dots. Genes that are called significant after the alignment are in boldface. Proteins with no-literature association
to insulin sensitivity are in blue oval. b The effect of DIAlignR on quantitation events for genes associated with IR. c Volcano plot depicting 13 proteins that
change significantly during RVI. Proteins that are called significant after alignment are in boldface. The fold change is from 1 week after infection—healthy
baseline. d Two temporal clusters that are altered with aligned data. The core proteins, based on membership values, are mentioned below each cluster.
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gap in the automated analysis of large-scale DIA runs, the
DIAlignR workflow (>2.3) conducts alignment across hundreds
of proteomic LC-MS/MS runs. By combining the peak-picking
(OpenMS) and peak- scoring (OpenSWATH & PyProphet) with
signal alignment by DIAlignR, we demonstrate the improvement
in the quantitative accuracy of the peptide-intensity tables on four
complex datasets, two of which were acquired under highly het-
erogeneous conditions. Besides displaying greater accuracy
compared to unaligned tables on manual annotated-peaks, we
also show improved quantitative reproducibility with DIAlignR
workflow compared to the TRIC software on a challenging
multisite dataset.

Commonly used strategies for aligning multiple LC-MS/MS
runs include Star or MST based approaches. In addition to these
methods, we have also implemented a reference-free Progressive
alignment in the workflow. Using signal alignment, we are able to
improve the peak-selection process, reducing the error-rate to
almost three-fold and recapturing missing/removed peaks, hence
improving the overall quality of the data-matrix. On a homo-
genous dataset, the peaks generated from RT mapping can
complete the peptide-intensity table close to 100% at the expense
of mild increment in the quantitation error-rate from commonly
used 1 to 5%. Nonetheless, inclusion of such peaks may not
always be desired and additional research is warranted on how to
handle peaks that are close to the noise threshold.

The implementation for Star and MST alignment in DIAlignR
does not introduce bias toward a specific run as the reference run
is different for each peptide. However, these methods are not able
to fully incorporate information from all runs while selecting a
reference, which is truly achieved by the Progressive alignment.
The latter generates a template chromatogram with reproducible
signal around a peptide-peak which is useful not only for manual
annotations in standard tools such as Skyline, but also for
manipulating chromatogram libraries40. In some cases, the dif-
ferential signal can be easily visualized in the context of nearby
peaks. Since RT shift was mild in the homogenous validation
data, all three multirun strategies gave similar error-rates with
hybrid pairwise-alignment.

Our evaluation on the multi-species dataset revealed that
DIAlignR effectively controls the quantitative error rate and
improves precision by reducing the coefficient of variation (CV)
in protein intensities for E. coli, Human, and Yeast. Additionally,
DIAlignR demonstrated its ability to accurately align peaks and
improve the precision of expected species ratios, resulting in
reduced variances and tighter variances at higher FDR thresholds.
These findings provide a comprehensive understanding of DIA-
lignR’s impact on quantitative measurements and its capability to
handle peak addition and removal effectively. Specifically in cases
where the interest is in detecting changes in the small set of
proteins that are important in discerning different sample
comparisons.

During the multisite analysis, it became apparent that the
differences amongst multirun methods stem from the global fits
employed in the hybrid alignment. Although all three methods
report lower CV compared to the unaligned table, we find that in
the case of multi-column heterogeneity, MST performs better
than Star and Progressive methods. Based on these observations,
we have summarized the features of each multirun method in
Supplementary Table 5. Apart from evaluating multirun methods,
this dataset highlights the limitations of currently used tools such
as TRIC in analyzing such heterogeneous data, and why many
large-scale proteomics studies have avoided cross-run RT align-
ment. We also observe a large increment in CV (about 66%) from
site-specific to cross-site analysis (Table 1), highlighting the
challenges in multisite experiments which to a little extent are
ameliorated by DIAlignR workflow. However, other issues such

as normalization coefficient, peak-saturation, peak-shouldering,
and irregular peak-boundary also affect quantitation and need to
be addressed for automated analysis of label-free experiments.

A 2009 shotgun proteomics study41 found a large disparity
between labs in protein identification from various samples (NCI-
20, Sigma UPS 1, Yeast lysate). However, the differences were
reduced with extensive separation before LC-MS/MS42. In com-
parison, our workflow consistently produces accurate protein
quantification. Another MRM study measured 22 peptides across
15 sites in 10 replicates using heavy labeled internal standards,
and found an average 9% site-specific CV43. On the other hand,
our workflow dramatically increases the number of precursor ions
and eliminates the need for internal standards. When applied to
229 runs of a human cell line sample, it fully quantifies 8509
precursors out of 52k precursors in every sample at 1% quanti-
tation FDR, yielding a median site-specific CV of 9.3% (Supple-
mentary Table 3). Across all sites, the cross-site CV was 19.8%,
which meets clinical standards44. While the accuracy may be
slightly lower when calculated for all identified analytes, it is a
notable achievement for large-scale label-free studies for produ-
cing reliable results without the expensive calibration reagents
across multiple instruments.

Our approach scales well to large-scale datasets (Supplemen-
tary Note 9 and Supplementary Table 14), allowing us to easily
align 900+ plasma runs. By reanalyzing the prediabetic cohort
data using our new workflow, we are able to detect many proteins
associated with insulin resistance that were not reported in the
original publication. Prior studies using large-scale DIA have not
employed cross-run RT alignment to improve quantitativeness.
Although demonstrated with two models: LDA and XGBoost
from PyProphet, the open-source algorithm of DIAlignR would
be a valuable addition to other scoring methods, as most of the
tools do not use neighborhood context while scoring each peak.
Alignment improves peak-selection, leading to enhanced biolo-
gical insights in complex diseases. Besides correcting for chro-
matographic artifacts, we have also factored-in the mass-
spectrometer sensitivity (run order) and batch effects in our
differential analysis model. These strategies help in reducing the
overhead of spiked-in standards and technical replicates, which
are commonly used in other large-scale studies.

Data acquisition across different instruments, chromatographic
setups or even sites has been a long-standing challenge in the
proteomics community. The DIA scheme- along with DIAlignR
workflow- is capable of identifying and quantifying peptides
across such heterogeneous conditions, enabling multi-instrument
and multisite label-free proteomics studies in the future. Besides
clinical proteomics, this is significant for the developing field of
single-cell proteomics where the analysis of hundreds-to-
thousands of cells is essential for quantifying biological
heterogeneity45. DIAlignR is available on Bioconductor, and can
be integrated into a multitude of proteomics software. Our
approach is reagent-free, generalizable and easily transferable to
existing SWATH or DIA datasets. DIA records fragments of all
ionized molecules, however, this unique feature has not been
exploited for multisite analysis; with the DIAlignR workflow we
demonstrate this capability. Thus, we hope, it will encourage the
community to parallelize DIA measurements for larger data-
acquisitions.

Methods
Spectra files. The instrument generated files were converted to
mzML using MSConvert (docker: chambm/pwiz-skyline-i-agree-
to-the-vendor-licenses:c30f8e5beb5f) without peak-picking. The
plasma files already had linear compression for m/z and positive
integer compression for intensity. The S. Pyogenes cell lysate files
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are available at PASS01508, the multi-species data are from
PXD002952, the multisite data are from PXD004886, and clinical
plasma files are downloaded from the iPOP portal.

DIA Library. For the S. Pyogenes cell lysate analysis, the original
library was downloaded from PASS00788. For the multi-species
dataset, the library was downloaded from PXD004886, whereas
for the multisite data, the pan-human library was considered in
which assays for 11 iRTs and 30 AQUA peptides were added. The
library for clinical plasma dataset is based on the UK twin plasma
study. In the library, ids from 11 iRTs and PBMC samples were
added, and peptide sequences were corrected based on Uniprot
sequences available in December 2021. The sequences not
matching the uniprot database were manually removed.

All libraries were modified to have the same retention time for
multiple charge states of peptides. Peptides with NormalizedRe-
tentionTime different >4 for different charge states were removed.
For other peptides, the NormalizedRetentionTime was averaged
across different charge states. The S. Pyogenes library is available
at PASS01508. Libraries used for the multisite analysis and
plasma data analysis are uploaded on Zenodo repo 6677715.

Peak-picking using OpenMS. The spectra files were parsed with
corresponding library and OpenSWATH (docker: openms/
executables:84191d62898d). If not explicitly specified, the fol-
lowing parameters were used: RT extraction window= 600 s,
extra RT window= 50 s, min_upper_edge_dist= 1, MS2 extrac-
tion window= 75 ppm, MS1 extraction window= 35 ppm, DIA
extraction window= 75 ppm, ppm quadratic regression for mass
correction, background subtraction with vertical_division_min
for peak-intensity, mutual information and MS1 scoring were
added. OpenSWATH produces feature files (.osw) and XICs
(.chrom.mzML). The produced mzML chromatograms were then
converted to chrom.sqMass files with Open-
SwathMzMLFileCacher and lossy-compression set to false. The
specific parameters for each experiment are in the Supplementary
Notes 5–8. The script is available at the DIAlignR wiki.

Peak-scoring using PyProphet. Features from bacterial cell
lysates are merged into a merged.osw, whereas for the multisite
and plasma data, the features are processed without creating a
merged file in PyProphet (docker: pyprophet/pyprophet:2.1.10).
Features are scored using XGBoost classifier with Level=ms1ms2,
initial FDR= 0.01, and integration FDR= 0.05. FDR for peak
groups and peptides are termed as mscore and q value, respec-
tively in the manuscript. The specific parameters for each
experiment are in the Supplementary Text.

Data-matrix using DIAlignR. The S. Pyogenes data were aligned
with alignTargetedRuns, mstAlignRuns, and progAlignRuns for
Star, MST and Progressive alignment respectively. For the larger
datasets, multisite and plasma sample, peptides were divided into
10 fractions to distribute the computation across multiple cpus.
The source-code with specific parameters for each experiment is
available at the DIAlignR wiki.

To perform alignment, first default parameters were obtained
using paramsDIAlignR(). Parameters transitionIntensity and
hardConstrain were set to True, maxFdrQuery, alignedFDR1,
and alignedFDR2 were set to 0.05. Minimum spanning tree based
alignment was performed for multirun alignment. The final data
matrix was filtered with mscore ≤ 0.025 and q value ≤ 0.025 with
signal integration within run enabled.

Data-matrix using TRIC. In TRIC (docker: shubham1637/
msproteomicstools:0.11.0), the feature_alignment.py function was

used with readmethod= cminimal, realign_method= low-
ess_cython, mst:Stdev_multiplier= 4.0, and mst:useRTCorrec-
tion set to True.

S. Pyogenes data analysis. The intensities were median-
normalized and log2 transformed, and technical replicates
labeled as R01 were discarded from downstream analysis. The S.
Pyogenes protein sequences (UP000000750_301447.fasta) were
downloaded in October 2021. Peptides that mapped to the gen-
ome were kept. Fragment-ions quantified in 60% of runs were
retained. Top-3 fragment ions per peptide and top-3 peptides per
protein were selected for differential analysis. Singleton proteins,
with one peptide, were discarded from the analysis resulting in
1001 proteins. For each protein, the following model was used for
ANOVA:

stats :: aovðintensity � bioRepþ peptideþ condition; df Þ

where df is a table that has log2 normalized intensity of each
peptide and biorep ID of each run; condition refers to 0% or 10%
plasma added during bacterial growth. The p values derived from
ANOVA were adjusted by the Benjamini-Hochberg correction
for multiple comparisons. Proteins with adjusted p values ≤ 0.05
and |effect size| > 1 were considered to have differential abun-
dance. Genes were visualized in PATRIC46 version3.6.12 for
Streptococcus pyogenes M1 476 strain (accession number
AP012491). The protein protein interaction networks were fet-
ched from the STRING db47.

Quantitation error-rate. This value indicates the ratio of false-
peaks to true-peaks from all runs used for peptide quantification
in the data-matrix. In the absence of manual annotations, we use
q value from PyProphet results to control for this error-rate8,14.
Besides q value, PyProphet has an additional mscore filter to keep
only high-quality peaks. Unless explicitly specified, both filters are
assigned identical values. When compared to manual annota-
tions, a peak was considered true if it overlaps with the annotated
one. Peaks picked below a q value threshold but missing in
manual annotations are called incorrect. Peaks resulting from
signal integrations (with no q value), but missing in manual
annotations are excluded from error-rate calculation. The error-
rate is calculated as:

Quantitation error rateqvalue ¼
Correct peaksqvalue
Total peaksqvalue

Multisite data analysis. The intensities were normalized with the
table used in the original publication. For peptides, top six
fragment-ions are used, selected without alignment. Protein
quantification is done using top 3 peptides and their top 5
fragment-ions. Coefficient of Variation (CV) was calculated as
standard deviation divided by mean of intensity for an analyte.

Clinical plasma data analysis. Runs having less than 4950
transitions (= μn − 1.96*sdn) were removed. Three other runs
were removed due to low total ion signals. In the remaining 925
runs, transitions quantified in at least 40% of runs were kept.
Peptide intensities were median normalized. Peptide abundance
is inferred by summing top 5 most intense transitions. Protein
quantitation is done by summing the top three peptides. The
transitions, peptides used for quantification, runs selected for
analysis and their normalization coefficients are provided in the
Zenodo repo. Intensities were log2 transformed. The final data-
matrix had 227 proteins across 925 runs with 85% completeness.
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Differential proteomics. Only healthy samples from known IR and
IS participants (n= 416) were used to find associated proteins.
Following model was used for each protein:

nlme :: lmeðintensity � IRISþ peptideID;

random ¼ listð� 1jBatch;� 1jAcqOrder;� 1jIDÞ;method ¼ MLÞ
where IRIS is the status of each participant (ID), Batch is the
factor variable of the sample, AcqOrder is the acquisition order of
the sample in that batch. The p value was obtained by comparing
the above model with the NULL model using anova(). The effect
size is generated by fitting the above model with method =
REML. A protein is called significant if its effect size >log2(1.25)
and BH-corrected p value ≤ 0.05. These proteins are mentioned in
Fig. 5, and also used to determine any bias by DIAlignR in
Fig. S29. To visualize the differential protein abundance
(Fig. S28a), we removed batch and acquisition order, and parti-
cipant specific effects from each sample. Following model was
used to obtain their coefficients for each peptide:

nlme :: lmeðintensity � 0þ Batchþ Batch : AcqOrder;

random ¼ listð� 1jIRIS;� 1jIDÞ;method ¼ REMLÞ
Longitudinal analysis. There are 411 samples to determine pro-
teome change during RVI. To investigate proteins that changed,
following model was used:

nlme :: lmeðintensity � event þ peptideID;

random ¼ listð� 1jBatch;� 1jAcqOrder;� 1jIDÞ;method ¼ MLÞ
where event is a factor variable with five levels as described above.
The p value for each protein was obtained by comparing the
above model with the NULL model using anova(). A protein is
called significant if its BH-corrected p value ≤ 0.05.

The fuzzy c-means clustering was performed to recognize the
longitudinal patterns48. We used the elbow method to identify the
optimal number of clusters(= 4) in our data set. The data was
standardized to z-scores for each peptide and subjected to
c-means clustering over the course of RVI. We used a minimum
acore as 0.6 to get the core proteins of each cluster. To identify the
function of these proteins, we used the IMPaLA49 tool pathway
over-representation analysis with q value= 1.0.

Statistics and reproducibility. To identify associated proteins, we
have performed linear mixed-effect models. In addition, all the
data used are public datasets and all the codes used are publicly
available at Github to guarantee the reproducibility of all the
experiments.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
For manual annotation and analysis of bacterial growth, we have used previously
published data from PASS01508. For multi-species analysis, we use data previously
published and available from PXD002952. The chromatograms, features and other
results of this paper are added in the manualAnnotation and differentialAnalysis
directories. Multisite data and clinical plasma dataset were fetched from PXD004886 and
the iPOP portal, respectively. The libraries used in their analysis and results are uploaded
to Zenodo (zenodo.org/record/6677715) in restricted mode and can be fetched with this
link. The Supplementary figures and tables are in Supplementary Text. The numerical
data behind the graphs in the figures is available in the Supplementary Data file.

Code availability
DIAlignR is open-source and is freely available at https://github.com/shubham1637/
DIAlignR under a GPL-3 license.
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